JPH01194419A - Plasma processor - Google Patents

Plasma processor

Info

Publication number
JPH01194419A
JPH01194419A JP1922688A JP1922688A JPH01194419A JP H01194419 A JPH01194419 A JP H01194419A JP 1922688 A JP1922688 A JP 1922688A JP 1922688 A JP1922688 A JP 1922688A JP H01194419 A JPH01194419 A JP H01194419A
Authority
JP
Japan
Prior art keywords
waveguide
plasma
electric field
shape
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1922688A
Other languages
Japanese (ja)
Inventor
Yuuki Hamada
浜田 祐己
Yasushi Sasaki
佐々木 康司
Susumu Tanaka
進 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Sagami Ltd
Original Assignee
Tokyo Electron Sagami Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Sagami Ltd filed Critical Tokyo Electron Sagami Ltd
Priority to JP1922688A priority Critical patent/JPH01194419A/en
Publication of JPH01194419A publication Critical patent/JPH01194419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To operate a plasma over the whole face of a wafer and to uniformly process the whole wafer by connecting a rectangular waveguide through a tapered waveguide to a vacuum vessel thereby to generate the plasma in a state near a circular shape. CONSTITUTION:A microwave oscillated by an oscillator 1 is fed through a rectangular waveguide 2 and then fed through a tapered waveguide 10. The sectional shape of the electric field of the microwave is gradually deformed from a rectangular shape to a shape near a circular shape in response to the taped shape of the waveguide 10, and the sectional area of the electric field is gradually enlarged. In a generation chamber 3, a plasma having an electric field of the state substantially similar to that of the electric field in the outlet of the waveguide 10, i.e., an electric field of the state that its sectional area is large in the shape near a circular shape can be generated, and the plasma can be operated over the whole face of a wafer A formed in a circular shape by attaching a susceptor 9 in a reaction chamber 4. Accordingly, the whole face of the wafer can be uniformly etched, or processed by, such as CVD.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はプラズマ処理装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a plasma processing apparatus.

(従来の技術) 半導体の製造において、半導体ウェハに対してECRエ
ツチングやECR−CVDなどにおいて使用されている
プラズマ処理装置は、第5図で示すようにマイクロ波発
振器1、この発振器1に接続する導波管2、この導波管
2に接続するプラズマ発生室3およびこの発生室3に接
続する反応室4を有する真空容器5を備えており、さら
に放電室3を囲む磁場コイル6、放電室に接続するガス
供給装置7および反応室4に接続する真空ポンプ8を備
えている。
(Prior Art) In semiconductor manufacturing, a plasma processing apparatus used for ECR etching, ECR-CVD, etc. on semiconductor wafers has a microwave oscillator 1 connected to the oscillator 1, as shown in FIG. It is equipped with a vacuum vessel 5 having a waveguide 2, a plasma generation chamber 3 connected to the waveguide 2, and a reaction chamber 4 connected to the generation chamber 3, and further includes a magnetic field coil 6 surrounding the discharge chamber 3, and a plasma generation chamber 3 connected to the waveguide 2. A gas supply device 7 connected to the reaction chamber 4 and a vacuum pump 8 connected to the reaction chamber 4 are provided.

この装置で半導体のウェハAにエツチングまたはCVD
を行なう場合には、半導体ウェハAを真空容器5の内部
において発生室3に対面するように反応室4に配置して
サセプタ9で保持する。また、真空ポンプ8で発生室3
および反応室4の内部を真空に吸引するとともに、ガス
供給装置7により発生室3および反応室4の内部に放電
ガスを供給する。そして、磁場コイル6により発生室3
の内部のガスに対して均一な磁界を印加する。そうする
と発生室3の内部でプラズマが形成され、プラズマ中の
電子が磁力線の回りを円運動する。
This equipment performs etching or CVD on semiconductor wafer A.
When performing this, the semiconductor wafer A is placed in the reaction chamber 4 inside the vacuum container 5 so as to face the generation chamber 3, and is held by a susceptor 9. In addition, the generation chamber 3 is
The inside of the reaction chamber 4 is vacuumed, and the gas supply device 7 supplies discharge gas to the inside of the generation chamber 3 and the reaction chamber 4. Then, the generation chamber 3 is
A uniform magnetic field is applied to the gas inside. Then, plasma is formed inside the generation chamber 3, and the electrons in the plasma move circularly around the lines of magnetic force.

この円運動の回転周波数は電子の重さに反比例し、電荷
と磁界に比例する。一方、マイクロ波発振器1でマイク
ロ波(電磁波)を発振させ、このマイクロ波を導波管2
を通して発生室3の内部に伝播する。この場合、マイク
ロ波の周波数はこの発生室3で円運動する電子の回転周
波数と一致するものとし、且つマイクロ波の電界の方向
は磁場コイル6により発生室3に印加する磁界の方向に
対して直交する方向とする。そうするとマイクロ波は発
生室3の回転電子に共鳴吸収されて電子サイクロトロン
共鳴(Electron Cycltron Re5o
nance 。
The rotational frequency of this circular motion is inversely proportional to the weight of the electron, and proportional to the electric charge and magnetic field. On the other hand, the microwave oscillator 1 oscillates microwaves (electromagnetic waves), and the microwaves are transmitted to the waveguide 2.
It propagates inside the generation chamber 3 through. In this case, the frequency of the microwave is assumed to match the rotational frequency of the electrons moving circularly in the generation chamber 3, and the direction of the electric field of the microwave is relative to the direction of the magnetic field applied to the generation chamber 3 by the magnetic field coil 6. The directions are orthogonal. Then, the microwave is resonantly absorbed by the rotating electrons in the generation chamber 3, causing electron cyclotron resonance (Electron Cycltron Re5o).
nance.

略してECRという。)現象とよばれる現象が発生する
。これにより発生室3の内部で安定した低分離プラズマ
が発生する。そして発生室3で発生したプラズマは反応
室4に設けであるウェハAに作用し、反応室4の内部の
ガスの反応によりウェハAの表面に薄膜の形成またはエ
ツチングを行なう。
It is abbreviated as ECR. ) phenomenon occurs. As a result, stable low-separation plasma is generated inside the generation chamber 3. The plasma generated in the generation chamber 3 acts on the wafer A provided in the reaction chamber 4, and a thin film is formed or etched on the surface of the wafer A by the reaction of the gas inside the reaction chamber 4.

しかして、従来のプラズマ処理装置では、発振器1と発
生室3とを接続する導波管2として第6図で示すように
断面が矩形をなす矩形導波管を全体にわたって使用して
いた。これは次の理由によるものである。すなわち、矩
形導波管はマイクロ波を効率良く伝播でき、またマイク
ロ波の周波数に応じた断面部の大きさを決めるための寸
法の算出が容易であり、製品を規格化して製造コストを
低減出来る。
Therefore, in the conventional plasma processing apparatus, a rectangular waveguide having a rectangular cross section, as shown in FIG. 6, is used throughout as the waveguide 2 connecting the oscillator 1 and the generation chamber 3. This is due to the following reason. In other words, rectangular waveguides can propagate microwaves efficiently, and it is easy to calculate the dimensions to determine the cross-sectional size according to the microwave frequency, making it possible to standardize products and reduce manufacturing costs. .

(発明が解決しようとする課題) しかして、プラズマ処理装置においてウェハに処理を行
なう場合に重要なことは、ウェハの全体にわたりプラズ
マを作用させて処理を行なうことである。
(Problems to be Solved by the Invention) However, when processing a wafer in a plasma processing apparatus, what is important is to perform the processing by applying plasma to the entire wafer.

しかしながら、従来のように矩形導波管2を使用した場
合には次のような問題がある。−数的にウェハAは円形
をなすので、発生室3および反応室4はウェハAの全体
にわたりプラズマを作用させるように断面を円形に形成
している。しかし、矩形導波管2を使用した場合には、
第6図で示すように矩形導波管2が円形をなす発生室3
に直接接続することになり、マイクロ波が通る通路の断
面形状が導波管2と発生室3との接続部で矩形から円形
に急激に変化する。そして、第7図で示すように矩形導
波管2を通ってきたマイクロ波の電界の断面は矩形をな
している。このため、断面矩形の電界をもつマイクロ波
が矩形導波管2から発生室3に入っても電界の断面が矩
形から円形の発生室3に合せた円形に急激に変化するこ
とが出来ず矩形をやや崩した断面に変化するに止まる。
However, when the rectangular waveguide 2 is used as in the prior art, there are the following problems. - Since the wafer A is numerically circular, the generation chamber 3 and the reaction chamber 4 have circular cross-sections so that the plasma can be applied to the entire wafer A. However, when using the rectangular waveguide 2,
As shown in FIG. 6, the rectangular waveguide 2 forms a circular generation chamber 3.
As a result, the cross-sectional shape of the passage through which the microwave passes rapidly changes from rectangular to circular at the connection between the waveguide 2 and the generation chamber 3. As shown in FIG. 7, the cross section of the electric field of the microwave that has passed through the rectangular waveguide 2 is rectangular. Therefore, even if a microwave with an electric field having a rectangular cross section enters the generation chamber 3 from the rectangular waveguide 2, the cross section of the electric field cannot suddenly change from a rectangular shape to a circular shape that matches the circular generation chamber 3; It only changes to a slightly distorted cross section.

これにより、このマイクロ波の電界の断面の影響を受け
て発生室3で発生するプラズマの電界も矩形に近い形状
の小さな形態となり、円形をなすウェハAに対して全体
に作用することができない形態でウェハAに作用するこ
とになる。従って、ウェハAの全面にわたりプラズマを
作用させてエツチングやCVDを行なうことができず、
処理できない部分が残るという事態が発生している。
As a result, the electric field of the plasma generated in the generation chamber 3 under the influence of the cross section of the electric field of this microwave also becomes a small form with a shape close to a rectangle, and a form that cannot act on the entire circular wafer A. will act on wafer A. Therefore, it is not possible to perform etching or CVD by applying plasma over the entire surface of the wafer A.
A situation has arisen where some parts remain that cannot be processed.

また、矩形導波管2と発生室3との間に導波管変換器を
設けることも考えられるが、この場合もマイクロ波の電
界の均一性の改善をあまり期待できない。
It is also conceivable to provide a waveguide converter between the rectangular waveguide 2 and the generation chamber 3, but in this case too, it is not expected to improve the uniformity of the microwave electric field much.

本発明は前記事情に基づいてなされたもので、半導体ウ
ェハの全面にわたりエツチングまたはCVDの処理を行
なうことが出来るプラズマ処理装置を提供することを目
的とする。
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a plasma processing apparatus capable of performing etching or CVD processing over the entire surface of a semiconductor wafer.

[発明の構成] (課題を解決するための手段) 前記目的を発生するために本発明のプラズマ処理装置は
、マイクロ波発振器、このマイクロ波発振器に接続され
た矩形導波管、この矩形導波管に接続され且つ放電ガス
が導入されてプラズマ発生空間を形成する真空容器を備
えた装置において、矩形導波管はテーパ形導波管を介し
て真空容器に接続されていることを特徴とするものであ
る。
[Structure of the Invention] (Means for Solving the Problem) In order to generate the above object, the plasma processing apparatus of the present invention includes a microwave oscillator, a rectangular waveguide connected to the microwave oscillator, and a rectangular waveguide connected to the microwave oscillator. A device comprising a vacuum vessel connected to a tube and into which discharge gas is introduced to form a plasma generation space, characterized in that the rectangular waveguide is connected to the vacuum vessel via a tapered waveguide. It is something.

(作用) 矩形導波管を通ってきたマイクロ波はテーパ形導波管を
通る過程で、電界の断面が矩形から円形に近い広い断面
に滑らかに変形されてプラズマ発生室に入る。これによ
り円形に近い広い形態でプラズマが発生してウェハの全
面にわたり作用し、ウェハの全面にわたり均一な処理を
行なうことができる。
(Operation) In the process of passing through the tapered waveguide, the microwave that has passed through the rectangular waveguide smoothly transforms the cross section of the electric field from a rectangle to a wide cross section close to a circle, and enters the plasma generation chamber. As a result, plasma is generated in a wide, nearly circular shape and acts over the entire surface of the wafer, making it possible to perform uniform processing over the entire surface of the wafer.

(実施例) 本発明の詳細な説明する。(Example) The present invention will be described in detail.

本発明の一実施例について図面を参照して説明する。An embodiment of the present invention will be described with reference to the drawings.

第1図はプラズマ処理装置の全体を示しており、第5図
と同一部分は同一符号を付して、説明を省略する。この
実施例では、矩形導波管2と真空容器5の発生室3との
間にテーパ形導波管10を介在して設けられている。こ
のテーパ形導波管10は第2図でも示すように一端の開
口1が矩形導波管2の矩形断面に対応した大きさの矩形
に形成され、他端の開口12が発生室3の円形断面に対
応した大きさの円形に形成されており、この矩形開口1
1から円形開口12に向けて矩形断面を円形断面に徐々
に変形させながら断面積を徐々に拡大してゆくテーパを
形成したものである。そして、テーパ形導波管10の矩
形開口11を矩形導波管2の端部の矩形開口に接続し、
円形開口12を真空容器5の発生室3の円形開口に接続
する。
FIG. 1 shows the entire plasma processing apparatus, and the same parts as in FIG. 5 are designated by the same reference numerals, and their explanation will be omitted. In this embodiment, a tapered waveguide 10 is interposed between the rectangular waveguide 2 and the generation chamber 3 of the vacuum vessel 5. As shown in FIG. 2, this tapered waveguide 10 has an opening 1 at one end formed in a rectangular shape corresponding to the rectangular cross section of the rectangular waveguide 2, and an opening 12 at the other end formed into a circular shape of the generation chamber 3. It is formed into a circular shape with a size corresponding to the cross section, and this rectangular opening 1
A taper is formed in which the cross-sectional area gradually increases from 1 to the circular opening 12 while gradually transforming the rectangular cross-section into a circular cross-section. Then, the rectangular opening 11 of the tapered waveguide 10 is connected to the rectangular opening at the end of the rectangular waveguide 2,
The circular opening 12 is connected to the circular opening of the generation chamber 3 of the vacuum vessel 5.

このように構成したプラズマ処理装置においては、発振
器1で発振されたマイクロ波は矩形導波管2を通った後
にテーパ形導波管10を通る。ここで、テーパ形導波管
10のテーパ形状に応じてマイクロ波の電界の断面形状
が矩形から徐々に円形に近い形状に変形されるとともに
、電界の断面積が徐々に拡大される。そして、最終的に
テーパ形導波管10の出口である円形開口]2でのマイ
クロ波の電界の形態は第3図で示すようになる。
In the plasma processing apparatus configured in this way, the microwave oscillated by the oscillator 1 passes through the rectangular waveguide 2 and then the tapered waveguide 10 . Here, in accordance with the tapered shape of the tapered waveguide 10, the cross-sectional shape of the electric field of the microwave is gradually transformed from a rectangular shape to a shape close to a circle, and the cross-sectional area of the electric field is gradually expanded. Finally, the form of the microwave electric field at the circular opening 2 which is the exit of the tapered waveguide 10 is as shown in FIG.

このようにマイクロ波はテーパ形導波管10て電界が円
形に近い広い形状に変換されて円形をなす発生室3の内
部に入る。このため、発生室3ではテーパ形導波管10
の出口での電界の形態と略相似した形態の電界、すなわ
ち円形に近い形状で断面積が大きい形態の電界をもった
プラズマを発生させることができ、このプラズマを反応
室4にサセプタ9に取付けて設けた円形をなすウェハA
の全面にわたり作用させることができる。従って、ウェ
ハAの全面にわたり均一なエツチングまたはCVDの処
理を行なうことができ、処理を行なわない箇所が部分的
に残るという事態の発生を防止できる。
In this way, the electric field of the microwave is converted into a wide, nearly circular shape by the tapered waveguide 10, and the microwave enters the circular generation chamber 3. Therefore, in the generation chamber 3, the tapered waveguide 10
It is possible to generate a plasma with an electric field having a form that is approximately similar to the form of the electric field at the exit of the plasma, that is, an electric field having a shape close to a circle and a large cross-sectional area.This plasma is attached to the susceptor 9 in the reaction chamber 4. A circular wafer A provided with
can be applied over the entire surface. Therefore, uniform etching or CVD processing can be performed over the entire surface of the wafer A, and it is possible to prevent the occurrence of a situation where a portion of the wafer A is left unprocessed.

第4図は他の実施例を示している。この実施例はテーパ
形導波管10とプラズマ発生室3を一体化して形成した
もので、発生室3は真空容器の設計サイズから決められ
る高さhと直径dを有している。発生室3の内部には、
石英などの真空保持およびマイクロ波の伝達が可能な材
料で形成され且つ反応室3の寸法に近い寸法を有する内
部容器14が設けられている。この内部容器14はプラ
ズマ発生をウェハに対して均一にするためのものである
。この実施例は内部容器14の存在によりエツチングや
CYDの均一性が良いという効果がある。
FIG. 4 shows another embodiment. This embodiment is formed by integrating a tapered waveguide 10 and a plasma generation chamber 3, and the generation chamber 3 has a height h and a diameter d determined from the design size of the vacuum vessel. Inside the generation chamber 3,
An inner container 14 is provided, which is made of a material capable of maintaining vacuum and transmitting microwaves, such as quartz, and has dimensions close to those of the reaction chamber 3 . This internal container 14 is for making plasma generation uniform over the wafer. This embodiment has the advantage that the uniformity of etching and CYD is good due to the presence of the inner container 14.

[発明の効果] 以上説明したように本発明のプラズマ処理装置によれば
、半導体ウェハの全面にわたりプラズマを作用させてエ
ツチングやCVDの処理を良好に行なうことができる。
[Effects of the Invention] As explained above, according to the plasma processing apparatus of the present invention, etching and CVD processing can be performed satisfactorily by applying plasma over the entire surface of a semiconductor wafer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の一実施例を示す断面図、第2図
は実施例における矩形導波管およびテーパ形導波管を示
す斜視図、第3図はテーパ形導波管(こおけるマイクロ
波の電界分布を示す説明図、第4図は他の実施例を示す
断面図、第5図は従来の装置の例を示す断面図、第6図
は同装置における矩形導波管を示す斜視図、第7図は矩
形導波管におけるマイクロ波の電界分布を示す説明図で
ある。 1・・・マイクロ波発振器、2・・・矩形導波管、3・
・・プラズマ発生室、4・・・反応室、5・・・真空容
器、10・・・テーパ形導波管。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a sectional view showing an embodiment of the device of the present invention, FIG. 2 is a perspective view showing a rectangular waveguide and a tapered waveguide in the embodiment, and FIG. 3 is a tapered waveguide (this example). 4 is a sectional view showing another embodiment, FIG. 5 is a sectional view showing an example of a conventional device, and FIG. 6 is a diagram showing a rectangular waveguide in the same device. The perspective view shown in FIG. 7 is an explanatory diagram showing the electric field distribution of microwaves in a rectangular waveguide. 1...Microwave oscillator, 2... Rectangular waveguide, 3.
...Plasma generation chamber, 4...Reaction chamber, 5...Vacuum container, 10...Tapered waveguide. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims]  マイクロ波発振器、このマイクロ波発振器に接続され
た矩形導波管、この矩形導波管に接続され且つ放電ガス
が導入されてプラズマ発生空間を形成する真空容器を備
えた装置において、前記矩形導波管はテーパ形導波管を
介して前記真空容器に接続されていることを特徴とする
プラズマ処理装置。
In an apparatus comprising a microwave oscillator, a rectangular waveguide connected to the microwave oscillator, and a vacuum vessel connected to the rectangular waveguide and into which a discharge gas is introduced to form a plasma generation space, the rectangular waveguide A plasma processing apparatus characterized in that the tube is connected to the vacuum vessel via a tapered waveguide.
JP1922688A 1988-01-29 1988-01-29 Plasma processor Pending JPH01194419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1922688A JPH01194419A (en) 1988-01-29 1988-01-29 Plasma processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1922688A JPH01194419A (en) 1988-01-29 1988-01-29 Plasma processor

Publications (1)

Publication Number Publication Date
JPH01194419A true JPH01194419A (en) 1989-08-04

Family

ID=11993463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1922688A Pending JPH01194419A (en) 1988-01-29 1988-01-29 Plasma processor

Country Status (1)

Country Link
JP (1) JPH01194419A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782474A (en) * 1980-11-12 1982-05-22 Hitachi Ltd Microwave etching device
JPS59119729A (en) * 1982-12-25 1984-07-11 Fujitsu Ltd Microwave treating method and device therefor
JPS61131450A (en) * 1984-11-30 1986-06-19 Canon Inc Dry etching apparatus
JPS62210621A (en) * 1986-03-12 1987-09-16 Hitachi Ltd Microwave plasma processing method and its device
JPH01100920A (en) * 1987-10-14 1989-04-19 Canon Inc Substrate treating apparatus using plasma product
JPH01110733A (en) * 1987-08-22 1989-04-27 Anelva Corp Surface processor using microwave

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782474A (en) * 1980-11-12 1982-05-22 Hitachi Ltd Microwave etching device
JPS59119729A (en) * 1982-12-25 1984-07-11 Fujitsu Ltd Microwave treating method and device therefor
JPS61131450A (en) * 1984-11-30 1986-06-19 Canon Inc Dry etching apparatus
JPS62210621A (en) * 1986-03-12 1987-09-16 Hitachi Ltd Microwave plasma processing method and its device
JPH01110733A (en) * 1987-08-22 1989-04-27 Anelva Corp Surface processor using microwave
JPH01100920A (en) * 1987-10-14 1989-04-19 Canon Inc Substrate treating apparatus using plasma product

Similar Documents

Publication Publication Date Title
JP3233575B2 (en) Plasma processing equipment
JP3217274B2 (en) Surface wave plasma processing equipment
JPH08106994A (en) Microwave plasma processor
JP2006324551A (en) Plasma generator and plasma processing apparatus
JP7001456B2 (en) Plasma processing equipment
JP3591642B2 (en) Plasma processing equipment
JPH0319332A (en) Microwave plasma treatment device
US6376796B2 (en) Plasma processing system
JP3294839B2 (en) Plasma processing method
US5292395A (en) ECR plasma reaction apparatus having uniform magnetic field gradient
JPH01194419A (en) Plasma processor
JP2000073175A (en) Surface treating device
JP3855468B2 (en) Plasma processing equipment
US6388624B1 (en) Parallel-planar plasma processing apparatus
JPH0339480A (en) Ecr plasma device
JP2951797B2 (en) Plasma generator
EP1100115A1 (en) Device and method for plasma processing
JP3082331B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP3205542B2 (en) Plasma equipment
JPH10199699A (en) Plasma processing device
JP2697464B2 (en) Microwave plasma processing equipment
JP2003303775A (en) Plasma treatment device
JPH01236628A (en) Plasma processor
JPH02137223A (en) Plasma treatment apparatus
JPH06101442B2 (en) ECR plasma reactor