JPH01194398A - Radio wave absorption body configuration material - Google Patents

Radio wave absorption body configuration material

Info

Publication number
JPH01194398A
JPH01194398A JP1868088A JP1868088A JPH01194398A JP H01194398 A JPH01194398 A JP H01194398A JP 1868088 A JP1868088 A JP 1868088A JP 1868088 A JP1868088 A JP 1868088A JP H01194398 A JPH01194398 A JP H01194398A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
wave absorbing
core material
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1868088A
Other languages
Japanese (ja)
Inventor
Yuichi Iino
飯野 勇一
Makoto Taga
誠 多賀
Hiroshi Yamazaki
浩 山崎
Kunihiro Horiuchi
堀内 邦啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP1868088A priority Critical patent/JPH01194398A/en
Publication of JPH01194398A publication Critical patent/JPH01194398A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a radio wave absorbing body which is extremely light, is superb in retaining configuration, and is superb in heat resistance as well as mechanical strength by constituting a radio wave absorbing body by a radio wave absorbing material with polyolefin resin expansion molding as a core material. CONSTITUTION:A radio wave absorbing material such as a plastic rubber including a large quantity of Mn-Zn magnetic material, carbon black, or polarity base is dispersed to acryl emulsion to create a dispersion. A thick plate 1 of expansion molding body of polyolefin resin etc., is sliced to create a thin plate 2 and to form a thin and long plate 3 in isosceles triangle shape. Then, a hollow pyramid core material 4 is created. A mounting member 5 is conjugated to the bottom side and dispersion is applied to it. The obtained radio wave absorption body configuration object is extremely light, is superb in mechanical strength, and can be easily installed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は電波暗室等に使用される電波吸収体の構成材に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a constituent material of a radio wave absorber used in an anechoic chamber or the like.

〔従来技術〕[Prior art]

従来、電波吸収体構成材としては、その形状保持材自体
に誘電損失を持たせたタイプ(ゴム、硬質又は軟質のポ
リウレタン、ポリスチレン系改質発泡体)、形状保持材
(コア材、FRP等)の上に誘電損失を持った導電物質
をふくむシートを付着させるもの更にはW置物質を含む
塗料を塗布したもの等が知られている。
Conventionally, as constituent materials for radio wave absorbers, types that have dielectric loss in the shape-retaining material itself (rubber, hard or soft polyurethane, modified polystyrene foam), shape-retaining materials (core material, FRP, etc.) have been used. There are also known methods in which a sheet containing a conductive substance having dielectric loss is adhered thereon, and a type in which a paint containing a tungsten material is applied.

しかしながら、これらの電波吸収体構成材は、現在、電
波吸収体構成材に求められている以下の特性を全て具備
するものではなかった。
However, these radio wave absorber constituent materials do not have all of the following characteristics currently required of radio wave absorber constituent materials.

(1)軽量であること (2)加工が容易であること (3)形状保持性に優れていること (4)機械的強度が大であること (5)耐熱性に優れていること (6)成形が容易であること (7)適度の弾力性を有し、折損しないこと(目  的
〕 本発明は電波吸収体構成材として要求される上記諸特性
の全てを満たす電波吸収体構成材を提供することを目的
とする。
(1) Light weight (2) Easy processing (3) Excellent shape retention (4) High mechanical strength (5) Excellent heat resistance (6) ) It is easy to mold. (7) It has appropriate elasticity and does not break. (Purpose) The present invention provides a radio wave absorber constituent material that satisfies all of the above characteristics required as a radio wave absorber constituent material. The purpose is to provide.

〔構  成〕〔composition〕

本発明によれば、ポリオレフィン系樹脂発泡成形体と電
波吸収性材料からなる電波吸収体構成材が提供される。
According to the present invention, there is provided a radio wave absorber constituent material comprising a polyolefin resin foam molded article and a radio wave absorbing material.

本発明の電波吸収体構成材は、ポリオレフィン系樹脂発
泡成形体と電波吸収性材料を用いたことを特徴とするも
のである0本発明で用いるポリオレフィン系樹脂発泡成
形体は軽量であるもののある程度の剛性を有するため形
状保持性に優れるとともに良好な耐熱性、耐久性、耐候
性を示し、しかも加工性にも優れていることから、この
ものをコア材とした電波吸収体構成材は従来のものに比
し軽量で施行性に優れる上、良好な機械的強度及び耐熱
性を有するため極めて実用的価値の高いものである。
The radio wave absorber constituent material of the present invention is characterized by using a polyolefin resin foam molded product and a radio wave absorbing material. Although the polyolefin resin foam molded product used in the present invention is lightweight, it has a certain degree of Due to its rigidity, it has excellent shape retention, as well as good heat resistance, durability, and weather resistance, and is also excellent in processability, so it has been used as a conventional radio wave absorber constituent material using this material as a core material. It is lightweight and has excellent workability, and has good mechanical strength and heat resistance, so it has extremely high practical value.

本発明で用いるポリオレフィン系樹脂発泡体は従来公知
のものがそのまま適用でき、たとえばポリエチレン系樹
脂あるいはポリプロピレン系樹脂発泡性粒子等のポリオ
レフィン樹脂発泡性粒子を金型内に充填し加熱発泡させ
るいわゆる融着成形法等によって製造される。
As the polyolefin resin foam used in the present invention, conventionally known foams can be used as is. For example, polyolefin resin foam particles such as polyethylene resin or polypropylene resin expandable particles are filled into a mold and heated and foamed by so-called fusion. Manufactured by molding method etc.

この場合、ポリオレフィン系樹脂としては、従来公知の
架橋、無架橋のいずれのものも使用でき、ポリエチレン
やポリプロピレン単独重合体の他、これらの各種共重合
体更にはこれらを改質した樹脂等も使用可能である。
In this case, conventionally known crosslinked or non-crosslinked polyolefin resins can be used, and in addition to polyethylene and polypropylene homopolymers, various copolymers of these and modified resins of these can also be used. It is possible.

このようなものの具体例としては1例えば、LDPR(
低密度ポリエチレン)、LLDPE(直鎖状低密度ポリ
エチレン)、1(DPE(高密度ポリエチレン)、プロ
ピレン/エチレンランダム共重合体、プロピレン/エチ
レンブロック共重合体、プロピレン単独重合体、プロピ
レン/1−ブテンランダム共重合体、それらの架橋物お
よびそれらに重合性単量体を含浸、共存下に重合させた
改質重合体等が挙げられる。
A specific example of such a thing is 1, for example, LDPR (
low density polyethylene), LLDPE (linear low density polyethylene), 1 (DPE (high density polyethylene), propylene/ethylene random copolymer, propylene/ethylene block copolymer, propylene homopolymer, propylene/1-butene Examples include random copolymers, crosslinked products thereof, and modified polymers obtained by impregnating them with polymerizable monomers and polymerizing them in the coexistence.

本発明の場合、殊に、架橋直鎖低密度ポリエチレン、架
橋高密度ポリエチレンのスチレン/MMA改質重合体、
プロピレン/エチレンランダム共重合体およびそれ等の
混合体の使用が好ましい。
In the case of the present invention, in particular, crosslinked linear low density polyethylene, styrene/MMA modified polymers of crosslinked high density polyethylene,
Preference is given to using propylene/ethylene random copolymers and mixtures thereof.

なお、ポリエチレン系樹脂発泡性粒子やポリプロピレン
系樹脂発泡性粒子のようなポリオレフィン系樹脂発泡性
粒子は、前記のような、ポリエチレン系樹脂やポリプロ
ピレン系樹脂等のポリオレフィン系樹脂を粒径1O−I
IIInとして常法によりプロパン、ブタン、フロン等
の発泡剤を含浸させて予備発泡することによって得られ
る。
In addition, polyolefin resin expandable particles such as polyethylene resin expandable particles and polypropylene resin expandable particles are made of polyolefin resin such as polyethylene resin or polypropylene resin with a particle size of 1O-I.
IIIn can be obtained by impregnating it with a blowing agent such as propane, butane, or chlorofluorocarbon and pre-foaming it by a conventional method.

本発明の電波吸収体構成材を作成するには、種々の方法
が採用でき、たとえば磁性材料、高誘電損失材料又は導
電性材料のような電波吸収性材料を適当な分散媒たとえ
ばアクリル系エマルジョンに分散させ、この分散液をポ
リエチレン系樹脂発泡成形体やポリプロピレン系樹脂発
泡成形体等のポリオレフィン系樹脂発泡成形体の表面に
塗布又はコーティングする方法、ポリエチレン系樹脂発
泡性粒子又はポリプロピレン系樹脂発泡性粒子等のポリ
オレフィン系樹脂発泡性粒子の表面に磁性材料や導電性
材料等の電波吸収性材料を含浸させ、得られる発泡性粒
子を型内に充填し加熱発泡させる方法、あるいはコア材
であるポリオレフィン系樹脂発泡成形体表面に電波吸収
性材料を5〜50重量%含有する表面がエンボス加工さ
れていてもよいプラスチックのフィルムを貼着する方法
などが適用される。
Various methods can be employed to produce the radio wave absorber component of the present invention, for example by adding a radio wave absorbing material such as a magnetic material, a high dielectric loss material or a conductive material to a suitable dispersion medium such as an acrylic emulsion. A method of dispersing and applying or coating this dispersion liquid on the surface of a polyolefin resin foam molded product such as a polyethylene resin foam molded product or a polypropylene resin foam molded product, a polyethylene resin foamable particle or a polypropylene resin foamable particle A method of impregnating the surface of polyolefin resin expandable particles such as magnetic material or electroconductive material with a radio wave absorbing material such as a magnetic material or a conductive material, filling the resulting expandable particles in a mold and heating and foaming them, or a polyolefin resin core material such as A method of attaching a plastic film containing 5 to 50% by weight of a radio wave absorbing material and which may have an embossed surface to the surface of the resin foam molding is applied.

電波吸収性材料としては、磁性材料や導電性材料、ある
いは高誘電損失材料等が使用される。この場合、磁性材
料としてはフェライト特にMn−Zn系フェライト、N
i−Zn系などが好ましく使用され、また導電性材料と
しては一般的なカーポンプ、ラックのほか、導電性に優
れたアセチレンブラック。
As the radio wave absorbing material, a magnetic material, a conductive material, a high dielectric loss material, or the like is used. In this case, the magnetic material is ferrite, especially Mn-Zn ferrite, N
I-Zn type materials are preferably used, and as conductive materials, in addition to general car pumps and racks, acetylene black, which has excellent conductivity, is used.

ケッチエンブラック等が好ましく用いられ、また高誘電
損失材料としては、極性基を多量含有するプラスチック
やゴム等が好ましく用いられる。
Ketchen black and the like are preferably used, and as the high dielectric loss material, plastics, rubber, etc. containing a large amount of polar groups are preferably used.

本発明の構成材を用いて作成された電波吸収体は、たと
えば、第5−7図に示されるように接着剤により、ある
いは着脱自在の取付金具(たとえばネジ)などの従来公
知の方法によって電波暗室等の壁面、天井面、床面など
に取付けられ、電波吸収体として有効に利用される。
The radio wave absorber made using the constituent materials of the present invention can be used to absorb radio waves by, for example, using an adhesive as shown in FIGS. It is installed on the walls, ceilings, floors, etc. of darkrooms and is effectively used as a radio wave absorber.

〔効  果〕〔effect〕

本発明の電波吸収体用構成材は、ポリオレフィン系樹脂
発泡成形体をコア材としたことから、極めて軽量である
と共に形状保持性に優れ、しかも耐熱性、機械的強度、
加工性にも優れたものである。
The component material for a radio wave absorber of the present invention uses a polyolefin resin foam molding as the core material, so it is extremely lightweight and has excellent shape retention, as well as heat resistance, mechanical strength,
It also has excellent workability.

したがって、本発明の構成材からなる電波吸収体は電波
暗室の壁面に簡単に取付けることができ、その施行性に
優れる上、良好な機械的強度及び耐熱性を有するため従
来品に比べてその実用的価値が極めて高いものである。
Therefore, the radio wave absorber made of the constituent materials of the present invention can be easily attached to the wall of an anechoic chamber, has excellent installation properties, and has good mechanical strength and heat resistance, making it more practical than conventional products. It is of extremely high value.

また、本発明の電波吸収体構成材を製造する方法には一
体成形法や加工による方法があるが、加工型のものは吸
収対象となる電磁波の波長により、その長さや形状を自
由に変更することが出来、特定の金型に拘束されないと
言う設備的な効果をも有する。
Furthermore, methods for manufacturing the radio wave absorber constituent material of the present invention include integral molding methods and processing methods, but in the processing type, the length and shape can be freely changed depending on the wavelength of the electromagnetic wave to be absorbed. It also has the advantage of not being restricted to a specific mold.

〔実施例〕〔Example〕

実施例1 エチレン−プロピレン−ランダム共重合体(エチレン含
有率2.7%)の発泡粒子成形体(発泡倍率45倍)を
用いて、厚板状の成形体1を得た(厚さ200mm X
長さ900m1a X幅900ma+)。これをスライ
スして厚さ30mmの薄板2とし、これを裁断して細長
い二等辺三角形状のカット板3とし、これを組み合わせ
て中空角錐からなるコア材4を形成させる。この底辺部
に取り付は部材5を接合一体化し、電波吸収体用コア材
を得る。該コア材に電波吸収性材料(フェライト・エポ
キシ系塗料)を塗布することによって電波吸収体構成材
を得た。この方法によって得られた電波吸収体構成材は
極めて軽量で、機械的強度も優れたものであった(第1
図参照)。
Example 1 A thick plate-shaped molded product 1 was obtained using a foamed particle molded product (expansion ratio: 45 times) of an ethylene-propylene-random copolymer (ethylene content: 2.7%) (thickness: 200 mm
(Length 900m1a x Width 900m1+). This is sliced into a thin plate 2 with a thickness of 30 mm, which is cut into an elongated isosceles triangular cut plate 3, which is combined to form a core material 4 made of a hollow pyramid. Attachment member 5 is integrally attached to this bottom portion to obtain a core material for a radio wave absorber. A radio wave absorber constituent material was obtained by applying a radio wave absorbing material (ferrite/epoxy paint) to the core material. The radio wave absorber constituent material obtained by this method was extremely lightweight and had excellent mechanical strength (first
(see figure).

実施例2 第2図に示されるようなエチレン−プロピレン−ランダ
ム共重合体(エチレン含有率3.4%)の発泡粒子成形
体(発泡倍率30倍)を用いて、四角錐状体4′を一体
成形し、この底辺部に取り付は部材5を接合して電波吸
収体用コア材とした。該コア材に電波吸収材(ケッチエ
ンブラック)を含有するシートを貼着して電波吸収体構
成材とした。得られた電波吸収体構成材は弾性に富み極
めて耐衝撃性の良好なものであった。
Example 2 A square pyramid-shaped body 4' was made using a foamed particle molded product (expansion ratio 30 times) of ethylene-propylene-random copolymer (ethylene content 3.4%) as shown in FIG. It was integrally molded, and a member 5 was attached to the bottom portion to form a core material for a radio wave absorber. A sheet containing a radio wave absorber (Ketchen Black) was attached to the core material to obtain a radio wave absorber constituent material. The resulting radio wave absorber constituent material was highly elastic and had extremely good impact resistance.

実施例3 密度0.96の高密度ポリエチレンを30%のメチルメ
タアクリートで改質した発泡粒子を型内成形し、第3図
に示されるような四角錐の上半部7と下半部8を得た。
Example 3 Expanded particles made by modifying high-density polyethylene with a density of 0.96 with 30% methyl methacrylate were molded in a mold to form an upper half 7 and a lower half 8 of a square pyramid as shown in FIG. I got it.

これを接合一体化して電波吸収体用コア材とした。This was bonded and integrated to form a core material for a radio wave absorber.

この表面に電波吸収性材料(鉄カルボニル含有塗料)を
塗布し電波吸収体構成材を作成した。得られた電波吸収
体構成材は表面強度が大で、かつ極めて軽量であった。
A radio wave absorbing material (paint containing iron carbonyl) was applied to this surface to create a radio wave absorber constituent material. The obtained radio wave absorber constituent material had high surface strength and was extremely lightweight.

実施例4 密度0.925の直鎖低密度ポリエチレン(架橋度50
%)を用いて発泡粒子成形体を得た。発泡倍率は40倍
であった。この大型成形体を第4図のように、熱線によ
り切断して三角柱状の電波吸収体用コア材4″とした。
Example 4 Linear low density polyethylene with a density of 0.925 (degree of crosslinking 50
%) to obtain a foamed particle molded article. The expansion ratio was 40 times. As shown in FIG. 4, this large molded body was cut with a hot wire to obtain a triangular prism-shaped core material 4'' for a radio wave absorber.

このコア材の長方形の底面に取りつけ部材を接合し、他
の面に電波吸収性材料(チタン酸バリウム・エポキシ系
塗料)を塗布した。得られた電波吸収体構成材は柔軟性
に富み、耐m撃性も良好であった・ 実施例5 実施例1,2,3.4で得られた電波吸収体構成材は、
電波暗室の壁面に接着剤IOを用いて取り付けることが
できる。これらの電波吸収体は、壁面に隙間無く取り付
けられ、天井面や床面にも取り付けて、室内の電波の反
射を無くすることができた(第5図参照)。
A mounting member was attached to the rectangular bottom of this core material, and a radio wave absorbing material (barium titanate epoxy paint) was applied to the other surface. The obtained radio wave absorber constituent materials were highly flexible and had good impact resistance. Example 5 The radio wave absorber constituent materials obtained in Examples 1, 2, and 3.4 were as follows:
It can be attached to the wall of the anechoic chamber using adhesive IO. These radio wave absorbers can be attached to walls without gaps, and can also be attached to ceilings and floors to eliminate the reflection of radio waves indoors (see Figure 5).

実施例6 第6図に示されるように実施例1,2,3.4の電波吸
収体構成材をネジや取り付は具11を用いて壁面に隙間
無く取り付けた。(なお、金属製のネジを用いる場合は
その表面を電波吸収性材料で被覆する。
Example 6 As shown in FIG. 6, the radio wave absorber components of Examples 1, 2, 3, and 4 were attached to a wall surface without any gaps using screws or mounting tools 11. (If metal screws are used, cover their surfaces with a radio wave absorbing material.

)同様にしてこの電波吸収体構成材を床や天井にも取り
付けた。このようにして作成された電波暗室は電波吸収
体がきわめて軽量であるため取り付は工事が容易であり
、電波吸収体が落下する危険も少なく、また仮に落下し
ても安全性が高い上、仕様変更のための取り外し工事も
容易であることが判る。
) In the same way, this radio wave absorber constituent material was attached to the floor and ceiling. In the anechoic chamber created in this way, the radio wave absorber is extremely lightweight, so installation is easy, there is little risk of the radio wave absorber falling, and even if it does fall, it is highly safe. It can be seen that removal work for changing specifications is also easy.

実施例7 第7図に示すように、実施例4の電波吸収体構成材を複
数個並列にプラスチック製アングル12に取り付けた。
Example 7 As shown in FIG. 7, a plurality of radio wave absorber components of Example 4 were attached to a plastic angle 12 in parallel.

これを壁面に隙間無く取り付け、天井及び床面にも同様
に設置して電波暗室とした。この方法によって取り付は
工事が簡素化された。
This was attached to the wall without any gaps, and the same was installed on the ceiling and floor to form an anechoic chamber. This method simplified the installation process.

実施例8 エチレン−プロピレン−ランダム共重合体(エチレン含
有率3.3%)の発泡性粒子を標準成型温度よ010℃
以上低い温度で予備成型し、フェライト微粉末分散アク
リルエマルジョンを粒子間空隙に含浸させた後型内成型
し、電波吸収体構成材(第1図の形状)を得た。この構
成材を複数個組合せた電波吸収体は軽量で強度も大であ
り、耐候性、耐熱性にも優れていた。
Example 8 Expandable particles of ethylene-propylene-random copolymer (ethylene content 3.3%) were heated to 010°C above the standard molding temperature.
Preliminary molding was performed at a temperature as low as above, and after impregnating the interparticle voids with an acrylic emulsion in which fine ferrite powder was dispersed, molding was performed in a mold to obtain a radio wave absorber constituent material (having the shape shown in FIG. 1). A radio wave absorber made by combining a plurality of these constituent materials was lightweight, strong, and had excellent weather resistance and heat resistance.

比較例1 実施例2と同様の形状を有する型をもちいてガラス繊維
を張り付け、これに不飽和ポリエステル樹脂を含浸させ
て電波吸収体用コア材とした。このコア材は形状は実施
例1のものに類似しているが、コストは実施例1のもの
の2倍となり、また重量が大となり、天井等に取り付け
た場合に、若し落下すると剛性が過大な為、事故となる
恐れの強いものであった。
Comparative Example 1 A mold having the same shape as in Example 2 was used to attach glass fiber, and this was impregnated with an unsaturated polyester resin to obtain a core material for a radio wave absorber. This core material is similar in shape to the one in Example 1, but the cost is twice that of the one in Example 1, and the weight is also large. Therefore, there was a strong risk of an accident.

比較例2 ポリスチレン発泡性粒子を用いて、実施例2と同じ形状
の発泡成型体を得た(発泡倍率30倍)、このものを電
波吸収体コア材とした。このコア材取り付は工事中に先
端部が折損したり、その他の部分にワレやカケ等を生じ
ることが多く1歩留りが極めて悪いものであった。又、
耐熱性、加工性も良好ではなかった。
Comparative Example 2 A foam molded product having the same shape as in Example 2 was obtained using expandable polystyrene particles (expansion ratio: 30 times), and this product was used as a radio wave absorber core material. When installing this core material, the tip part was often broken during construction, and other parts were often cracked or chipped, resulting in extremely low yields. or,
Heat resistance and workability were also not good.

比較例3 硬質ウレタン樹脂により実施例2と同じ形状の発泡成型
体を得た(発泡倍率30倍)、これを電波吸収体コア材
とした。このものを壁面に取り付けたが、先端部にヘタ
リを生じ、製作時の形状を保持する事が出来なかった。
Comparative Example 3 A foamed molded body having the same shape as in Example 2 was obtained using a hard urethane resin (foaming ratio: 30 times), and this was used as a radio wave absorber core material. I installed this product on a wall, but the tip was bent and could not maintain its original shape.

また、このものはコスト的にも高いものであった。Moreover, this product was also expensive in terms of cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエチレン−プロピレン−ランダム共重合体(エ
チレン含有率2.7%)の発泡粒子成形体からなる電波
吸収体構成材の製造工程を示すフローシートであり、第
2図はエチレン−プロピレン−ランダム共重合体(エチ
レン含有率3.41の発泡粒子成形体からなるコア材の
斜視図であり、第3図は、高密度ポリエチレンをメチル
メタアクリレートで改質した発泡粒子を型内成形し、四
角錐の上半部と下半部を作成し、これらを接合一体化し
た電波吸収体用コア材の斜視図であり、第4図は低密度
ポリエチレンの大型発泡粒子成形体を熱線により切断し
て得た三角柱状のコア芯材の斜視図である。 第5図〜第7図は本発明の構成材を芯材とする電波吸収
体の取付態様を表わす図面である。 A  ・・・電波吸収体構成材 1   ・・・大型厚板状発泡成形体 2   ・・・スライス加工した薄板 3   ・・・カット板 4.4’ 、4”、4”・・・コア材 5   ・・・取付は部材 7   ・・・上半部コア材 8  ・・・下半部コア材 9   ・・・熱線 10 ・・・接着剤 11  ・・・取付具 12 ・・・プラスチックアングル。 (ほか1名) 第2図
Figure 1 is a flow sheet showing the manufacturing process of a radio wave absorber constituent material made of expanded particle molded bodies of ethylene-propylene-random copolymer (ethylene content 2.7%), and Figure 2 is a flow sheet showing the manufacturing process of a radio wave absorber constituent material made of expanded particle molded bodies of ethylene-propylene-random copolymer (ethylene content 2.7%). - Random copolymer (ethylene content: 3.41%) Figure 3 is a perspective view of a core material made of foamed particles molded with an ethylene content of 3.41. , is a perspective view of a core material for a radio wave absorber in which the upper and lower halves of a quadrangular pyramid are made and joined and integrated, and Fig. 4 shows a large foamed particle molded product of low density polyethylene cut by hot wire. FIG. 5 is a perspective view of a triangular prism-shaped core core material obtained by the above steps. FIGS. 5 to 7 are drawings showing how a radio wave absorber having a core material of the present invention is attached. A... Radio wave absorber constituent material 1...Large thick plate-shaped foam molded body 2...Sliced thin plate 3...Cut plate 4.4', 4", 4"...Core material 5...Mounting Components 7 ... Upper half core material 8 ... Lower half core material 9 ... Heat wire 10 ... Adhesive 11 ... Fixture 12 ... Plastic angle. (1 other person) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)ポリオレフィン系樹脂発泡成形体と電波吸収性材
料からなる電波吸収体構成材。
(1) A radio wave absorber component consisting of a polyolefin resin foam molding and a radio wave absorbing material.
JP1868088A 1988-01-28 1988-01-28 Radio wave absorption body configuration material Pending JPH01194398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1868088A JPH01194398A (en) 1988-01-28 1988-01-28 Radio wave absorption body configuration material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1868088A JPH01194398A (en) 1988-01-28 1988-01-28 Radio wave absorption body configuration material

Publications (1)

Publication Number Publication Date
JPH01194398A true JPH01194398A (en) 1989-08-04

Family

ID=11978321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1868088A Pending JPH01194398A (en) 1988-01-28 1988-01-28 Radio wave absorption body configuration material

Country Status (1)

Country Link
JP (1) JPH01194398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013697A1 (en) * 1997-09-09 1999-03-18 Nisshinbo Industries, Inc. Nonflammable radio wave absorber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154703A (en) * 1981-03-20 1982-09-24 Showa Denko Kk Electromagnetic wave absorber
JPS5981355A (en) * 1982-10-30 1984-05-11 Showa Denko Kk Chlorinated polyethylene composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154703A (en) * 1981-03-20 1982-09-24 Showa Denko Kk Electromagnetic wave absorber
JPS5981355A (en) * 1982-10-30 1984-05-11 Showa Denko Kk Chlorinated polyethylene composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013697A1 (en) * 1997-09-09 1999-03-18 Nisshinbo Industries, Inc. Nonflammable radio wave absorber
US6061011A (en) * 1997-09-09 2000-05-09 Nisshinbo Industries, Inc. Nonflammable radio wave absorber

Similar Documents

Publication Publication Date Title
US5135959A (en) Method of impregnating reticulated foam with polymide foam and products thereof
US2822539A (en) Microwave radiation absorbers
US3836967A (en) Broadband microwave energy absorptive structure
JP2003229691A (en) Radio wave absorbent
KR20120117784A (en) Resin foams containing microballoons
US3056707A (en) Sound deadener and absorber
EP0859894B1 (en) Panel element
US3616172A (en) Foam composites for filling enclosed spaces
JPH01194398A (en) Radio wave absorption body configuration material
JPS60141732A (en) Expandable conductive styrene resin beads, foam therefrom and its manufacture
EP0821432A2 (en) Wave absorber and method for production thereof
US3806566A (en) Method of filling enclosed spaces with a foam composite
JP3268094B2 (en) Sound absorber and method of construction
EP0192109A3 (en) Bumper Core
JP2786393B2 (en) Styrene-modified polyolefin resin foam molding
US3348224A (en) Electromagnetic-energy absorber and room lined therewith
JPH04356543A (en) Conductive and dielectric thermoplastic resin particle, foam made therefrom, and its production
JP3164977B2 (en) Pre-expanded thermoplastic resin particles having low thermal conductivity and molded article comprising the pre-expanded thermoplastic resin particles
JP2799895B2 (en) Radio wave absorber
JPH0525968Y2 (en)
JPH03204999A (en) Radiowave absorbent body
JP2903738B2 (en) Radio wave absorber
JPH11209505A (en) Electroconductive expanded particle, its production and wave absorber
JPH0461895B2 (en)
JP2016221736A (en) Foam molded product with electrostatic flocking process applied on surface and manufacturing method therefor