JPH01194354A - Semiconductor light detector - Google Patents

Semiconductor light detector

Info

Publication number
JPH01194354A
JPH01194354A JP63018346A JP1834688A JPH01194354A JP H01194354 A JPH01194354 A JP H01194354A JP 63018346 A JP63018346 A JP 63018346A JP 1834688 A JP1834688 A JP 1834688A JP H01194354 A JPH01194354 A JP H01194354A
Authority
JP
Japan
Prior art keywords
type semiconductor
signal
layer
junction
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63018346A
Other languages
Japanese (ja)
Inventor
Akinaga Yamamoto
晃永 山本
Masaharu Muramatsu
雅治 村松
Mitsuaki Kageyama
光昭 影山
Hitoshi Asai
浅井 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP63018346A priority Critical patent/JPH01194354A/en
Publication of JPH01194354A publication Critical patent/JPH01194354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To make it possible to read out a signal charge rapidly and stably without unread charge even in the case of a sudden change of the amount of incidence of light exposure, by making an optical signal reader by the use of a junctiongate-type FET. CONSTITUTION:When an address signal S is applied to an n-type semiconductor layer 23, a gate of a junction gate-type FET 26, at the level of H, a p-n junction made of the layer 23 and p-type semiconductor layers 21, 22 and 24 is biased in the reverse direction and a depletion layer spreads out in the layer 24. Therefore, a signal charge photoelectrically converted by a photo diode 25 is temporarily stored in a photo diode junction capacitance 27. When the signal S sent via a signal line 9 is applied to the gate (layer 23) of the FET 26 under this condition, a signal charge channel is formed since the reverse bias applied to the p-n junction is reduced and the depletion layer spread out in the layer 24 gets smaller. Because of this, the signal charge which has been stored in the capacitance 27 is sent forth into the layer 21 and starts flowing into a load resistance 12. Therefore, a rapid read-out of an optical signal is available.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、位置検出装置あるいは光学的文字読取装置等
に用いられる固体撮像装置の光電変換部および光信号読
出部として機能する半導体光検出装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor photodetection device that functions as a photoelectric conversion section and an optical signal readout section of a solid-state imaging device used in a position detection device, an optical character reading device, etc. It is related to.

〔従来の技術〕[Conventional technology]

第3図は、プラズマ結合型半導体装置(PCD:Pla
sma Coupled Device )を走査用の
シフトレジスタとして用いた固体撮像装置の光検出部(
半導体光検出装置)を示すものであり、同図(A)は平
面図、同図(B)はそのb−b断面図、同図(C)は等
価回路図である。
Figure 3 shows a plasma coupled semiconductor device (PCD: Plasma
sma Coupled Device) as a shift register for scanning.
(A) is a plan view, (B) is a sectional view taken along line bb, and (C) is an equivalent circuit diagram.

n型シリコン基板1の表面には、高濃度のn型半導体層
2.5およびp型半導体層3.4が形成されており、p
型半導体層3.4はn型半導体層2.5よりも深く形成
されている。n型シリコン基板1とp型半導体層4とで
フォトダイオード7が構成され、n型半導体層3.4お
よびn型半導体層5によりそれぞれをコレクタ、エミッ
タ、ベースとするpnp)ランジスタ8が構成されてい
る。信号線9は、図示省略したPCDシフトレジスタか
らのアドレス信号Sをpnpトランジスタ8のベースす
なわちn型半導体層5に伝えるための信号線であり、信
号線10は信号電荷を外部に取り出すための信号線であ
る。符号11で示した容量は、フォトダイオード7の接
合容fa c phであり、符号12で示した抵抗は、
外付けされた負荷抵抗R、である。なお、”BCは、n
型半導体層2とグランドとの間に与える直流バイアスで
ある。
A highly concentrated n-type semiconductor layer 2.5 and a p-type semiconductor layer 3.4 are formed on the surface of the n-type silicon substrate 1.
The type semiconductor layer 3.4 is formed deeper than the n-type semiconductor layer 2.5. A photodiode 7 is constituted by the n-type silicon substrate 1 and the p-type semiconductor layer 4, and a pnp transistor 8 is constituted by the n-type semiconductor layer 3.4 and the n-type semiconductor layer 5, each having a collector, an emitter, and a base. ing. The signal line 9 is a signal line for transmitting an address signal S from a PCD shift register (not shown) to the base of the pnp transistor 8, that is, the n-type semiconductor layer 5, and the signal line 10 is a signal line for extracting signal charges to the outside. It is a line. The capacitance indicated by the symbol 11 is the junction capacitance fa c ph of the photodiode 7, and the resistance indicated by the symbol 12 is
This is an externally attached load resistance R. In addition, “BC is n
This is a DC bias applied between the type semiconductor layer 2 and the ground.

この半導体光検出装置では、フォトダイオード7によっ
て光電変換された信号電荷が、−時的にフォトダイオー
ド接合容量11に蓄えられる。このときアドレス信号S
(ハイレベルからローレベルへの負極性パルス)がpn
p )ランジスタ8のベースすなわちn型半導体層5に
与えられれば、フォトダイオード接合容量11に蓄えら
れていた信号電荷は負荷抵抗12に流れ出す。
In this semiconductor photodetector, signal charges photoelectrically converted by the photodiode 7 are temporarily stored in the photodiode junction capacitor 11. At this time, address signal S
(negative polarity pulse from high level to low level) is pn
p) When applied to the base of the transistor 8, that is, the n-type semiconductor layer 5, the signal charge stored in the photodiode junction capacitor 11 flows out to the load resistor 12.

この信号読み出し動作をさらに詳細にみると次のように
なる。アドレス信号Sがn型半導体層5に与えられると
、n型半導体層5とn型シリコン基板lとの電圧の差は
、両者によっていわゆるハイ・ロー接合が形成されてい
るため、はとんどn型半導体層5下のn型シリコン基板
1で消費される。そのため、n型半導体層5の直下部の
n型シリコン基板1(以下、チャネルHと言う)の電位
がn型シリコン基板1の他の部分よりも低くなり、n型
半導体層4からn型シリコン基板1に注入される信号電
荷はチャネルHに集中する。そして、その内の大部分は
n型半導体層5に流入することなくn型半導体層3に流
れ込み、出力信号に寄与するのである。
A more detailed look at this signal read operation is as follows. When the address signal S is applied to the n-type semiconductor layer 5, the difference in voltage between the n-type semiconductor layer 5 and the n-type silicon substrate l is almost negligible because the two form a so-called high-low junction. It is consumed in the n-type silicon substrate 1 under the n-type semiconductor layer 5. Therefore, the potential of the n-type silicon substrate 1 directly under the n-type semiconductor layer 5 (hereinafter referred to as channel H) becomes lower than that of other parts of the n-type silicon substrate 1, and the n-type semiconductor layer 4 Signal charges injected into the substrate 1 are concentrated in the channel H. Most of it flows into the n-type semiconductor layer 3 without flowing into the n-type semiconductor layer 5, and contributes to the output signal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、n型半導体層4とチャネルHで構成されるp
n接合を考えるとき、フォトダイオード接合容量11に
十分に信号電荷が蓄積されていて両者間の電位差が大き
ければ直列抵抗は小さく、信号電荷を高速に読み出すこ
とができる。しかし、n型半導体層4とチャネルHとの
間の電位差が小さいと直列抵抗が大きくなり、信号電荷
の読出速度は急速に低下する。
By the way, the p-type semiconductor layer composed of the n-type semiconductor layer 4 and the channel H
When considering an n-junction, if a sufficient signal charge is accumulated in the photodiode junction capacitor 11 and the potential difference between the two is large, the series resistance is small and the signal charge can be read out at high speed. However, if the potential difference between the n-type semiconductor layer 4 and the channel H is small, the series resistance increases, and the reading speed of signal charges decreases rapidly.

そのため、1回の読み出し動作を考えたとき、n型半導
体層4に蓄積されていた電荷が読み出される過程で徐々
にn型半導体層4とチャネルHの間の電位差が小さくな
り読出速度が低下する。したがって、続出速度の高速化
には限界がある。
Therefore, when considering one read operation, the potential difference between the n-type semiconductor layer 4 and the channel H gradually decreases in the process of reading out the charges accumulated in the n-type semiconductor layer 4, and the read speed decreases. . Therefore, there is a limit to increasing the successive output speed.

また、1画素の読出時間は予め設定する必要があるが、
露光量が急激に変化したとき等には、フォトダイオード
接合容量11に蓄えられた信号電荷を予め設定した読出
時間内にすべて読み出すことができなくなる場合が生じ
、出力の追従が悪くなる等の問題があった。
Also, it is necessary to set the readout time for one pixel in advance,
When the exposure amount changes suddenly, it may become impossible to read out all the signal charges stored in the photodiode junction capacitor 11 within the preset readout time, resulting in problems such as poor output tracking. was there.

本発明の課題は、このような問題点を解消することにあ
る。
An object of the present invention is to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の半導体光検出装置
は、光電変換部であるフォトダイオードを構成する第2
導電型半導体領域をソースとしこの領域と一体に半導体
基板表面に形成された同一導電型(第2導電型)半導体
領域をドレインとしこれらソース・ドレイン領域の境界
部にソース・ドレイン領域よりも浅く形成された第1導
電型半導体領域をゲートとする接合ゲート型電界効果ト
ランジスタを光信号読出部とするものである。また、ソ
ース領域がドレイン領域を囲むように平面配置されてい
るものである。
In order to solve the above problems, the semiconductor photodetection device of the present invention provides a second
A conductive type semiconductor region is used as a source, and a semiconductor region of the same conductive type (second conductive type) formed integrally with this region on the surface of the semiconductor substrate is used as a drain, and is formed at the boundary between these source and drain regions shallower than the source and drain regions. A junction gate type field effect transistor having the first conductivity type semiconductor region as a gate serves as an optical signal readout section. Further, the source region is arranged in a plane so as to surround the drain region.

〔作用〕[Effect]

ゲートに与える印加電圧を変化させることによりゲート
直下の空乏層の拡がりを狭くすると、光電変換によりソ
ース領域に蓄積された信号電荷がドレインへ素早く流れ
出す。また、ソース領域がドレイン領域を囲むように平
面配置されていれば、ゲート幅を広くとることができチ
ャネル抵抗が低くなって、信号電荷の読み出し時間がさ
らに短くなる。
When the spread of the depletion layer directly under the gate is narrowed by changing the voltage applied to the gate, the signal charge accumulated in the source region due to photoelectric conversion quickly flows to the drain. Further, if the source region is arranged in a plane so as to surround the drain region, the gate width can be increased, the channel resistance is lowered, and the time for reading signal charges is further shortened.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す図であり、同図(A)
は平面図、同図(B)はそのb−b断面図、同図(C)
は等価回路図である。なお、第3図と同一または相当部
分には同一の符号を付してその詳細な説明は省略する。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG.
is a plan view, (B) is a bb cross-sectional view, and (C) is a plan view.
is an equivalent circuit diagram. Note that the same or corresponding parts as in FIG. 3 are given the same reference numerals, and detailed explanation thereof will be omitted.

n型シリコン基板1の表面には、n型半導体層21.2
2.24およびn型半導体層2.23が拡散により形成
されている。n型半導体層21.22.24はn型半導
体層2.23よりも深く形成されているが、不純物濃度
はn型半導体層2.23の方が高い。なお、同図(B)
かられかるように、n型半導体層21.22.24は一
体に形成された領域である。
On the surface of the n-type silicon substrate 1, an n-type semiconductor layer 21.2 is formed.
2.24 and an n-type semiconductor layer 2.23 are formed by diffusion. Although the n-type semiconductor layers 21, 22, and 24 are formed deeper than the n-type semiconductor layer 2.23, the impurity concentration is higher in the n-type semiconductor layer 2.23. In addition, the same figure (B)
As can be seen, the n-type semiconductor layers 21, 22, and 24 are integrally formed regions.

構造的には、n型半導体層22をソース、n型半導体層
21をドレイン、n型半導体層23をゲートとする接合
ゲート型電界効果トランジスタ26となっており、n型
半導体層24がそのチャネル領域となっている。また、
n型シリコン基板lとn型半導体層22で作られるpn
接合を利用してフォトダイオード25が構成されている
。同図(C)に符号27で示した容量は、フォトダイオ
ード25の接合容ffi C、hである。
Structurally, it is a junction gate field effect transistor 26 in which the n-type semiconductor layer 22 is the source, the n-type semiconductor layer 21 is the drain, and the n-type semiconductor layer 23 is the gate. It has become an area. Also,
pn made of an n-type silicon substrate l and an n-type semiconductor layer 22
A photodiode 25 is constructed using the junction. The capacitance indicated by the reference numeral 27 in the same figure (C) is the junction capacitance ffi C,h of the photodiode 25.

つぎに、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

接合ゲート型電界効果トランジスタ26のゲートである
n型半導体層23に加えられるアドレス信号Sがハイレ
ベルのときは、n型半導体層23とn型半導体層21.
22.24とで形成されるpn接合は逆バイアス状態と
なり、n型半導体層24には空乏層が拡がる。したがっ
て、フォトダイオード25によって光電変換された信号
電荷は、−時的にフォトダイオード接合容量27に蓄え
られる。この状態で、信号線9を介して送られてくるア
ドレス信号S(ハイレベルからローレベルへの負極性パ
ルス)が接合ゲート型電界効果トランジスタ26のゲー
トであるn型半導体層23に加えられると、n型半導体
層23とn型半導体層21.22.24とで形成される
pn接合の逆バイアスが浅くなり、n型半導体層24に
拡がっていた空乏層が狭くなって信号電荷の通り道であ
るチャネルが形成される。これにより、フォトダイオー
ド接合容ff127に蓄積されていた光信号電荷は一気
にn型半導体層21に吐き出され、負荷抵抗12に流れ
出す。したがって、光信号の読み出しを高速で行うこと
ができる。
When the address signal S applied to the n-type semiconductor layer 23, which is the gate of the junction gate field effect transistor 26, is at a high level, the n-type semiconductor layer 23 and the n-type semiconductor layer 21 .
The pn junction formed by 22 and 24 is in a reverse bias state, and a depletion layer expands in the n-type semiconductor layer 24. Therefore, the signal charge photoelectrically converted by the photodiode 25 is temporarily stored in the photodiode junction capacitor 27. In this state, when the address signal S (negative polarity pulse from high level to low level) sent via the signal line 9 is applied to the n-type semiconductor layer 23 which is the gate of the junction gate field effect transistor 26. , the reverse bias of the pn junction formed by the n-type semiconductor layer 23 and the n-type semiconductor layers 21, 22, and 24 becomes shallower, and the depletion layer that had spread in the n-type semiconductor layer 24 becomes narrower and becomes a path for signal charges. A channel is formed. As a result, the optical signal charge accumulated in the photodiode junction capacitor ff127 is discharged at once to the n-type semiconductor layer 21 and flows out to the load resistor 12. Therefore, optical signals can be read out at high speed.

ところで、本実施例では、フォトダイオード接合容ff
127に蓄積していた信号電荷がn型半導体層23にも
流れ出す可能性があるが、このような信号電荷の洩れの
防止は、フォトダイオード25の接合容量や接合ゲート
型電界効果トランジスタ26のチャネル抵抗等の値を調
整することにより達成することができる。以下、このこ
とについて説明する。
By the way, in this embodiment, the photodiode junction capacitance ff
There is a possibility that the signal charges accumulated in the photodiode 127 will flow out to the n-type semiconductor layer 23 as well, but this leakage of signal charges can be prevented by reducing the junction capacitance of the photodiode 25 and the channel of the junction gate field effect transistor 26. This can be achieved by adjusting the values of resistance, etc. This will be explained below.

いま、飽和状態まで信号電荷がフォトダイオード接合容
1n27に蓄積され、アドレス信号Sが接合ゲート型電
界効果トランジスタ26のゲート(n型半導体層23)
に加えられた瞬間とする。
Now, the signal charge is accumulated in the photodiode junction capacitor 1n27 to the saturation state, and the address signal S is applied to the gate (n-type semiconductor layer 23) of the junction gate field effect transistor 26.
The moment when it was added to

このとき、第1図(B)のA点の電位よりB点の電位の
方が低ければ、フォトダイオード接合容量27すなわち
n型半導体層22に蓄えられている信号電荷のほとんど
はチャネル領域24を通って負荷抵抗12へ流れる。そ
こで、まず、A、B点の電位をそれぞれ考える。接合ゲ
ート型電界効果トランジスタ26のゲートであるn型半
導体層23に加えられるアドレス信号Sの電圧Vt、は
、通常400mV程度である。また、接合ゲート型電界
効果トランジスタ26のソースであるn型半導体層22
とゲートであるn型半導体層23とで形成されるpn接
合のポテンシャルは800mV程度である。したがって
、点Aの電位はその合計の1200mV程度となる。一
方、B点の電位は、接合ゲート型電界効果トランジスタ
26のチャネル抵抗であるR と負荷抵抗12であるR
Lの和h と信号電流I、−積で表される。そこで、最大信号電流
をl ph (Iaa x )としたときに、1  (
n+ax) X (RL+Rch) <1200mVh ・・・ (1) を満足するように、フォトダイオード接合容量27の値
Cチャネル抵抗の値Rch”よび負荷phゝ 抵抗12の値R5を設定すれば、信号電荷は効率良く外
部に取り出される。
At this time, if the potential at point B is lower than the potential at point A in FIG. and flows to the load resistor 12. Therefore, first, consider the potentials at points A and B, respectively. The voltage Vt of the address signal S applied to the n-type semiconductor layer 23, which is the gate of the junction gate field effect transistor 26, is normally about 400 mV. Further, the n-type semiconductor layer 22 which is the source of the junction gate field effect transistor 26
The potential of the pn junction formed by the n-type semiconductor layer 23 serving as the gate is about 800 mV. Therefore, the potential at point A is about 1200 mV of the total potential. On the other hand, the potential at point B is R, which is the channel resistance of the junction gate field effect transistor 26, and R, which is the load resistance 12.
It is expressed as the product of the sum of L and the signal current I. Therefore, when the maximum signal current is l ph (Iaa x ), 1 (
n+ax) is efficiently taken out.

第2図は、本発明の他の実施例を示す図であり、同図(
A)は平面図、同図(B)は断面図である。
FIG. 2 is a diagram showing another embodiment of the present invention, and FIG.
A) is a plan view, and (B) is a sectional view.

この実施例は、図示のように接合ゲート型電界効果トラ
ンジスタ26のドレインであるp型半導体層31の周囲
をゲート電極であるn型半導体層32で囲った構造とす
ることにより、接合ゲート型電界効果トランジスタ26
のゲート幅を広くしてチャネル抵抗R8hを小さくした
ものである。このような構造とすることにより、上記(
1)式を一層容易に実現することができる。
This embodiment has a structure in which a p-type semiconductor layer 31, which is the drain of a junction-gate field-effect transistor 26, is surrounded by an n-type semiconductor layer 32, which is a gate electrode, as shown in the figure. effect transistor 26
The channel resistance R8h is reduced by widening the gate width. By having such a structure, the above (
1) Equation can be more easily realized.

なお、上記実施例ではn型シリコン基板を用いて説明し
たが、逆導電型基板でも適用することができ、また、材
料もシリコンに限定されるものではない。
Although the above embodiments have been described using an n-type silicon substrate, a substrate of the opposite conductivity type can also be used, and the material is not limited to silicon.

また、上記実施例では各半導体層を拡散により形成して
いるが、イオン注入その他の技術を用いても良い。
Further, in the above embodiments, each semiconductor layer is formed by diffusion, but ion implantation or other techniques may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の半導体光検出装置によれ
ば、光信号読出部が接合ゲート型電界効果トランジスタ
で構成されているので、光電変換部に蓄積されている信
号電荷量に関わらず高速に読み出すことができる。した
がって、入射露光量が急激に変化する場合でも、読み残
しすることなく、高速にしかも安定に信号電荷を読み出
すことができる。
As explained above, according to the semiconductor photodetection device of the present invention, since the optical signal readout section is composed of a junction gate field effect transistor, the optical signal readout section can be used at high speed regardless of the amount of signal charge accumulated in the photoelectric conversion section. can be read out. Therefore, even when the amount of incident light changes rapidly, signal charges can be read out quickly and stably without leaving anything unread.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は他の実施
例を示す図、第3図は従来の半導体光検出装置を示す図
である。 1・・・n型シリコン基板、9・・・信号線、10・・
・信号線、12・・・負荷抵抗、21.22.24・・
・p型半導体層、23・・・n型半導体層、25・・・
フォトダイオード、26・・・接合ゲート型電界効果ト
ランジスタ、27・・・フォトダイオード接合容量、3
〕・・・p型半導体層、32・・・n型半導体層。 特許出願人  浜松ホトニクス株式会社代理人弁理士 
  長谷用  芳  樹間         塩   
1)  辰   也第1図 実施例 第1図 従来技術
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing another embodiment, and FIG. 3 is a diagram showing a conventional semiconductor photodetecting device. 1... N-type silicon substrate, 9... Signal line, 10...
・Signal line, 12...Load resistance, 21.22.24...
-p-type semiconductor layer, 23...n-type semiconductor layer, 25...
Photodiode, 26... Junction gate field effect transistor, 27... Photodiode junction capacitance, 3
]...p-type semiconductor layer, 32...n-type semiconductor layer. Patent applicant Hamamatsu Photonics Co., Ltd. Representative Patent Attorney
Yoshikima Shio for Hase
1) Tatsuya Figure 1 Embodiment Figure 1 Prior art

Claims (1)

【特許請求の範囲】 1、光電変換部と光信号読出部とからなる半導体光検出
装置において、第1導電型の半導体基板とその表面に形
成された第2導電型半導体領域とで構成されたフォトダ
イオードを光電変換部とし、前記フォトダイオードを構
成する第2導電型半導体領域をソースとしこの領域と一
体に半導体基板表面に形成された同一導電型半導体領域
をドレインとしこれらソース・ドレイン領域の境界部に
ソース・ドレイン領域よりも浅く形成された第1導電型
半導体領域をゲートとする接合ゲート型電界効果トラン
ジスタを光信号読出部とする半導体光検出装置。 2、ソース領域がドレイン領域を囲むように平面配置さ
れている請求項1記載の半導体光検出装置。
[Claims] 1. A semiconductor photodetection device comprising a photoelectric conversion section and an optical signal readout section, comprising a semiconductor substrate of a first conductivity type and a semiconductor region of a second conductivity type formed on the surface thereof. A photodiode is used as a photoelectric conversion section, a second conductivity type semiconductor region constituting the photodiode is used as a source, and a semiconductor region of the same conductivity type formed integrally with this region on the surface of the semiconductor substrate is used as a drain, the boundary between these source and drain regions. A semiconductor photodetector device in which an optical signal readout section is a junction gate field effect transistor whose gate is a first conductivity type semiconductor region formed at a depth shallower than a source/drain region. 2. The semiconductor photodetecting device according to claim 1, wherein the source region is arranged in a plane so as to surround the drain region.
JP63018346A 1988-01-28 1988-01-28 Semiconductor light detector Pending JPH01194354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63018346A JPH01194354A (en) 1988-01-28 1988-01-28 Semiconductor light detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63018346A JPH01194354A (en) 1988-01-28 1988-01-28 Semiconductor light detector

Publications (1)

Publication Number Publication Date
JPH01194354A true JPH01194354A (en) 1989-08-04

Family

ID=11969103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63018346A Pending JPH01194354A (en) 1988-01-28 1988-01-28 Semiconductor light detector

Country Status (1)

Country Link
JP (1) JPH01194354A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105672A (en) * 1981-12-17 1983-06-23 Fuji Photo Film Co Ltd Semiconductor image pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105672A (en) * 1981-12-17 1983-06-23 Fuji Photo Film Co Ltd Semiconductor image pickup device

Similar Documents

Publication Publication Date Title
US6512547B1 (en) Solid-state imaging device and method of detecting optical signals using the same
US5276407A (en) Sense amplifier
US6084259A (en) Photodiode having charge transfer function and image sensor using the same
KR100757034B1 (en) Pixel sensor with a low dark current photodiode
JPS6149822B2 (en)
US5939742A (en) Field-effect photo-transistor
JPH0444465B2 (en)
US4427990A (en) Semiconductor photo-electric converter with insulated gate over p-n charge storage region
JPH0312510B2 (en)
CN108666336B (en) UTBB photoelectric detector array and working method thereof
US4980735A (en) Solid state imaging element
CA2111707C (en) High photosensitivity and high speed wide dynamic range ccd image sensor
KR960002100B1 (en) Charge coupled device type image sensor
US6545331B1 (en) Solid state imaging device, manufacturing method thereof, and solid state imaging apparatus
JPS61157184A (en) Image pickup device
US4651016A (en) Solid-state image sensor provided with a bipolar transistor and an MOS transistor
US4673985A (en) Semiconductor image sensor
JPH01194354A (en) Semiconductor light detector
US5019876A (en) Semiconductor photo-electric converter
JP3919378B2 (en) Light receiving element and photoelectric conversion device using the same
JP2577559B2 (en) Solid-state imaging device
JPS61228667A (en) Solid-state image pick-up device
JPH1022489A (en) Solid-state image pickup device
JPH01205463A (en) Semiconductor photo detecting device
JPS61157183A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Effective date: 20051125

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20140317

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250