JPH01193258A - Production of butylene oxides - Google Patents

Production of butylene oxides

Info

Publication number
JPH01193258A
JPH01193258A JP63017453A JP1745388A JPH01193258A JP H01193258 A JPH01193258 A JP H01193258A JP 63017453 A JP63017453 A JP 63017453A JP 1745388 A JP1745388 A JP 1745388A JP H01193258 A JPH01193258 A JP H01193258A
Authority
JP
Japan
Prior art keywords
reaction
molybdenum
compound
catalyst
selectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63017453A
Other languages
Japanese (ja)
Other versions
JPH0832692B2 (en
Inventor
Nobumasa Arashiba
荒柴 伸正
Takashi Shimizu
清水 俊
Masaru Takeshita
賢 竹下
Yoshiyuki Tamai
玉井 美行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63017453A priority Critical patent/JPH0832692B2/en
Publication of JPH01193258A publication Critical patent/JPH01193258A/en
Publication of JPH0832692B2 publication Critical patent/JPH0832692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To easily obtain above compound useful as a stabilizer, etc., in high yield and selectivity, by oxidizing an olefinic compound with an organic hydroperoxide in the presence of metallic molybdenum which is essentially insoluble under the reaction condition. CONSTITUTION:A 4C olefinic compound (e.g., isobutylene, trans-2-butene or cis-2-butene) is converted to corresponding epoxy compound with an organic hydroperoxide (e.g., ethylbenzene hydroperoxide). The epoxidization can be carried out in high specificity and selectivity by using 0-valent metallic molybdenum catalyst which is essentially insoluble in the organic reaction system. The catalyst is generally powder having particle diameter of several mum-about 10mum. The reaction temperature is 60-120 deg.C, preferably 75-110 deg.C. The process has various advantages such as easy recovery of the expensive catalyst and easy purification process of the objective compound which is free from contamination with the catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機ハイドロパーオキシドにて、炭素数4か
らなるオレフィン系化合物を酸化して、高収率で対応す
るエポキシ化合物を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing a corresponding epoxy compound in high yield by oxidizing an olefinic compound having 4 carbon atoms with an organic hydroperoxide. Regarding.

〔従来の技術〕[Conventional technology]

上記ブチレンオキシド類は、炭素数4からなるエポキシ
化合物で、塩素系溶剤の安定側として、または界面活性
剤、ポリエーテル類及びブチレングリコール等の各種化
学品の合成中間体として重要な化合物である。
The above-mentioned butylene oxides are epoxy compounds having 4 carbon atoms, and are important compounds as stabilizers for chlorinated solvents or as synthetic intermediates for various chemicals such as surfactants, polyethers, and butylene glycol.

従来、ブチレンオキシド類は対応する炭素数4からなる
オレフィン系化合物のハロヒドリンから、例えば、水酸
化カルシウムなどの塩基性物質により脱ハロゲン化水素
反応することにより製造されていた。又、ハロゲンを用
いない酸化方法として、過蟻酸、過酢酸、過安息香酸な
どの過酸によるエポキシ化方法も検討されてきている。
Conventionally, butylene oxides have been produced from halohydrins, which are corresponding olefinic compounds having 4 carbon atoms, by dehydrohalogenation reaction with a basic substance such as calcium hydroxide. Furthermore, as an oxidation method that does not use halogen, epoxidation methods using peracids such as performic acid, peracetic acid, and perbenzoic acid have also been studied.

又、有機ハイドロパーオキシドを酸化削に用いる炭素数
4からなるオレフィン系化合物のエポキシ化反応による
ブチレンオキシド類の製造方法もよく検討されてきてお
り、触媒として、モリブデン、タングステン及びバナジ
ウムから選ばれる金属の有機金属化合物類が代表的に用
いられる。
In addition, a method for producing butylene oxides by the epoxidation reaction of an olefinic compound having 4 carbon atoms using an organic hydroperoxide for oxidation has been well studied. Organometallic compounds are typically used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術の代表例であるハロヒドリン法の致命的な
欠点は、ハロヒドリンに消費されるハロゲン、代表的に
は塩素が全量塩化カルシウム等の価値のない無機塩に転
化され、その希薄水溶液が大量に副生ずることである。
The fatal drawback of the halohydrin method, which is a typical example of the above-mentioned conventional technology, is that all of the halogen, typically chlorine, consumed by halohydrin is converted into worthless inorganic salts such as calcium chloride, and a large amount of dilute aqueous solution is produced. It is a by-product.

従って、ハロゲンを用いない酸化方法として、過酸によ
る酸化方法や有機ハイドロパーオキシドを酸化剤に用い
る触媒エポキシ化方法が検討されてきた。
Therefore, as oxidation methods that do not use halogen, oxidation methods using peracids and catalytic epoxidation methods using organic hydroperoxides as oxidizing agents have been studied.

しかし、過酸によるエポキシ化反応では、副生ずる酸に
よるブチレンオキシド類の開環反応が避けられず、実用
化には至っていない。
However, in the epoxidation reaction using a peracid, the ring-opening reaction of butylene oxides due to the by-produced acid cannot be avoided, and this has not been put into practical use.

又、有機ハイドロパーオキシドによる触媒エポキシ化反
応では、代表的にはモリブデンの有機化合物を触媒とし
てブチレンオキシド類とするが、選択率が高くないとい
う問題点があった。そこで、例えば、特開昭56−13
3279号に於いては、Mo、  V及び−から選ばれ
る金属の有機金属化合物と有機アミン系化合物の共存下
においてオレフィン系化合物と有機ペルオキシドとを反
応させる方法が開示されている。
Further, in a catalytic epoxidation reaction using an organic hydroperoxide, butylene oxides are typically produced using an organic molybdenum compound as a catalyst, but there is a problem in that the selectivity is not high. Therefore, for example, JP-A-56-13
No. 3279 discloses a method in which an olefinic compound and an organic peroxide are reacted in the coexistence of an organometallic compound of a metal selected from Mo, V, and - and an organic amine compound.

しかし、この方法に於いても、有機ハイドロパーオキシ
ド基準のエポキシ選択率は高々80%余りであり、より
高選択率でブチレンオキシド類の製造が可能となる方法
の確立が望まれていた。
However, even in this method, the epoxy selectivity based on organic hydroperoxide is at most 80%, and it has been desired to establish a method that would enable the production of butylene oxides with higher selectivity.

〔課題を解決するための手段および作用〕本発明者等は
、前記問題点を解決すべく、有機ハイドロパーオキシド
による炭素数4のオレフィン系化合物の触媒エポキシ化
反応について鋭意検討を重ねてきた結果、極めて驚くべ
きことにモリブデンの有機金属化合物、即ち、モリブデ
ンの酸化物を用いるのではなく、金属状のモリブデン存
在下に本反応を行うと非常に高い選択率でブチレンオキ
シド類が得られることを見出し本発明を完成させるに至
ったものである。
[Means and effects for solving the problem] In order to solve the above-mentioned problems, the present inventors have conducted extensive studies on the catalytic epoxidation reaction of an olefinic compound having 4 carbon atoms using an organic hydroperoxide. It was quite surprising that butylene oxides could be obtained with extremely high selectivity when this reaction was carried out in the presence of metallic molybdenum, rather than using an organometallic compound of molybdenum, that is, molybdenum oxide. Heading This is what led to the completion of the present invention.

すなわち、本発明は、 炭素数4からなるオレフィン系化合物を有機ハイドロパ
ーオキシドにて対応するエポキシ化合物とするに際し、
反応条件下に実質的に不溶である金属状のモリブデン存
在下に反応を行うことを特徴とするブチレンオキシド類
の製造方法である。
That is, in the present invention, when converting an olefinic compound having 4 carbon atoms into a corresponding epoxy compound using an organic hydroperoxide,
This is a method for producing butylene oxides, characterized in that the reaction is carried out in the presence of metallic molybdenum, which is substantially insoluble under the reaction conditions.

本発明における炭素数4からなるオレフィン系化合物は
、イソブチレン、trans−2−ブテン及びcis−
2−ブテンを総称したものであり、本発明の反応には何
れも用いることができる。従って本反応によりこれらオ
レフィンに対応するエポキシ化合物が得られる。
The olefinic compounds having 4 carbon atoms in the present invention include isobutylene, trans-2-butene and cis-
It is a general term for 2-butene, and any of them can be used in the reaction of the present invention. Therefore, this reaction yields epoxy compounds corresponding to these olefins.

触媒に用いる金属状のモリブデンとは、所謂、モリブデ
ン金属そのものを示しており、一般には数ミクロンから
10ミクロン程度の粒径を有する粉末状のものが市販さ
れており、これを用いることができる。従来モリブデン
化合物を触媒とする有機ハイドロパーオキシドによるエ
ポキシ化反応は公知である。しかし、この場合のモリブ
デンは、モリブデンアセチルアセトネートやナフテン酸
モリブデンといったモリブデンの酸化物であり、好まし
くは有機金属化合物とすることにより有機反応系に可溶
な形として用いられていた。
The metallic molybdenum used in the catalyst refers to the so-called molybdenum metal itself, and is generally commercially available in the form of a powder having a particle size of several microns to about 10 microns, which can be used. Epoxidation reactions using organic hydroperoxides using molybdenum compounds as catalysts are conventionally known. However, the molybdenum in this case is an oxide of molybdenum such as molybdenum acetylacetonate or molybdenum naphthenate, and is preferably used in a form soluble in the organic reaction system by forming it into an organometallic compound.

例えば、特公昭46−38770号に於いては、オレフ
ィン型不飽和化合物を各種金属化合物の存在下に有機ハ
イドロパーオキシドによりエポキシ化する方法が開示さ
れているが、微粉末金属として使用することも可能であ
るとの記述がなされていた。
For example, Japanese Patent Publication No. 46-38770 discloses a method of epoxidizing an olefinically unsaturated compound with an organic hydroperoxide in the presence of various metal compounds, but it is also possible to use it as a finely powdered metal. It was stated that it was possible.

しかし、この場合、金属は結局反応混合物中の溶液に金
属の触媒量を提供するに充分な溶解性のある化合物に転
換されると見なされ、飽(までも可溶化された金属酸化
物の化合物を有効な触媒源として認めているものである
。しかし、本発明に於いては、炭素数4からなるオレフ
ィン系化合物を有機ハイドロパーオキシドによりエポキ
シ化する際に、0価でしかも基本的には有機反応系に不
溶な金属状のモリブデンを用いることにより、極めて特
異的に高い選択率でエポキシ化し傅ることを見出したも
のである。
However, in this case it is assumed that the metal is eventually converted to a compound soluble enough to provide a catalytic amount of metal in solution in the reaction mixture, and the metal oxide compound is saturated (even solubilized). However, in the present invention, when epoxidizing an olefinic compound consisting of 4 carbon atoms with an organic hydroperoxide, a zero-valent and basically It has been discovered that by using metallic molybdenum that is insoluble in an organic reaction system, epoxidation can be carried out very specifically and with high selectivity.

金属状のモリブデンによって得られる本発明の作用効果
機構については全く不明であるが、本発明による触媒に
於いても極僅かではあるがモリブデン溶解が認められる
が、これは、本反応には有効ではない、即ち、金属モリ
ブデンをクメンやエチルベンゼンなどの純粋な有機溶媒
中で加熱しても、殆ど溶解せず検出限界以下の溶解度し
か認められないが、有機ハイドロパーオキシドを含む有
a溶媒中の加熱処理により数+ppea程度以上のモリ
ブデンの溶解が認められる。これは、金属が酸化されモ
リブデンの酸化物の有機化合物として溶出したものと考
えられるが、このものを回収して本発明の反応触媒に用
いても良好な結果は全く得られず不満足なものである。
Although the mechanism of action and effect of the present invention obtained using metallic molybdenum is completely unknown, even in the catalyst according to the present invention, molybdenum dissolution is observed, albeit very slightly, but this is not effective for this reaction. In other words, even when metal molybdenum is heated in a pure organic solvent such as cumene or ethylbenzene, it hardly dissolves and the solubility is below the detection limit, but when heated in a solvent containing organic hydroperoxide, As a result of the treatment, dissolution of molybdenum of several + ppea or more is observed. This is thought to be because the metal was oxidized and eluted as an organic compound of molybdenum oxide, but even if this material was recovered and used in the reaction catalyst of the present invention, no good results were obtained at all and the result was unsatisfactory. be.

又、同じく有機反応系に不溶な三酸化モリブデンの粉末
触媒では極めて不満足な結果しか得られず、本発明の効
果は金属状のモリブデンを用いることによって、極めて
特異的に得られる効果である。
Further, a powder catalyst of molybdenum trioxide, which is similarly insoluble in the organic reaction system, gives extremely unsatisfactory results, and the effects of the present invention can be obtained in a very specific manner by using metallic molybdenum.

エポキシ化剤であるを機ハイドロパーオキシドは、如何
なるものでも用いることができるが、工業的に容易に入
手できて育効なものとして、エチルベンゼンハイドロパ
ーオキシド、クメンハイド、ロバ−オキシド、tcrt
−ブチルハイドロパーオキシドなどを例示することがで
きる。これらの有機ハイドロパーオキシドには、一般に
その先駆物質であるエチルベンゼン、クメンまたはその
他の炭化水素が含まれるが、エポキシ化反応に供する有
機ハイドロパーオキシドの濃度は如何なるものでも用い
ることができる。一般に先駆物質中の有機ハイドロパー
オキシド濃度としては5〜90重量%のものが望ましい
Any hydroperoxide can be used as an epoxidizing agent, but those that are industrially easily available and effective are ethylbenzene hydroperoxide, cumenehydride, loba-oxide, and tcrt.
-Butyl hydroperoxide and the like can be exemplified. These organic hydroperoxides generally include their precursors, ethylbenzene, cumene, or other hydrocarbons, although any concentration of organic hydroperoxide to be subjected to the epoxidation reaction can be used. Generally, the concentration of organic hydroperoxide in the precursor is preferably 5 to 90% by weight.

その他の反応条件は、を機ハイドロパーオキシドの種類
、炭素数4からなるオレフィン系化合物の種類に応じて
任意に決めることができる。凡その反応時間は10分〜
10時間程度である。
Other reaction conditions can be arbitrarily determined depending on the type of hydroperoxide and the type of olefinic compound having 4 carbon atoms. Approximate reaction time is 10 minutes ~
It takes about 10 hours.

又、酸化剤である有機ハイドロパーオキシドに対するオ
レフィンのモル比は、反応後にパーオキシドを残さない
という意味から過剰量であることが望ましいが、本発明
によれば決して大過剰である必要はない、即ち、1.1
モル比、好ましくは1.2モル比程度の略量論比に近い
モル比にて高選択率でエポキシドが得られる。従って、
未反応の原料オレフィン量が少量であるため、回収が極
めて容易で合理的なプロセスとすることが可能である。
Further, the molar ratio of olefin to organic hydroperoxide, which is an oxidizing agent, is preferably in an excessive amount in order to avoid leaving any peroxide after the reaction, but according to the present invention, it is not necessary to have a large excess, i.e. , 1.1
Epoxide can be obtained with high selectivity at a molar ratio, preferably at a molar ratio close to a substantially stoichiometric ratio of about 1.2 molar ratio. Therefore,
Since the amount of unreacted raw material olefin is small, recovery is extremely easy and a rational process can be achieved.

反応温度は60〜120″C1好ましくは75〜110
°Cである。
The reaction temperature is 60-120" C1, preferably 75-110"
It is °C.

反応は任意の形式で実施することができる0例えば、回
分式の攪拌槽にて行う場合には、反応が終了すると触媒
は濾過又は静置沈降にて容易に分離することができ、且
つ回収した金属モリブデン触媒はそのまま循環再使用す
ることが可能である。
The reaction can be carried out in any format.For example, when carried out in a batch-type stirred tank, the catalyst can be easily separated by filtration or static sedimentation after the reaction, and can be recovered. The metal molybdenum catalyst can be recycled and reused as is.

又、得られた反応液からは、原料オレフィンを除去した
後、蒸留により容易に目的とするエポキシ化合物を回収
することができる。
Further, the target epoxy compound can be easily recovered from the obtained reaction solution by distillation after removing the raw material olefin.

〔実施例〕〔Example〕

以下、実施例にて本発明の効果を更に詳しく説明する。 Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.

尚、有機ハイドロパーオキシド(以下、HPOと略す)
基準のブチレンオキシドIf(以下、BOと略す)の選
択率、並びに炭素数4からなる原料オレフィン系化合物
(以下、BUと略す)基準のBO選択率は次のように求
められる。
In addition, organic hydroperoxide (hereinafter abbreviated as HPO)
The selectivity of the standard butylene oxide If (hereinafter abbreviated as BO) and the BO selectivity based on the raw material olefin compound having 4 carbon atoms (hereinafter abbreviated as BU) are determined as follows.

(1) HPO基準のBO選択率(%)A−[反応にて
生成したBOのモル数]B=(反応に供したHPOのモ
ル数〕 C−(反応後の残HPOのモル数〕 として HPO基準のBO選選択 率(A/(B−C))X100  (%)(21BU基
基準8逼 D−(反応にて生成したBOのモル数〕E−(反応に供
したBUのモル数〕 F−(反応後の残BUのモル数) として BU基基準8逼 実施例−1 300dのステンレス製オートクレーブに85gのクメ
ンと金属モリブデン粉末(試薬、純度99.9%)1、
0gを入れ蓋を閉めたのち、耐圧のホルダーからイソブ
チレン(以下IBUと記す)を15.3g (0.27
3モル)入れた.これを攪拌しながら95℃に昇温して
からポンプにて30−1%のクメンハイドロパーオキシ
ドを含むクメン溶液67、1g (HPOとして0. 
132モル)を約30分で供給した後、同温にて更に1
時間攪拌した後、降温した。
(1) BO selectivity (%) based on HPO A - [Number of moles of BO generated in reaction] B = (Number of moles of HPO used in reaction) C - (Number of moles of HPO remaining after reaction) As BO selection selectivity based on HPO (A/(B-C)) ] F- (Number of moles of BU remaining after reaction) Based on BU base 8 Example-1 85 g of cumene and metal molybdenum powder (reagent, purity 99.9%) 1 in a 300 d stainless steel autoclave.
After putting in 0g and closing the lid, add 15.3g (0.27g) of isobutylene (hereinafter referred to as IBU) from a pressure-resistant holder.
3 mol) was added. The temperature was raised to 95°C while stirring, and then pumped to 67.1 g of a cumene solution containing 30-1% cumene hydroperoxide (0.1 g as HPO.
After feeding 132 mol) in about 30 minutes, an additional 1 mol was added at the same temperature.
After stirring for an hour, the temperature was lowered.

得られた反応液をガスクロマトグラフィー及びクメンハ
イドロパーオキシドについては化学分析法にて分析した
結果、HPO転化率92.9%、HPO基準のイソブチ
レンオキシド(以下IBOと記す)選択率86.9%、
1811転化率39.7%、IBU基準のIBO選沢選
択率.4%の良好な反応成績にてIBOを得た、尚、本
反応に用いた試薬のモリブデン粉末の表面分析をXPS
(X−RAM PHOTOELECTRON 5PECTRO3COP
Y)にて行い、その酸化状態を調べたところ、ピーク強
度比で0価15%、5価39%、6価46%の分布であ
った。
The obtained reaction solution was analyzed by gas chromatography and chemical analysis for cumene hydroperoxide, and the HPO conversion rate was 92.9%, and the HPO-based isobutylene oxide (hereinafter referred to as IBO) selectivity was 86.9%. ,
1811 conversion rate 39.7%, IBO selection rate based on IBU standards. IBO was obtained with a good reaction result of 4%. Furthermore, the surface analysis of the molybdenum powder used as the reagent used in this reaction was performed using XPS.
(X-RAM PHOTOELECTRON 5PECTRO3COP
When the oxidation state was investigated, the peak intensity ratio was 15% for zero valence, 39% for pentavalent, and 46% for hexavalent.

実施例−2 実施−1と同じオートクレーブに、同様にクメン23.
4gと金属モリブデン粉末0.5g及びIBUを26.
1g (0,465モル)仕込み、60w t%のクメ
ンハイドロパーオキシドを含むクメン溶液100.5g
(HPOとして0.396モル)を約45分で供給した
後、1時間攪拌を続けて降温した。同様に分析したとこ
ろ、HPO転化率96.5%、HPO基準のIBO選択
率87.2%、IBυ転化率72.7%、IBU基準の
IBO選択率98.5%の極めて良好な反応成績であっ
た。
Example-2 In the same autoclave as in Example-1, cumene 23.
4g and 0.5g of metal molybdenum powder and 26.0g of IBU.
1 g (0,465 mol) charge, 100.5 g of cumene solution containing 60 wt% cumene hydroperoxide
(0.396 mol as HPO) was supplied over about 45 minutes, stirring was continued for 1 hour and the temperature was lowered. Similar analysis revealed very good reaction results with an HPO conversion rate of 96.5%, an IBO selectivity based on HPO standards of 87.2%, an IBυ conversion rate of 72.7%, and an IBO selectivity based on IBU standards of 98.5%. there were.

尚、本反応で得られた反応液より触媒を濾過分離した後
の反応液中に溶解しているモリブデンを原子吸光分析法
にて分析したところ約80wtppmであった。
Incidentally, molybdenum dissolved in the reaction liquid obtained in this reaction after filtering and separating the catalyst was analyzed by atomic absorption spectrometry and found to be about 80 wtppm.

実施例−3 実施−1と同じオートクレーブに、同様に85gのエチ
ルベンゼンと金属モリブデン粉末o、sg及びIBUを
15.3g(0,273モル)仕込み、30−t%のエ
チルベンゼンハイドロパーオキシドを含むエチルベンゼ
ン溶液60.1g(HPOとして0.136モル)を約
30分で供給した後、1時間攪拌を続けて降温した。
Example 3 In the same autoclave as in Example 1, 85 g of ethylbenzene and 15.3 g (0,273 mol) of metal molybdenum powder o, sg, and IBU were charged, and ethylbenzene containing 30-t% ethylbenzene hydroperoxide was prepared. After feeding 60.1 g (0.136 mol as HPO) of the solution over about 30 minutes, stirring was continued for 1 hour and the temperature was lowered.

同様に分析したところ、HPO転化率96.2%、HP
O基準のIBO選沢選択率、4%、IBU転化率42.
7%、180基準の180選択率96.9%であった。
Similar analysis revealed that the HPO conversion rate was 96.2%, and the HP
IBO selection rate based on O standard: 4%, IBU conversion rate: 42.
7%, and the 180 selectivity based on the 180 standard was 96.9%.

実施例−4 実施例−1に於いて、イソブチレンに変えてtrans
−2−ブテン(以下2−iuと記す)を用いた以外は実
施例−11!−同様に反応し、分析を行ったところ、H
PO転化率93.1%、HPO基準の2−ブテンオキシ
ド(以下2−BOと記す)選択率87.3%、2−80
転化率39.9%、2−B■基準の2−BO選択率98
.5%であった。
Example-4 In Example-1, isobutylene was replaced with trans
Example-11 except that -2-butene (hereinafter referred to as 2-iu) was used! -A similar reaction and analysis revealed that H
PO conversion rate 93.1%, HPO standard 2-butene oxide (hereinafter referred to as 2-BO) selectivity 87.3%, 2-80
Conversion rate 39.9%, 2-BO selectivity based on 2-B■ standard 98
.. It was 5%.

実施例−5 実施例−2に於いて、金属モリブデン粉末を2gにした
以外は実施例−2と全く同様の反応と分析を行い、得ら
れた反応液から濾過、洗浄、回収したモリブデンを触媒
として繰り返し5回反応に用いた。
Example 5 In Example 2, the reaction and analysis were carried out in exactly the same manner as in Example 2, except that 2 g of metal molybdenum powder was used, and the molybdenum recovered by filtration, washing, and recovery from the resulting reaction liquid was used as a catalyst. The reaction was repeated five times.

結果を表−1に示す、尚、5回の反応終了後回収したモ
リブデンの表面分析をXPSにて行い、その酸化状態を
調べたところ、ピーク強度比で0価20%、4価6%、
5価26%、6価48%であった。
The results are shown in Table 1.The surface of the molybdenum recovered after the completion of the five reactions was analyzed using XPS, and its oxidation state was investigated.The peak intensity ratio was 0%, 4%, 6%,
The pentavalent value was 26% and the hexavalent value was 48%.

表−1単位〔%〕 比較例−1 温度計、滴下ロート、攪拌機を付けた300dの四ツロ
フラスコに、10.9gのへブタモリブデン酸アンモニ
ウムと水1001dを入れ溶解した。撹拌しながら滴下
ロートより1001Mの水に4.0gのNaBHaを溶
解した水溶液を約20分で滴下し、茶褐色の沈澱を得た
。放冷後上澄み液をデカントし、脱気した純水で攪拌洗
浄した沈澱物を更に遠心沈降させてデカントする操作を
繰り返し、上澄み液が中性になるまで洗浄した。その後
、空気に触れないように99%エタノールに置換し、更
にクメンに置換した。上記のようにして得た沈澱を、ク
メン中で充分に沈降させてピペットで約1d取り出し、
金属モリブデン粉末に変えてこれを触媒とした以外は全
て実施例−1と同様に反応し、分析を行ったところ、H
PO転化率91.2%、IIPO基準のIBO選択率6
4.5%、180転化率48.5%、IBU基準のIB
O選択率58.6%であった。又、本モリブデンの沈澱
を真空中で脱溶媒し、XPSにより表面の酸化状態を調
べたところ、ピーク強度比で4価26%、5価47%、
6価27%の分布であり、0価の表面の存在は認められ
なかった。
Table 1 Unit [%] Comparative Example 1 In a 300 d four-way flask equipped with a thermometer, dropping funnel, and stirrer, 10.9 g of ammonium hebutamolybdate and 1001 d of water were dissolved. While stirring, an aqueous solution of 4.0 g of NaBHa dissolved in 1001M water was added dropwise from the dropping funnel over about 20 minutes to obtain a brown precipitate. After cooling, the supernatant liquid was decanted, and the precipitate, which was stirred and washed with degassed pure water, was further centrifuged and decanted, and this operation was repeated until the supernatant liquid became neutral. Thereafter, the mixture was replaced with 99% ethanol to avoid exposure to air, and further replaced with cumene. The precipitate obtained as above was sufficiently precipitated in cumene, and about 1 d was taken out with a pipette.
The reaction was carried out in the same manner as in Example 1 except that metal molybdenum powder was used as the catalyst, and analysis revealed that H
PO conversion rate 91.2%, IBO selectivity 6 based on IIPO standard
4.5%, 180 conversion rate 48.5%, IBU standard IB
The O selectivity was 58.6%. In addition, when the molybdenum precipitate was desolvated in vacuum and the oxidation state of the surface was examined by XPS, the peak intensity ratio was 26% for valence 4, 47% for valence 5,
The distribution was 27% with a valence of 6, and no surface with a valence of 0 was observed.

比較例−2 金属モリブデン粉末に変えて、三酸化モリブデン(化学
用試薬) 1.0gを触媒に用いた以外は全て実施例−
1と同様に反応し、分析を行ったところ、HPO転化率
98.2%、HPO基準のIBO選沢選択率、2%、I
BU転化率44.0%、IBIJ基準のIBO選択率8
6.5%であった。尚、本反応により得られた反応液中
に溶解しているモリブデンを実施例−2と同様に分析し
たところ約60wtppmであった。
Comparative Example-2 All examples were the same except that 1.0 g of molybdenum trioxide (chemical reagent) was used as a catalyst instead of metal molybdenum powder.
When the reaction and analysis were carried out in the same manner as in 1, the HPO conversion rate was 98.2%, the IBO selectivity based on HPO was 2%, and the IBO conversion rate was 98.2%.
BU conversion rate 44.0%, IBO selectivity 8 based on IBIJ standards
It was 6.5%. Incidentally, molybdenum dissolved in the reaction solution obtained by this reaction was analyzed in the same manner as in Example 2, and was found to be about 60 wtppm.

比較例−3 金属モリブデン粉末に変えて、酸化モリブデンアセチル
アセトナート錯塩0.1gを触媒に用いた以外は全て実
施例−1と同様に反応し、分析を行ったところ、)IP
O転化率94.1%、IIPO基準のIBO選択率78
.2%、IBt1転化率43.5%、180基準のIB
O選沢率81.7%であった。
Comparative Example-3 The reaction was carried out in the same manner as in Example-1 except that 0.1 g of molybdenum oxide acetylacetonate complex salt was used as a catalyst instead of the metal molybdenum powder, and analysis was performed.) IP
O conversion rate 94.1%, IBO selectivity based on IIPO standard 78
.. 2%, IBt1 conversion rate 43.5%, 180 standard IB
The O selection rate was 81.7%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、極めて容易にブチレンオキシド類を製
造することができる。又、従来より知られているエポキ
シ化方法と比べて量論量に近いモル比で飛躍的に高い選
択率で目的物を合成することができる。ここで言う選択
率とは、有機ハイドロパーオキシド並びに炭素数4から
なる原料オレフィン系化合物の両基準について認められ
るものである。又、本発明は金属モリブデンが実質的に
溶解しない条件下で反応が行われるため、高価な金属モ
リブデンの回収が容易であり、しかも製品側にもモリブ
デン化合物の混入が殆ど無く製品の精製が容易である。
According to the present invention, butylene oxides can be produced extremely easily. Moreover, compared to conventionally known epoxidation methods, the desired product can be synthesized with a significantly higher selectivity at a molar ratio close to stoichiometric. The selectivity mentioned here is the one that is recognized for both the organic hydroperoxide and the raw material olefin compound having 4 carbon atoms. In addition, in the present invention, since the reaction is carried out under conditions in which molybdenum metal is not substantially dissolved, it is easy to recover expensive molybdenum metal, and there is almost no contamination of molybdenum compounds in the product, making it easy to purify the product. It is.

Claims (1)

【特許請求の範囲】[Claims] (1)炭素数4からなるオレフィン系化合物を有機ハイ
ドロパーオキシドにて対応するエポキシ化合物とするに
際し、反応条件下に実質的に不溶である金属状のモリブ
デン存在下に反応を行うことを特徴とするブチレンオキ
シド類の製造方法。
(1) When converting an olefinic compound having 4 carbon atoms into a corresponding epoxy compound using an organic hydroperoxide, the reaction is carried out in the presence of metallic molybdenum, which is substantially insoluble under the reaction conditions. A method for producing butylene oxide.
JP63017453A 1988-01-29 1988-01-29 Method for producing butylene oxides Expired - Lifetime JPH0832692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63017453A JPH0832692B2 (en) 1988-01-29 1988-01-29 Method for producing butylene oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63017453A JPH0832692B2 (en) 1988-01-29 1988-01-29 Method for producing butylene oxides

Publications (2)

Publication Number Publication Date
JPH01193258A true JPH01193258A (en) 1989-08-03
JPH0832692B2 JPH0832692B2 (en) 1996-03-29

Family

ID=11944441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63017453A Expired - Lifetime JPH0832692B2 (en) 1988-01-29 1988-01-29 Method for producing butylene oxides

Country Status (1)

Country Link
JP (1) JPH0832692B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956216A (en) * 2021-11-09 2022-01-21 万华化学集团股份有限公司 Styrene oxide and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956216A (en) * 2021-11-09 2022-01-21 万华化学集团股份有限公司 Styrene oxide and preparation method thereof
CN113956216B (en) * 2021-11-09 2024-01-23 万华化学集团股份有限公司 Styrene oxide and preparation method thereof

Also Published As

Publication number Publication date
JPH0832692B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
KR100937891B1 (en) Production process of bifunctional epoxy monomer by selective oxidation of diolefin compound
JPH0747128B2 (en) Method for producing oxidation catalyst fixed on polymer resin
US6054407A (en) Peroxo-containing metal complexes having amine oxide, phosphine oxide, arsine oxide, pyridine N-oxide or pyridine ligands as epoxidation catalysts
JPS62234550A (en) Catalyst and its usage
JPWO2009107754A1 (en) Method for producing epoxy compound
Mimoun Do metal peroxides as homolytic and heterolytic oxidative reagents. Mechanism of the halcon epoxidation process
JP3662038B2 (en) Method for producing epoxy compound
JPH0440358B2 (en)
KR101463276B1 (en) Oxidizing agent composition for the epoxidation of olefins and process for the epoxidation of olefins
JPH01193258A (en) Production of butylene oxides
KR20010102979A (en) Polyoxofluorometallates and use thereof as catalysts for the epoxidation of alkenes
JP4998977B2 (en) Method for producing bifunctional epoxy monomer by selective oxidation of diolefin compound
US7074947B2 (en) Process for producing epoxide compound
JP4067823B2 (en) Process for epoxidation of cyclic monoolefins
EP0180418B1 (en) Regeneration of soluble molybdenum catalysts from spent catalyst streams
JP2004115455A (en) Method for epoxidizing cycloolefin
JPH05237392A (en) Oxidization catalyst and epoxidation method
JPS61236737A (en) Production of phytanetriol
EP0058473B1 (en) Preparation of soluble molybdenum catalysts for epoxidation of olefins
JP2618478B2 (en) Method for producing epoxy compound
KR920008618B1 (en) Method for preparing epoxy compound
US3625981A (en) Process for preparing glycidol
JPS5839676A (en) Preparation of olefin oxide
JP5103661B2 (en) Method for producing diepoxy compound
JP2010155805A (en) Method for producing epoxy compound