JPH01193240A - Production of methyl methacrylate - Google Patents

Production of methyl methacrylate

Info

Publication number
JPH01193240A
JPH01193240A JP1715288A JP1715288A JPH01193240A JP H01193240 A JPH01193240 A JP H01193240A JP 1715288 A JP1715288 A JP 1715288A JP 1715288 A JP1715288 A JP 1715288A JP H01193240 A JPH01193240 A JP H01193240A
Authority
JP
Japan
Prior art keywords
methacrylic acid
methyl methacrylate
acid
amount
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1715288A
Other languages
Japanese (ja)
Inventor
Kozo Iwasaki
岩崎 晃三
Morimasa Kuragano
倉賀野 守正
Minoru Koshibe
越部 実
Hirozo Segawa
瀬川 博三
Katsuji Yoguchi
與口 勝治
Tsutomu Kajikuri
梶栗 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Gas Chemical Industry Co Ltd
Mitsui Toatsu Chemicals Inc
Original Assignee
Kyowa Gas Chemical Industry Co Ltd
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Gas Chemical Industry Co Ltd, Mitsui Toatsu Chemicals Inc filed Critical Kyowa Gas Chemical Industry Co Ltd
Priority to JP1715288A priority Critical patent/JPH01193240A/en
Publication of JPH01193240A publication Critical patent/JPH01193240A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title compound, by extracting methacrylic acid from an oxide, etc., of isobutylene and esterifying the resultant methacylic acid with methanol, distilling and purifying the obtained ester using a solvent selected from 6C or 7C aliphatic hydrocarbons in all the steps of extraction, esterification reaction, distillation and purification. CONSTITUTION:An aqueous solution of crude methyl methacrylate obtained by catalytic oxidation of isobutylene, tert-butyl alcohol or methacrolein (containing at least acrylic acid and acetic acid as impurities) is brought into contact with a solvent (e.g., hexane, heptane, cyclohexane or dimethylpentane) selected from 6C or 7C aliphatic hydrocarbons in an amount of 1.0-5.0 times based on the methacrylic acid to extract the methacrylic acid, acrylic acid and others. The extracted liquid is then subjected to esterification reaction with methanol in a molar amount of 1.0-1.5 times based on the amount of the methacrylic acid in the presence of a strong acidic cation exchange resin and the resultant substance is subsequently distilled to afford the aimed purified methyl methacrylate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタクリル酸メチルの製造法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing methyl methacrylate.

〔従来技術と発明カ鳳解決しようとする課題〕メタクリ
ル酸メチルは、通常メタクリル酸とメタノールとの反応
により製造されるが、この反応はijJ逆反応であり、
エステルおよび水の生成と共に反応速度が(IU下し、
十分な転化率が得られない。生成物を連続的に系外に除
去し平衡を有利にする方法として、反応蒸溜、溶媒を使
用する方法等が提起されているが、反応蒸溜は、一般に
メタノールの使用量が非常に多くなる事と反応制御が複
雑な事から、あまり用いられず、溶媒の使用が一般的で
ある。
[Prior art and the problem to be solved by the invention] Methyl methacrylate is usually produced by the reaction of methacrylic acid and methanol, but this reaction is an ijJ reverse reaction.
With the formation of ester and water, the reaction rate decreases (IU decreases,
A sufficient conversion rate cannot be obtained. Reactive distillation, a method using a solvent, etc., has been proposed as a method for continuously removing products from the system and favoring equilibrium, but reactive distillation generally requires a very large amount of methanol. Because reaction control is complicated, it is not used often, and a solvent is generally used.

溶媒を用いる方法としては、抽出剤として用いる方法と
単に混合する方法とがある。イソブチレン、【−ブチル
アルコールまたはメタクロレインの接触酸化により4+
lられるメタクリル酸を精製せずに直接原石として使用
する場合には、後工程に影習を与える不純物を低減させ
る目的で溶媒抽出を行なう事が望ましい。また、エステ
ル化反応器を小型化する上からも余分な水分を含まない
抽出法が推奨される。以上のように、メタクリル酸メチ
ルの製造に溶媒を使用する事の有意性は認められている
が、溶媒の種類に関しては十分に検討されているとは言
い難い。
Methods of using a solvent include a method of using it as an extractant and a method of simply mixing it. Isobutylene, [-4+ by catalytic oxidation of butyl alcohol or methacrolein
When methacrylic acid is used directly as raw ore without purification, it is desirable to perform solvent extraction for the purpose of reducing impurities that may affect subsequent processes. Furthermore, an extraction method that does not contain excess water is recommended from the viewpoint of downsizing the esterification reactor. As mentioned above, although the significance of using a solvent in the production of methyl methacrylate has been recognized, it cannot be said that the type of solvent has been sufficiently studied.

例えば、特公昭52−38535には、エチルベンゼン
或いはキシレンを抽出剤として使用し、アクリル酸、酢
酸等の有機酸不純物抽出量を低減する方法が示されてい
るが、エステル化反応後メタノールを水で抽出する為多
量の水を必要とし、メタノールと水の分離にも多大なエ
ネルギーを必要とする。蒸溜によりメタノールを分離す
ることが可能でしかもメタクリル酸の抽出率が十分に高
い溶媒を使用すると、多くの場合高沸点不純物も同時に
抽出される為、蒸溜精製時に重合等のトラブルが起こり
易く、また触媒であるイオン交換樹脂に悪影響を及ぼす
For example, Japanese Patent Publication No. 52-38535 discloses a method for reducing the amount of organic acid impurities such as acrylic acid and acetic acid extracted by using ethylbenzene or xylene as an extractant, but after the esterification reaction, methanol is mixed with water. Extraction requires a large amount of water, and separation of methanol and water also requires a large amount of energy. If you use a solvent that can separate methanol by distillation and has a sufficiently high extraction rate of methacrylic acid, high-boiling impurities will often be extracted at the same time, making problems such as polymerization likely to occur during distillation purification. It has a negative effect on the ion exchange resin that is the catalyst.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、インブチレン、し−ブチルアルコールま
たはメタクロレインの接触酸化により得られるメタクリ
ル酸を原料とするメタクリル酸メチルの製造に関して鋭
意検討を行なった結果、原料メタクリル酸中に含まれる
高沸点不純物が蒸溜時のメタクリル酸メチルの重合トラ
ブルの原因となり、またエステル化触媒であるイオン交
換樹脂の劣化の原因ともなっている事を見出した。本発
明者らは、さらに該高沸点不純物の除去に関して検討を
行なった結果、抽出、エステル化反応、蒸溜11を製の
全ての工程に適した溶媒を見出し、本発明を完成させる
に至った。
The present inventors conducted intensive studies on the production of methyl methacrylate using methacrylic acid obtained by catalytic oxidation of imbutylene, butyl alcohol, or methacrolein as a raw material, and found that the high boiling point contained in the raw material methacrylic acid It has been discovered that impurities cause problems with polymerization of methyl methacrylate during distillation, and also cause deterioration of the ion exchange resin that is the esterification catalyst. The present inventors further investigated the removal of the high-boiling point impurities, and as a result found a solvent suitable for all steps of extraction, esterification, and distillation 11, and completed the present invention.

すなわち本発明は、イソブチレン、L−ブチルアルコー
ルまたはメタクロレインの接触酸化により得られ、少な
くともアクリル酸および酢酸を不純物として含むメタク
リル酸水溶液に、炭素数6または7を有する脂肪酸炭化
水素から選ばれた1種またはそれ以上の溶媒を、メタク
リル酸重量の1.0〜5.0倍量接触ぎせてメタクリル
酸およびアクリル酸その他を抽出し、該抽出液をメタク
リル酸晴の1.0〜1.5倍モル量のメタノールの存在
下で強酸性陽イオン交換樹脂を触媒として反応させ、次
いで蒸溜により高純度のメタクリル酸メチルを得ること
を特徴とするメタクリル酸メチルの製造法に関する。
That is, the present invention provides an aqueous methacrylic acid solution obtained by catalytic oxidation of isobutylene, L-butyl alcohol, or methacrolein and containing at least acrylic acid and acetic acid as impurities, and a fatty acid hydrocarbon selected from fatty acid hydrocarbons having 6 or 7 carbon atoms. Methacrylic acid, acrylic acid, and others are extracted by contacting with a solvent of 1.0 to 5.0 times the weight of methacrylic acid, and the extract is 1.0 to 1.5 times the weight of methacrylic acid. The present invention relates to a method for producing methyl methacrylate, which comprises reacting with a strongly acidic cation exchange resin as a catalyst in the presence of a molar amount of methanol, followed by distillation to obtain highly pure methyl methacrylate.

〔発明の詳細な開示〕[Detailed disclosure of the invention]

本発明において使用する溶媒は、炭素数6または7の脂
肪族炭化水素で、具体的にはヘキサン、ヘプタン、シク
ロヘキサン、ジメチルペンタン等である。これらの溶媒
は、水との相溶性が低くメタクリル酸の分配係数が大き
いという油剤としての必要条件を満足しているのは勿論
であるが、高沸点物質の分配係数が小さいという特徴を
有する。イソブチレン、し−ブチルアルコールまたはメ
タクロレインの接触酸化により得られるメタクリル酸は
、通常、高分子量アルデヒド等の高沸点不純物を少量含
んでいるが、本発明者らはこれらの高沸点不純物がメタ
クリル酸メチルを蒸溜精製する際にメタクリル酸メチル
の重合等のトラブルの原因となる事を見出した。また、
該高沸点不純物は、エステル化触媒であるイオン交換樹
脂の表面に付着し、触媒性能劣化の原因となる事も見出
した。高沸点不純物付着により劣化したイオン交換樹脂
は通常の再生方法では性能が回復しない。
The solvent used in the present invention is an aliphatic hydrocarbon having 6 or 7 carbon atoms, and specifically includes hexane, heptane, cyclohexane, dimethylpentane, and the like. These solvents not only satisfy the requirements for oil agents, such as low compatibility with water and a large partition coefficient for methacrylic acid, but also have the characteristic of having a small partition coefficient for high-boiling substances. Methacrylic acid obtained by catalytic oxidation of isobutylene, di-butyl alcohol or methacrolein usually contains small amounts of high-boiling impurities such as high molecular weight aldehydes, but the present inventors believe that these high-boiling impurities are methyl methacrylate. It was discovered that it causes troubles such as polymerization of methyl methacrylate when distilling and refining methyl methacrylate. Also,
It has also been found that the high boiling point impurities adhere to the surface of the ion exchange resin, which is the esterification catalyst, and cause deterioration of the catalyst performance. The performance of ion exchange resins that have deteriorated due to adhesion of high-boiling impurities cannot be recovered by normal regeneration methods.

従って高沸点不純物は極力ltV前に系外に除去する”
1【が9遍ましいが、炭素数6または7の脂肪族炭化水
素は水相からこれら高沸点不純物を実質上抽出しない。
Therefore, high boiling point impurities should be removed from the system before ltV as much as possible.
1 is preferred, but aliphatic hydrocarbons having 6 or 7 carbon atoms do not substantially extract these high-boiling impurities from the aqueous phase.

イソブチレン、し−ブチルアルコールまたはメタクロレ
インの接触酸化により得られるメタクリル酸は通常アク
リル酸、酢酸、プロピオン酸等の有機酸をも不純物とし
て含んであり、炭素数6または7の脂肪族炭化水素はこ
れらの有機酸をも抽出するが、本発明の方法には何隻不
都合は生じない。即ち、炭素数の接近した有機酸相互の
分離は、それらの物理的化学的性質が類似しておりさら
に有機酸同士で分子会合を起こす為困難である°1【が
知られているが、本発明の方法では実質1全ての不純物
有機酸がエステル化され、有機酸エステル相互の分離は
通常の蒸溜で容易に行なえるからである。
Methacrylic acid obtained by catalytic oxidation of isobutylene, butyl alcohol, or methacrolein usually also contains organic acids such as acrylic acid, acetic acid, and propionic acid as impurities, and aliphatic hydrocarbons having 6 or 7 carbon atoms are However, the method of the present invention does not cause any disadvantages. In other words, it is known that separation of organic acids with close carbon numbers is difficult because their physical and chemical properties are similar and molecular association occurs between the organic acids. This is because in the method of the invention, substantially all of the impurity organic acids are esterified, and the organic acid esters can be easily separated from each other by ordinary distillation.

エステル化に於いても、炭素数6または7の脂肪族炭化
水素は、水との相溶性が低く、生成する水と7.相を形
成し、エステル化反応の平衡を有利な方向へ導く事か出
来る。炭素数6または7の脂肪族炭化水素の使用量は、
メタクリル酸重量の1.0〜5.0倍である事が好まし
い。炭素数6または7の脂肪族炭化水素の使用量が少な
いと、メタクリル酸からメタクリル酸メチルへの転化率
を十分に上げる事が出来ない。多く使用する事は差し支
えないが、反応器の大きさや後段での溶媒とメタクリル
酸メチルとの分離を考慮するとメタクリル酸重量の5.
0倍以下である事が好ましい。
Even in esterification, aliphatic hydrocarbons with 6 or 7 carbon atoms have low compatibility with water, and 7. It can form a phase and guide the equilibrium of the esterification reaction in a favorable direction. The amount of aliphatic hydrocarbons having 6 or 7 carbon atoms is
It is preferably 1.0 to 5.0 times the weight of methacrylic acid. If the amount of the aliphatic hydrocarbon having 6 or 7 carbon atoms is small, the conversion rate of methacrylic acid to methyl methacrylate cannot be sufficiently increased. There is no problem in using a large amount of methacrylic acid, but considering the size of the reactor and the separation of the solvent and methyl methacrylate in the latter stage, the weight of methacrylic acid is 5.
It is preferable that it is 0 times or less.

メタクリル酸と反応するメタノールの量は、メタクリル
酸量の1.0〜1.5倍モル量である。好ましくはメタ
クリル酸量の1.1〜1.2倍モル量である。一方、 
1.0倍未満では未反応のメタクリル酸量が増加し、メ
タノール量が多すぎると生成したメタクリル酸メチルと
の分離に要するエネルギーが増大するのみならず、エス
テル化反応時に水相と有機相との二相分離が良好でなく
、かつ十分に高いメタクリル酸のエステル化率が得られ
ない。
The amount of methanol reacting with methacrylic acid is 1.0 to 1.5 times the molar amount of methacrylic acid. Preferably, the molar amount is 1.1 to 1.2 times the amount of methacrylic acid. on the other hand,
If it is less than 1.0 times, the amount of unreacted methacrylic acid will increase, and if the amount of methanol is too large, not only will the energy required for separation from the generated methyl methacrylate increase, but also the amount of water and organic phases will be separated during the esterification reaction. The two-phase separation is not good, and a sufficiently high esterification rate of methacrylic acid cannot be obtained.

エステル化触媒としては、硫酸等の酸触媒を用いても何
隻支障はないが、本発明はイオン交換樹脂の劣化の原因
となる高沸点不純物を抽出によりtめ除去する11を特
徴としており、イオン交換樹脂を触媒として使用する場
合により適する。使用する強酸性陽イオン交換樹脂の種
類、量は、本発明の方法においては何ら限定されるもの
ではなく、反応条件等によって適宜選択される。なお強
酸性陽イオン交換樹脂としては三菱化成工業■、商品名
、ダイヤイオンPに−212などを挙げることができる
Although there is no problem in using an acid catalyst such as sulfuric acid as the esterification catalyst, the present invention is characterized in that high boiling point impurities that cause deterioration of the ion exchange resin are removed by extraction. More suitable when using an ion exchange resin as a catalyst. The type and amount of the strongly acidic cation exchange resin used are not limited in any way in the method of the present invention, and are appropriately selected depending on the reaction conditions and the like. Examples of strong acidic cation exchange resins include Mitsubishi Kasei Corporation (trade name), Diaion P-212, and the like.

エステル化温度には特に制限はなく、イオン交換樹脂の
耐熱温度以下で十分な反応速度が得られる温度であれば
良い。其体的には80〜150℃付近が採用される。
There is no particular restriction on the esterification temperature, and it may be any temperature that can provide a sufficient reaction rate below the heat resistance temperature of the ion exchange resin. Generally, the temperature is around 80 to 150°C.

メタクリル酸メチルの蒸溜分離に於いても、炭素数6ま
たは7の脂肪族炭化水素は、その沸点かメタノール(6
5℃)とメタクリル酸メチル(101℃)との中間にあ
りメタノールとメタクリル酸メチルとの共沸を防ぐ為、
これらの分離には非常に有効である。
In the distillation separation of methyl methacrylate, aliphatic hydrocarbons with 6 or 7 carbon atoms are separated by methanol (6
5℃) and methyl methacrylate (101℃) to prevent azeotropy between methanol and methyl methacrylate.
It is very effective for these separations.

〔効果〕〔effect〕

メタクリル酸のエステル化に於いて溶媒を使用する事は
、反応平衡を有利な方向へ導く、反応中の重合を抑制す
る等の一般的な利点があるが、炭素数6または7の脂肪
族炭化水素を抽出剤として用いる本発明の方法により特
に有利となる点を以下にまとめる。
The use of a solvent in the esterification of methacrylic acid has general advantages such as guiding the reaction equilibrium in a favorable direction and suppressing polymerization during the reaction. Particular advantages of the method of the invention using hydrogen as an extractant are summarized below.

l)水槽からのメタクリル酸の抽出率が十分に大きい。l) The extraction rate of methacrylic acid from the aquarium is sufficiently large.

この為、メタクリル酸のロスは最小限にする事ができる
Therefore, loss of methacrylic acid can be minimized.

2)イソブチレン、し−ブチルアルコールまたはメタク
ロレインの接触酸化時に副生ずる高沸点不純物を実質上
抽出しない。該高沸点物質は、蒸溜時にメタクリル酸メ
チルの重合等のトラブルの原因となり、またイオン交換
樹脂の触媒活性を低下させる。
2) Substantially no extraction of high-boiling impurities produced as by-products during catalytic oxidation of isobutylene, butyl alcohol or methacrolein. The high boiling point substance causes troubles such as polymerization of methyl methacrylate during distillation, and also reduces the catalytic activity of the ion exchange resin.

3)アクリル酸、酢酸等の不純物有機酸もメタクリル酸
と共に抽出されるがエステル化反応時にこれら不純物有
機酸も同時にエステル化される為、通常の方法で容易に
蒸溜分離する事ができる。特に本発明の方法に従えば、
不純物有機酸のエステル化率が非常に高く、メタクリル
酸以外の有機酸は実質−L全てエステル化される為、生
成物の分離か容易である。
3) Impurity organic acids such as acrylic acid and acetic acid are also extracted together with methacrylic acid, but since these impurity organic acids are also esterified at the same time during the esterification reaction, they can be easily separated by distillation using normal methods. In particular, according to the method of the invention,
Since the esterification rate of impurity organic acids is very high, and virtually all of the organic acids other than methacrylic acid are esterified, the product can be easily separated.

4)溶媒の沸点が、メタノールとメタクリル酸メチルの
沸点の間にある為、水洗によるメタノールの除去等の操
作は不要であり、通常の蒸溜により積装する事ができる
4) Since the boiling point of the solvent is between the boiling points of methanol and methyl methacrylate, operations such as removing methanol by washing with water are not necessary, and loading can be carried out by ordinary distillation.

次に実施例により本発明の方法をさらに説明する。The method of the present invention will now be further illustrated by examples.

実施例1 メタクロレインの接触酸化により、メタクリル酸28.
4%、酢酸4.6%、不揮発分3.6%、その他不純物
数%を含む水溶液を得た。該水溶液と同市I11のヘキ
サンとを分液ロート中で15分分間上うし、30分静置
後有機相と無機相とを分離した。有機相にはメタクリル
酸と不純物有機酸の一部が抽出され、高沸点の不揮発分
や水分は実質上抽出されなかった。各成分のヘキサンに
よる抽出率を第1表に示す。メタクリル酸を含む該ヘキ
サン溶液にメタノールをメタクリル酸の1.15倍モル
祉加え、強酸性イオン交換樹脂(ダイヤイオンPに−2
12)60ccを充填したカラムに90℃、2にg/c
m’の条件で60cc/h乙で上向流通液し、有機酸の
エステル化を行なったところ、メタクリル酸の88%が
メタクリル酸メチルとなり十分高いエステル化率が得ら
れた。この時の酢酸及びアクリル酸のエステル化率はそ
れぞれ98%及び97%であり、メタクリル酸以外の有
機酸の残存量は無視し得る程度であった。得られたヘキ
サン、メタクリル酸メチル、未反応メタノール等を含む
液を通常の方法で蒸溜精製したところ、高純度のメタク
リル酸メチルが得られた。エステル化の実験を三ケ月間
継続し、実験後のカラム下部のイオン交換樹脂のイオン
交換容量を測定したところ、使用前の4.90u+eq
/gに対して4.71meq/gと劣化はイ)かであっ
た。
Example 1 Catalytic oxidation of methacrolein yields methacrylic acid 28.
An aqueous solution containing 4% acetic acid, 4.6% acetic acid, 3.6% nonvolatile matter, and several % other impurities was obtained. The aqueous solution was heated with hexane (I11) in a separatory funnel for 15 minutes, and after standing for 30 minutes, the organic phase and inorganic phase were separated. In the organic phase, methacrylic acid and a portion of impurity organic acids were extracted, and high-boiling nonvolatile components and water were substantially not extracted. Table 1 shows the extraction rate of each component with hexane. Methanol was added to the hexane solution containing methacrylic acid in a molar ratio 1.15 times that of methacrylic acid, and a strongly acidic ion exchange resin (-2
12) Column packed with 60cc at 90°C, 2g/c
When the organic acid was esterified by flowing upward at 60 cc/h under the conditions of m', a sufficiently high esterification rate was obtained, with 88% of the methacrylic acid becoming methyl methacrylate. The esterification rates of acetic acid and acrylic acid at this time were 98% and 97%, respectively, and the remaining amount of organic acids other than methacrylic acid was negligible. The obtained liquid containing hexane, methyl methacrylate, unreacted methanol, etc. was purified by distillation using a conventional method, and highly pure methyl methacrylate was obtained. The esterification experiment was continued for three months, and the ion exchange capacity of the ion exchange resin at the bottom of the column was measured after the experiment, and it was found to be 4.90 u + eq before use.
/g, the deterioration was 4.71 meq/g.

実施例2 抽出溶媒なヘプタンとヘキサンとの重量比が3:1の溶
媒とした以外は実施例1と同様の実験を行なった。各成
分の溶媒による抽出率は第1表に示した通りである。メ
タクリル酸のエステル化率は8g%であり、他有機酸の
エステル化率はいずれも911%以上であった。
Example 2 An experiment similar to Example 1 was conducted except that the extraction solvent was heptane and hexane in a weight ratio of 3:1. The extraction rate of each component by the solvent is shown in Table 1. The esterification rate of methacrylic acid was 8 g%, and the esterification rate of all other organic acids was 911% or more.

比較例1 抽出溶媒を酢酸イソブチルとした以外は実施例1と同様
の実験を行なった。各成分の溶媒による抽出率は第1表
に示した通りで、メタクリル酸の抽出率は実施例よりも
高いが不揮発分も多量抽出された。エステル化後蒸溜を
行なったところ、メタクリル酸メチルが重合を起こし、
フラスコの内壁に’p fitの重合物が付着した。ま
た、エステル化実験を一ケ月間継続した後のカラム下部
のイオン交換樹脂の交換容%Lは初期の4.9omeq
/gから3.27meq/gまで低下し、エステル化率
も徐々に低下する傾向を示した。劣化したイオン交換樹
脂を10%塩酸水溶液や10%水酸化ナトリウム水溶液
で洗浄し再生を試みたが、効果は認められなかった。
Comparative Example 1 An experiment similar to Example 1 was conducted except that isobutyl acetate was used as the extraction solvent. The extraction rate of each component by the solvent is as shown in Table 1, and the extraction rate of methacrylic acid was higher than in Examples, but a large amount of non-volatile components were also extracted. When distillation was performed after esterification, methyl methacrylate polymerized and
A polymer of 'p fit was attached to the inner wall of the flask. In addition, after the esterification experiment was continued for one month, the exchange volume %L of the ion exchange resin at the bottom of the column was the initial 4.9 omeq.
/g to 3.27 meq/g, and the esterification rate also showed a tendency to gradually decrease. Attempts were made to regenerate the deteriorated ion exchange resin by washing it with a 10% aqueous hydrochloric acid solution and a 10% aqueous sodium hydroxide solution, but no effect was found.

比較例2 抽出溶媒をキシレンとした以外は実施例1と同様の実験
を行なった。各成分の溶媒による抽出率は第1表に示し
た通りで、酢酸の抽出率は低いが不揮発分も少量抽出さ
れている。エステル化実験を三ケ月間継続した後のカラ
ム下部のイオン交換樹脂の交換容量は4.:16meq
/gであり、実施例に比べ劣化が速い。
Comparative Example 2 An experiment similar to Example 1 was conducted except that xylene was used as the extraction solvent. The extraction rate of each component by the solvent is shown in Table 1. Although the extraction rate of acetic acid is low, a small amount of non-volatile matter is also extracted. After continuing the esterification experiment for three months, the exchange capacity of the ion exchange resin at the bottom of the column was 4. :16meq
/g, and the deterioration is faster than in the example.

比較例3 抽出溶媒をメタクリル酸メチルとした以外は実施例1と
同様の実験を行なった。各成分の溶媒による抽出率は第
1表に示した通りで、やはり不揮発分の抽出率は高く、
比較例1と同様にイオン交換樹脂が急速に劣化した。
Comparative Example 3 An experiment similar to Example 1 was conducted except that methyl methacrylate was used as the extraction solvent. The extraction rate of each component by solvent is shown in Table 1, and the extraction rate of non-volatile components is high.
As in Comparative Example 1, the ion exchange resin deteriorated rapidly.

Claims (1)

【特許請求の範囲】[Claims] イソブチレン、t−ブチルアルコールまたはメタクロレ
インの接触酸化により得られ、少なくともアクリル酸お
よび酢酸を不純物として含むメタクリル酸水溶液に、炭
素数6または7を有する脂肪族炭化水素から選ばれた1
種またはそれ以上の溶媒を、メタクリル酸重量の1.0
〜5.0倍量接触させてメタクリル酸およびアクリル酸
その他を抽出し、該抽出液をメタクリル酸量の1.0〜
1.5倍モル量のメタノールの存在下で強酸性陽イオン
交換樹脂を触媒として反応させ、次いで蒸溜により高純
度のメタクリル酸メチルを得ることを特徴とするメタク
リル酸メチルの製造法。
1 selected from aliphatic hydrocarbons having 6 or 7 carbon atoms to an aqueous methacrylic acid solution obtained by catalytic oxidation of isobutylene, t-butyl alcohol or methacrolein and containing at least acrylic acid and acetic acid as impurities.
Species or more solvents in an amount of 1.0% by weight of methacrylic acid
Methacrylic acid and acrylic acid and others are extracted by contacting them in ~5.0 times the amount, and the extract is added in an amount of ~5.0 times the amount of methacrylic acid.
A method for producing methyl methacrylate, which comprises reacting with a strongly acidic cation exchange resin as a catalyst in the presence of 1.5 times the molar amount of methanol, and then obtaining highly pure methyl methacrylate by distillation.
JP1715288A 1988-01-29 1988-01-29 Production of methyl methacrylate Pending JPH01193240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1715288A JPH01193240A (en) 1988-01-29 1988-01-29 Production of methyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1715288A JPH01193240A (en) 1988-01-29 1988-01-29 Production of methyl methacrylate

Publications (1)

Publication Number Publication Date
JPH01193240A true JPH01193240A (en) 1989-08-03

Family

ID=11936012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1715288A Pending JPH01193240A (en) 1988-01-29 1988-01-29 Production of methyl methacrylate

Country Status (1)

Country Link
JP (1) JPH01193240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099071A1 (en) * 2006-02-28 2007-09-07 Shell Internationale Research Maatschappij B.V. A process for reactive distillation of a carboxylic acid
EP2085376A1 (en) 2008-01-30 2009-08-05 Evonik Röhm GmbH Process for preparation of high purity methacrylic acid
WO2013164216A1 (en) 2012-05-03 2013-11-07 Evonik Industries Ag Process for preparation of highly pure, non-yellowing (meth)acrylic acid
WO2014146961A1 (en) 2013-03-18 2014-09-25 Evonik Industries Ag Process for preparation of methacrylic acid and methacrylic acid esters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945020A (en) * 1972-09-08 1974-04-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945020A (en) * 1972-09-08 1974-04-27

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099071A1 (en) * 2006-02-28 2007-09-07 Shell Internationale Research Maatschappij B.V. A process for reactive distillation of a carboxylic acid
US7718039B2 (en) 2006-02-28 2010-05-18 Shell Oil Company Process for reactive distillation of a carboxylic acid
EP2085376A1 (en) 2008-01-30 2009-08-05 Evonik Röhm GmbH Process for preparation of high purity methacrylic acid
WO2013164216A1 (en) 2012-05-03 2013-11-07 Evonik Industries Ag Process for preparation of highly pure, non-yellowing (meth)acrylic acid
WO2014146961A1 (en) 2013-03-18 2014-09-25 Evonik Industries Ag Process for preparation of methacrylic acid and methacrylic acid esters

Similar Documents

Publication Publication Date Title
EP0551111B1 (en) Process for purifying acrylic acid to high purity in the production of acrylic acid
KR840001899B1 (en) Process for purifying methyl methacrylate
JPS5914018B2 (en) Method for producing methacrylic acid ester
JPS606635A (en) Purification of 1,2-unsaturated carboxylic acid and/or its ester
JPH01193240A (en) Production of methyl methacrylate
EP0465853B1 (en) Method for producing 4-hydroxybutyl (meth)acrylate
US4474981A (en) Process for preparing an acrylic or methacrylic acid ester
JPS58124781A (en) Manufacture of epsilon-caprolactone
JP2001322968A (en) Method for purifying methacrylic acid ester
US4246185A (en) Catalyst metal separation from saturated aliphatic monocarboxylic acids
JPH10175919A (en) Production of tetrahydrobenzyl (meth)acrylate
JPH0244296B2 (en)
JP2002516889A (en) Production method of hexanediol-1,6
JPH0334945A (en) Removal of acidic impurities from feedstock containing tertiary butylperoxide
JPH1095747A (en) Production of carboxylate, sulfonic acid group-containing polysiloxane and its production
JP4099950B2 (en) Method for producing cyclohexyl (meth) acrylate
JP2002504093A (en) Method for producing methacrylate ester
JPH0853392A (en) Production of 4-hydroxybutyl (meth)acrylate
JPH01113341A (en) Production of methyl carboxylate
JPH04235980A (en) Purification of glycidyl methacrylate
JP4204097B2 (en) Method for producing methyl methacrylate
JP2834436B2 (en) Method for producing sec-butyl acrylate by reaction of acrylic acid and butene isomer
JPS5837290B2 (en) How to remove aldehydes and ketones
JP3798453B2 (en) Method for separating diester of (meth) acrylic acid and alkanediol having 4 to 6 carbon atoms from mixture, and method for producing monoester of (meth) acrylic acid and alkanediol having 4 to 6 carbon atoms
JP3937495B2 (en) Acrylic acid recovery method