JPH01191725A - Method for producing low-sulfur high-carbon molten iron from ferruginous cold charge - Google Patents

Method for producing low-sulfur high-carbon molten iron from ferruginous cold charge

Info

Publication number
JPH01191725A
JPH01191725A JP63015834A JP1583488A JPH01191725A JP H01191725 A JPH01191725 A JP H01191725A JP 63015834 A JP63015834 A JP 63015834A JP 1583488 A JP1583488 A JP 1583488A JP H01191725 A JPH01191725 A JP H01191725A
Authority
JP
Japan
Prior art keywords
molten iron
iron
carbon
sulfur
ferruginous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63015834A
Other languages
Japanese (ja)
Other versions
JPH0480085B2 (en
Inventor
Yuji Kawachi
河内 雄二
Kazumasa Umezawa
梅沢 一誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63015834A priority Critical patent/JPH01191725A/en
Publication of JPH01191725A publication Critical patent/JPH01191725A/en
Publication of JPH0480085B2 publication Critical patent/JPH0480085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To effectively produce a low-sulfur high-carbon molten iron at a low cost by adjusting the carbon content in the molten iron and removing the sulfer in the molten iron via slag while stirring the molten iron with an inert gas in the end period of oxygen blowing of a ferruginous cold charge and carbonaceous material. CONSTITUTION:The solid ferruginous cold charge such as cold pig and scrap and the carbonaceous material such as coal are supplied to a ferruginous cold charge melting furnace in which a seed hot metal exists to execute oxygen blowing. The carbon content in the molten iron is adjusted to >=4% by such means as use of the carbonaceous material having a relatively coarse specific grain size only in the end period of the oxygen blowing at this time. The activity of the sulfur in the molten iron is thereby increased to put the molten iron into an easily desulfurizable state. Then, an inert gas is blown in the molten iron to impart agitating energy. The sulfur in the molten iron is thereby removed via the slag essentially consisting of the previously formed CaO, SiO2 and Al2O3, by which the low-sulfur high-carbon molten iron is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭材を熱源として冷銑、スクラップ等の固形含
鉄冷材を多量に溶解し、効率的に低硫黄高炭素溶鉄を製
造する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for efficiently producing low-sulfur, high-carbon molten iron by melting a large amount of solid iron-containing cold materials such as cold pig iron and scrap using carbonaceous material as a heat source. It is related to.

ひいては、これにより固形含鉄冷材から溶鋼を低コスト
で得る方法を提供するものである。
Furthermore, this provides a method for obtaining molten steel from solid iron-containing cold material at low cost.

〔従来の技術〕[Conventional technology]

現在、鋼製造プロセスの主流を占めている転炉製鋼法で
は、鉄源として高炉から供給される溶銑を主原料として
、転炉にて造滓材を添加し酸素吹錬をおこなうことによ
り、所定の成分、温度の溶鋼を得るものである。しかし
通常の方法では熱源による制約から全装入鉄源量に占め
る含鉄冷材使用量は最大的35%であって、含鉄冷材を
多量に使用できるプロセスとは言えない。このことは転
炉製鋼法が冷鉄源使用量に対する自由度、及び生産弾力
性に欠けていることを示す。
The converter steel manufacturing method, which currently dominates the steel manufacturing process, uses hot metal supplied from a blast furnace as the main raw material, adds slag material in the converter, and performs oxygen blowing. The method is to obtain molten steel with a composition and temperature of . However, in the usual method, the amount of iron-containing cold material used is at most 35% of the total amount of iron source charged due to restrictions due to the heat source, and it cannot be said that it is a process that can use a large amount of iron-containing cold material. This shows that the converter steel manufacturing method lacks flexibility in the amount of cold iron source used and production flexibility.

このような弱点を克服するため、本出願人は特願昭62
−73997号にて、冷鉄源を溶解し高炭素溶鉄を製造
する溶解専用転炉と溶解専用転炉で得られた高炭素溶鉄
を精錬する精錬専用転炉からなる新プロセスを提案し、
その優位性を確認した。
In order to overcome these weaknesses, the applicant has filed a patent application filed in 1983.
In No. 73997, we proposed a new process consisting of a melting-only converter that melts a cold iron source to produce high-carbon molten iron, and a refining-only converter that refines the high-carbon molten iron obtained in the melting-only converter.
We confirmed its superiority.

即ち、前記新プロセスの要旨とするところは、種湯の存
在する溶解専用転炉に含鉄合材、炭材、酸素を供給して
高炭素溶鉄を得、この溶鉄を原料として別の精錬専用転
炉で酸素吹錬することにより所要成分の溶鋼を得る転炉
製鋼法において、上記溶解専用転炉において、上記精錬
専用転炉での所要精錬量と溶解専用転炉での所要種湯量
の合計量の高炭素溶鉄を得、上記溶解専用転炉から上記
精錬専用転炉での所要精錬量の高炭素溶鉄を1回の出湯
にて酸素精錬に供する一方、高炭素溶鉄の残部種湯量を
溶解専用転炉に残して前記含鉄冷材溶解のための種湯と
して使用することを特徴とする転炉製鋼法にある。
In other words, the gist of the new process is to obtain high-carbon molten iron by supplying a ferrous composite material, carbonaceous material, and oxygen to a converter exclusively for melting in which a seed metal exists, and to use this molten iron as a raw material for another converter exclusively for refining. In the converter steelmaking method in which molten steel with the required composition is obtained by oxygen blowing in a furnace, in the converter exclusively for melting, the total amount of the required refining amount in the converter exclusively for refining and the amount of seed metal required in the converter exclusively for melting. of high-carbon molten iron is obtained, and the required amount of high-carbon molten iron is sent from the above-mentioned melting-only converter to the above-mentioned refining-only converter for oxygen refining in one tap, while the remaining amount of high-carbon molten iron is used exclusively for melting. A converter steel manufacturing method characterized in that the hot water is left in the converter and used as a seed hot water for melting the iron-containing cold material.

この方法により、大量の含鉄合材を短時間で溶解しうる
溶解能率の高い転炉製鋼法が提供された。
This method provided a converter steel manufacturing method with high melting efficiency that can melt a large amount of iron-containing composite material in a short time.

更にこの方法によれば種湯貯蔵用容器も不必要となり、
高炭素溶鉄製造コストの低減も可能である。
Furthermore, this method eliminates the need for a container for storing seed water.
It is also possible to reduce the manufacturing cost of high carbon molten iron.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記特願昭62−73997号の方法では含鉄冷材溶解
のための熱源として炭材を用いる。炭材としては一般に
安価な工業用原料炭が使用されるが、工業用原料炭中の
硫黄含有量は0.1%以上と高く、このため炭材から溶
鉄中への硫黄汚染が生じ、溶鉄中の硫黄含有量が増大す
る。この対策としては特願昭62−73997号でも詳
述したように溶解専用転炉から排出された取鍋内溶鉄に
脱硫剤を添加し、インペラーによる機械撹拌を施す等し
て脱硫する方式が効果的である。
In the method disclosed in Japanese Patent Application No. 62-73997, carbonaceous material is used as a heat source for melting the iron-containing cold material. Inexpensive industrial coking coal is generally used as carbonaceous material, but the sulfur content in industrial coking coal is as high as 0.1% or more, which causes sulfur contamination from the carbonaceous material into the molten iron. The sulfur content increases. As a countermeasure to this problem, as detailed in Japanese Patent Application No. 1982-73997, an effective method is to add a desulfurizing agent to the molten iron in the ladle discharged from the melting converter, and to desulfurize it by mechanically stirring with an impeller, etc. It is true.

しかしながら種々の試験を重ねた結果、特願昭62−7
3997号の如き、溶解専用転炉にて熱源として炭材を
用い酸素吹錬しながら多量の含鉄合材を溶解して得られ
た溶鉄は以下のような成分的特徴を有しており、そのた
め当該溶鉄の取鍋脱硫は極めて困難であることが判明し
た。
However, as a result of various tests, the patent application
The molten iron obtained by melting a large amount of iron-containing composite material while oxygen blowing using a carbonaceous material as a heat source in a converter exclusively for melting, such as No. 3997, has the following compositional characteristics. It turned out that ladle desulfurization of the molten iron was extremely difficult.

■ 含鉄冷材溶解量に比例して大量の炭材を用いるため
、炭材からの硫黄汚染が激しく、溶鉄中の硫黄含有量が
0.05%以上になる。
■ Since a large amount of carbonaceous material is used in proportion to the amount of dissolved iron-containing cold material, sulfur contamination from the carbonaceous material is severe, and the sulfur content in the molten iron becomes 0.05% or more.

■ 酸素吹錬をおこなうため、脱硫促進成分である溶鉄
中のシリコンが酸化されその含有量は0.03%以下と
なる。
- Because oxygen blowing is performed, the silicon in the molten iron, which is a component that promotes desulfurization, is oxidized and its content becomes 0.03% or less.

本発明はこのような問題点を有利に解決したものであり
、溶解専用転炉において低硫黄高炭素溶鉄を効率的に製
造する方法を提供するものである。
The present invention advantageously solves these problems and provides a method for efficiently producing low-sulfur, high-carbon molten iron in a melting-only converter.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明の要旨とするところは、種湯の存在する含
鉄冷材溶解炉に含鉄合材、炭材を供給し、酸素吹錬を施
すことにより高炭素溶鉄を製造するに際し、吹錬末期の
み溶鉄中炭素含有量を4%以上に調整し、かつ溶鉄に不
活性ガスを吹込み撹拌エネルギーを付与することにより
、事前に形成されたCaO、310g、 IVzO+を
主成分とするスラグを介して溶鉄中の硫黄を除去するこ
とを特徴とする含鉄合材から低硫黄高炭素溶鉄を製造す
る方法にある。
That is, the gist of the present invention is that when producing high carbon molten iron by supplying a ferrous composite material and carbonaceous material to a ferrous cold material melting furnace in which a seed metal exists and performing oxygen blowing, By adjusting the carbon content in the molten iron to 4% or more and applying stirring energy by blowing an inert gas into the molten iron, 310g of CaO, IVzO A method for producing low-sulfur, high-carbon molten iron from an iron-containing composite material, characterized by removing sulfur from the molten iron.

以下、本発明の詳細についてのべる。The details of the present invention will be described below.

本発明者らは特願昭62−73997号の如き、溶解専
用転炉にて熱源として炭材を用い酸素吹錬しながら多量
の含鉄合材を溶解して得られた溶鉄の取鍋脱硫の問題を
解決するため、溶鉄中の硫黄含有量を低減する方法及び
溶鉄中のシリコンの酸化を抑制する方法について検討し
た。
The present inventors have proposed a method for ladle desulfurization of molten iron obtained by melting a large amount of iron-containing composite material while oxygen blowing using carbonaceous materials as a heat source in a converter exclusively for melting, as disclosed in Japanese Patent Application No. 62-73997. In order to solve the problem, we investigated methods to reduce the sulfur content in molten iron and methods to suppress oxidation of silicon in molten iron.

しかし溶鉄中のシリコンの酸化を抑制する方法に関して
は、酸素吹錬をおこなう限り困難であり、またシリコン
含有量の高い含鉄合材を吹錬末期に添加する方法も含鉄
合材の選別を必要とするため現実的でないとの結論に達
した。一方、溶鉄中の硫黄含有量を低減する方法に関し
ては、硫黄含有量の低い炭材を用いる方法と含鉄冷材溶
解炉内で脱硫する方法が考えられる。しかし硫黄含有量
の低い炭材を用いることは高価な炭材の使用につながり
コストアップを招き好ましくない。それゆえ、含鉄合材
溶解炉内で効率的に脱硫する方法を開発することが最も
有望と考えられる。
However, as far as oxygen blowing is concerned, it is difficult to suppress the oxidation of silicon in molten iron, and the method of adding a ferrous alloy with high silicon content at the end of blowing also requires selection of the ferrous alloy. Therefore, we came to the conclusion that it is not realistic. On the other hand, as methods for reducing the sulfur content in molten iron, there are two possible methods: using a carbonaceous material with a low sulfur content, and desulfurizing the material in an iron-containing cold material melting furnace. However, using a carbonaceous material with a low sulfur content is not preferable because it leads to the use of an expensive carbonaceous material and increases costs. Therefore, it is considered most promising to develop a method for efficient desulfurization in a ferrous composite melting furnace.

以上の検討をふまえ、本発明者らは含鉄冷材溶解炉内で
効率的に脱硫する方法として溶鉄中の炭素含有量をコン
トロールする精錬法を発明するに至った。即ち、溶鉄中
の炭素が溶鉄中の硫黄の活量を増大せしめる脱硫促進成
分であることに着目し、含鉄合材溶解吹錬中に溶鉄中炭
素含有量をコントロールする高効率脱硫法を開発した。
Based on the above studies, the present inventors have invented a refining method for controlling the carbon content in molten iron as a method for efficiently desulfurizing in a cold melting furnace containing iron. Specifically, we focused on the fact that carbon in molten iron is a desulfurization-promoting component that increases the activity of sulfur in molten iron, and developed a highly efficient desulfurization method to control the carbon content in molten iron during melt-blowing of iron-containing composites. .

まず、炭素含有量を4%以上とする理由について述べる
。溶鉄中の炭素は前述の通り脱硫促進成分であるが、高
硫黄、低シリコン溶鉄において脱硫を高位に安定してお
こなうための適正含有量は明らかではない。そこで適正
炭素含有量に関する小規模ルツボ実験をおこなった。そ
の結果第1図に示すように、溶鉄中炭素含有量が4%以
上で脱硫率は60〜80%となり、高位安定化すること
が判明した。それゆえ適正炭素含有量は4%以上である
First, the reason why the carbon content is set to 4% or more will be described. As mentioned above, carbon in molten iron is a desulfurization-promoting component, but the appropriate content to stably perform desulfurization at a high level in high-sulfur, low-silicon molten iron is not clear. Therefore, we conducted a small-scale crucible experiment to determine the appropriate carbon content. As a result, as shown in FIG. 1, it was found that when the carbon content in the molten iron was 4% or more, the desulfurization rate was 60 to 80%, and the desulfurization rate was highly stable. Therefore, the appropriate carbon content is 4% or more.

なお小規模ルツボ実験は次のような要領でおこなった。The small-scale crucible experiment was conducted as follows.

第1表に示す組成の溶解母材2000 gを内径100
mmのマグネシアルツボ内で溶解し、炭素源としてカー
ボネットを添加し任意の炭素含有量とした後、溶鉄を1
400°Cに保持し第2表に示すスラグ100gを添加
し、アルミナ管によりArガスを1000 cc/mi
n吹き込み、溶鉄を撹拌しながら脱硫反応に及ぼす溶鉄
中炭素含有量の影響を調査した。
2000 g of the melted base material with the composition shown in Table 1 was
After melting in a magnesia crucible with a size of
The temperature was maintained at 400°C, 100g of slag shown in Table 2 was added, and Ar gas was introduced at 1000 cc/mi through an alumina tube.
The effect of the carbon content in the molten iron on the desulfurization reaction was investigated while stirring the molten iron.

炭素以外の溶銑中成分は特願昭62−73997号の如
き製鋼法を想定し高硫黄、低シリコンとした。スラグ組
成も特願昭62−73997号の如き製鋼法で通常の操
業で生成する組成を対象とした。
The components in the hot metal other than carbon were set to be high in sulfur and low in silicon, assuming a steel manufacturing method such as that disclosed in Japanese Patent Application No. 73997/1983. The slag composition was also targeted at the composition produced during normal operations in a steel manufacturing process such as that disclosed in Japanese Patent Application No. 62-73997.

次に吹錬末期のみ溶鉄中炭素含有量を4%以上とする理
由について述べる。含鉄冷材溶解吹錬においては、溶鉄
中炭素含有量が高い場合、供給する炭材の利用効率が低
下し好ましくない、これは高炭素溶鉄に炭材を添加する
と溶鉄中への炭材の溶解速度が低下し、いわゆる吹き抜
は現象をきたし、熱源として寄与しなくなるためである
。一方、溶鉄中炭素含有量が低い場合には含鉄合材の溶
解速度が著しく低下し好ましくない。これは含鉄合材の
溶解が、溶鉄から含鉄合材への熱伝導と炭素の拡散(浸
炭)に支配され、溶鉄中炭素含有量が低いし炭素の拡散
が阻害されるためである。それゆえ含鉄冷材溶解吹錬中
は適正な溶鉄中炭素含有量が存在し通常3〜4%が最適
である。従って、脱硫精錬のために吹錬末期のみ溶鉄中
炭素含有量を4%以上とするのが最も効率的である。な
お、炭素含有量を4%以上とする方法は特に限定される
ものではないが、吹き抜は防止の観点から比較的粒度の
粗い炭材を含鉄冷材溶解専用転炉上方から添加する方法
が効率的である。このような炭材上方添加法では一部溶
融スラグ中に炭材が混入するが、これによりスラグ中の
酸化鉄が減少し、脱硫反応がさらに有利になる利点も有
する。
Next, we will discuss the reason why the carbon content in the molten iron is set to 4% or more only at the final stage of blowing. In melting and blowing of iron-containing cold materials, if the carbon content in the molten iron is high, the utilization efficiency of the supplied carbon material decreases, which is undesirable.This is because when carbon material is added to high-carbon molten iron, the carbon material dissolves in the molten iron. This is because the speed decreases and the so-called atrium becomes a phenomenon and no longer contributes as a heat source. On the other hand, when the carbon content in the molten iron is low, the dissolution rate of the iron-containing composite material decreases significantly, which is not preferable. This is because the melting of the iron-containing composite is dominated by heat conduction from the molten iron to the iron-containing composite and carbon diffusion (carburization), and the carbon content in the molten iron is low and carbon diffusion is inhibited. Therefore, during melting and blowing of iron-containing cold materials, there is an appropriate carbon content in the molten iron, and the optimum carbon content is usually 3 to 4%. Therefore, it is most efficient to increase the carbon content in molten iron to 4% or more only at the final stage of blowing for desulfurization refining. There are no particular limitations on the method of increasing the carbon content to 4% or more, but from the perspective of preventing blow-throughs, a method of adding relatively coarse-grained carbonaceous material from above a converter dedicated to melting iron-containing cold materials is recommended. Efficient. In such an upward addition method of carbonaceous material, some of the carbonaceous material is mixed into the molten slag, but this also has the advantage that iron oxide in the slag is reduced and the desulfurization reaction becomes more favorable.

次に溶鉄に撹拌エネルギーを付与する理由について述べ
る。溶鉄に撹拌エネルギーを付与することにより冶金反
応速度が向上する。本発明においても撹拌エネルギー付
与により脱硫反応速度は大幅に向上し短時間の脱硫精錬
となる。このため、脱硫精錬中の溶鉄温度降下が僅少と
なり、熱源の節約に寄与する。従って、本発明において
溶鉄に撹拌エネルギーを付与することは脱硫精錬の効率
化上不可欠な要件である。撹拌エネルギー付与方法とし
ては炉底羽口から不活性ガスを吹込む方法が最も効率的
である。不活性ガスは窒素、アルゴンが一般的であるが
、酸素50%以下の窒素−酸素混合ガスを用いても良い
。酸素が50%を超えるとFeOの生成を助長し脱硫反
応を阻害する。
Next, we will discuss the reason for applying stirring energy to molten iron. The metallurgical reaction rate is improved by imparting stirring energy to molten iron. Also in the present invention, the desulfurization reaction rate is greatly improved by providing stirring energy, resulting in desulfurization refining in a short time. Therefore, the drop in temperature of molten iron during desulfurization and refining is small, contributing to saving on heat sources. Therefore, in the present invention, imparting stirring energy to molten iron is an essential requirement for improving the efficiency of desulfurization refining. The most efficient method for applying stirring energy is to blow inert gas through the tuyeres at the bottom of the furnace. The inert gas is generally nitrogen or argon, but a nitrogen-oxygen mixed gas containing 50% or less oxygen may also be used. When oxygen exceeds 50%, it promotes the production of FeO and inhibits the desulfurization reaction.

次にスラグの条件について詳述する。Next, the slag conditions will be explained in detail.

本発明においては、スラグによる脱硫を基本とする。即
ちスラグ中に含有される塩基性成分により溶鉄中の硫黄
をスラグ中へ除去する。塩基性成分としては安価で耐火
物に悪影響を及ぼさないCaOを添加するのが好ましい
。この際スラグの基本成分系はCaO−5iOz−lV
2O3系となる。CaOは脱硫のために添加された成分
であり、5i02は含鉄冷材中のSiの酸化及び石炭の
灰分中に含まれるSin。
The present invention is based on desulfurization using slag. That is, sulfur in the molten iron is removed into the slag by the basic component contained in the slag. As the basic component, it is preferable to add CaO, which is inexpensive and does not adversely affect the refractory. In this case, the basic component system of the slag is CaO-5iOz-lV
It becomes 2O3 system. CaO is a component added for desulfurization, and 5i02 is Si oxidation in iron-containing cold materials and Sin contained in coal ash.

に起因する。さらにAh03も石炭の灰分中の7V、O
caused by. Furthermore, Ah03 is also 7V, O in coal ash.
.

が混入したものである。脱硫促進のためには溶融スラグ
であることが望ましく、従って吹錬初期にCaOを添加
し、事前にCaO−5iOz−AjtO+系溶融スラグ
とすべきである。またスラグ組成は高Cab/5if=
はど望ましいが、高すぎるとスラグの未溶融を招く、そ
のためCaO/5iO=の適正範囲が存在し、本発明者
らの経験によれば1.2〜2.0である。この範囲では
脱硫能を高位安定化できる。なおIV、O,含有量はお
おむね5〜15%である。
is mixed in. In order to promote desulfurization, it is desirable to use molten slag, and therefore CaO should be added at the initial stage of blowing to form CaO-5iOz-AjtO+ type molten slag in advance. In addition, the slag composition is high Cab/5if=
However, if it is too high, the slag will not melt, so there is an appropriate range of CaO/5iO=1.2 to 2.0 according to the experience of the present inventors. Within this range, the desulfurization ability can be stabilized to a high level. Note that the IV and O contents are approximately 5 to 15%.

なお本発明は、種湯を使用しない方法、即ち100%含
鉄冷材か塗材炭素溶鉄を製造する方法への適用も可能で
ある。
The present invention can also be applied to a method that does not use a seed bath, that is, a method that produces 100% iron-containing cold material or carbon molten iron coating material.

以下、本発明の実施例並びに比較例を述べ、本発明によ
る効果について記す。
Examples and comparative examples of the present invention will be described below, and the effects of the present invention will be described.

(実施例) 炭素含有量3.5%、硫黄含有量0.030%の種湯8
4トン及び前チャージの溶融スラグ2トン存在下の溶解
専用転炉にスクラップ29トン、石灰石1トンを装入し
た。続いて石炭6.5トンを窒素をキャリアガスとして
炉底羽口から、酸素550ONra”を炉底羽口及び上
吹ランスから供給し、上記スクラップを溶解した。溶解
完了時点での溶鉄炭素含有量は3.6%、硫黄含有量は
0.055%であり、Ca043%、5iOz33%、
7117tes  12%の溶融スラグ4トンが生成し
た。次に溶解専用転炉上方から溶解専用転炉内に石炭0
.8トンを添加し、炉底羽口から窒素を供給し溶鉄を撹
拌した。その結果溶鉄炭素含有量は4.1%まで上昇し
、それに伴い硫黄含有量は0.015%まで低下した。
(Example) Seed bath 8 with a carbon content of 3.5% and a sulfur content of 0.030%
29 tons of scrap and 1 ton of limestone were charged into a melting converter in the presence of 4 tons of molten slag and 2 tons of pre-charged molten slag. Subsequently, 6.5 tons of coal was supplied from the bottom tuyere using nitrogen as a carrier gas, and 550 ONra'' of oxygen was supplied from the bottom tuyere and top blowing lance to melt the scrap. Molten iron carbon content at the time of completion of melting is 3.6%, sulfur content is 0.055%, Ca043%, 5iOz33%,
4 tons of 7117tes 12% molten slag were produced. Next, the coal is poured into the melting converter from above the melting converter.
.. 8 tons were added, nitrogen was supplied from the bottom tuyere, and the molten iron was stirred. As a result, the carbon content of the molten iron increased to 4.1%, and the sulfur content decreased to 0.015%.

またこの吹錬における飛散鉄ダスト量は1.7トンであ
り、石炭の吹抜けは皆無であった。
Further, the amount of scattered iron dust during this blowing was 1.7 tons, and there was no blow-through of coal.

(比較例−1) 炭素含有量3.5%、硫黄含有量0.028%の種湯8
4トン及び前チャージの溶融スラグ2トン存在下の溶解
専用転炉にスクラップ29トン、石灰石1トンを装入し
た。次に石炭6トンを窒素をキャリアガスとして炉底羽
口から、酸素550ONm’を炉底羽口及び上吹ランス
から供給し、上記スクラップを溶解した。この吹錬にお
ける処理後炭素含有量は3.4%と低く、飛散鉄ダスト
量は1.8トンであり、石炭の吹抜けも皆無であった。
(Comparative Example-1) Seed water 8 with a carbon content of 3.5% and a sulfur content of 0.028%
29 tons of scrap and 1 ton of limestone were charged into a melting converter in the presence of 4 tons of molten slag and 2 tons of pre-charged molten slag. Next, 6 tons of coal was supplied from the bottom tuyere using nitrogen as a carrier gas, and 550 ONm' of oxygen was supplied from the bottom tuyere and top blowing lance to melt the scrap. The carbon content after treatment in this blowing process was as low as 3.4%, the amount of scattered iron dust was 1.8 tons, and there was no coal blow-through.

しかしながら処理後の溶鉄硫黄含有量は0.056%で
あり実施例より0.041%も高かった。
However, the molten iron sulfur content after treatment was 0.056%, which was 0.041% higher than in the example.

(比較例−2) 炭素含有量3.5%、硫黄含有量0.031%の種湯8
4トン及び前チャージの溶融スラグ2トン存在下の溶解
専用転炉にスクラップ29トン、右灰石lトンを装入し
た。続いて石炭7.5トンを窒素をキャリアガスとして
炉底羽口から、酸素570ONm3を炉底羽口及び上吹
ランスから供給し、上記スクラップを溶解した。この吹
錬では石炭供給量が多いため処理後の溶鉄炭素含有量は
4.3%まで上昇したが、窒素ガスのみの吹込みによる
情錬をおこなわなかったため、硫黄含有量は0.033
%に留った。また飛散鉄ダスト量は2.5トンと多く、
石炭の吹抜は現象も観察された。
(Comparative Example-2) Seed water 8 with a carbon content of 3.5% and a sulfur content of 0.031%
29 tons of scrap and 1 ton of graystone were charged into a melting converter in the presence of 4 tons of molten slag and 2 tons of pre-charge molten slag. Subsequently, 7.5 tons of coal was supplied from the bottom tuyere using nitrogen as a carrier gas, and 570 ONm3 of oxygen was supplied from the bottom tuyere and top blowing lance to melt the scrap. In this blowing, the amount of coal supplied was large, so the carbon content of the molten iron after treatment rose to 4.3%, but since the blowing process was not performed by blowing only nitrogen gas, the sulfur content was 0.03%.
It remained at %. In addition, the amount of scattered iron dust is as large as 2.5 tons.
A phenomenon was also observed in the coal stairwell.

(発明の効果) 以上詳述したように、本発明により冷銑、スクラップ等
の固形含鉄冷材を多量に溶解し、効率的に低硫黄高炭素
溶鉄を製造することが可能となった。これにより固形含
鉄冷材から溶鋼を低コストで得る方法が確立され鉄鋼業
にとって極めて有益である。
(Effects of the Invention) As detailed above, the present invention makes it possible to efficiently produce low-sulfur, high-carbon molten iron by melting a large amount of solid iron-containing cold materials such as cold pig iron and scrap. As a result, a method for obtaining molten steel from solid iron-containing cold material at low cost has been established, which is extremely beneficial to the steel industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶鉄炭素含有量と脱硫率の関係を示す図面であ
る。 特許出願人 新日本製鐵株式會社
FIG. 1 is a drawing showing the relationship between the carbon content of molten iron and the desulfurization rate. Patent applicant Nippon Steel Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)種湯の存在する含鉄冷材溶解炉に含鉄冷材、炭材
を供給し、酸素吹錬を施すことにより高炭素溶鉄を製造
するに際し、吹錬末期のみ溶鉄中炭素含有量を4%以上
に調整し、かつ溶鉄に不活性ガスを吹込み撹拌エネルギ
ーを付与することにより、事前に形成されたCaO、S
iO_2、Al_2O_3を主成分とするスラグを介し
て溶鉄中の硫黄を除去することを特徴とする含鉄冷材か
ら低硫黄高炭素溶鉄を製造する方法。
(1) When producing high-carbon molten iron by supplying ferrous cold material and carbonaceous material to a ferrous cold material melting furnace in which a seed metal exists and performing oxygen blowing, the carbon content in the molten iron is reduced to 4% only at the final stage of blowing. % or more, and by blowing an inert gas into the molten iron and applying stirring energy, the pre-formed CaO, S
A method for producing low-sulfur, high-carbon molten iron from iron-containing cold material, characterized in that sulfur in molten iron is removed through slag containing iO_2 and Al_2O_3 as main components.
(2)種湯を使用しないで含鉄冷材から低硫黄高炭素溶
鉄を製造する特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, which produces low-sulfur, high-carbon molten iron from iron-containing cold material without using a seed bath.
JP63015834A 1988-01-28 1988-01-28 Method for producing low-sulfur high-carbon molten iron from ferruginous cold charge Granted JPH01191725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63015834A JPH01191725A (en) 1988-01-28 1988-01-28 Method for producing low-sulfur high-carbon molten iron from ferruginous cold charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015834A JPH01191725A (en) 1988-01-28 1988-01-28 Method for producing low-sulfur high-carbon molten iron from ferruginous cold charge

Publications (2)

Publication Number Publication Date
JPH01191725A true JPH01191725A (en) 1989-08-01
JPH0480085B2 JPH0480085B2 (en) 1992-12-17

Family

ID=11899869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015834A Granted JPH01191725A (en) 1988-01-28 1988-01-28 Method for producing low-sulfur high-carbon molten iron from ferruginous cold charge

Country Status (1)

Country Link
JP (1) JPH01191725A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174812A (en) * 1984-02-16 1985-09-09 Kawasaki Steel Corp Converter steel making method using large amount of ferrous cold charge
JPS6247417A (en) * 1985-08-23 1987-03-02 Sumitomo Metal Ind Ltd Melt refining method for scrap

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174812A (en) * 1984-02-16 1985-09-09 Kawasaki Steel Corp Converter steel making method using large amount of ferrous cold charge
JPS6247417A (en) * 1985-08-23 1987-03-02 Sumitomo Metal Ind Ltd Melt refining method for scrap

Also Published As

Publication number Publication date
JPH0480085B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JP3687433B2 (en) How to remove hot metal
US4808220A (en) Process for the preparation of refined ferromanganese
JP3711835B2 (en) Sintering agent for hot metal dephosphorization and hot metal dephosphorization method
JP3297801B2 (en) Hot metal removal method
JPH01191725A (en) Method for producing low-sulfur high-carbon molten iron from ferruginous cold charge
JP3736229B2 (en) Hot metal processing method
JPH0437135B2 (en)
JPH0297611A (en) Method for melting cold iron source
JP4882171B2 (en) Hot phosphorus dephosphorization method
JP2587286B2 (en) Steelmaking method
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
JP3194212B2 (en) Converter steelmaking method
EP1524322A2 (en) Method of liquid steel production with slag recycling in a converter, equipment to employ the method
JP2755027B2 (en) Steelmaking method
JPH0557327B2 (en)
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPH116006A (en) Sub raw material charging method into converter
JPH0551616A (en) Production of low-s, low-p molten iron
JP2004143544A (en) Desulfurization method for hot-metal
JPH0514006B2 (en)
JPH0353014A (en) Smelting method for extremely low-sulfur steel
JPH0437137B2 (en)
JPS636606B2 (en)
RU2135601C1 (en) Method of steel melting in converter