JPH0119124B2 - - Google Patents

Info

Publication number
JPH0119124B2
JPH0119124B2 JP55010703A JP1070380A JPH0119124B2 JP H0119124 B2 JPH0119124 B2 JP H0119124B2 JP 55010703 A JP55010703 A JP 55010703A JP 1070380 A JP1070380 A JP 1070380A JP H0119124 B2 JPH0119124 B2 JP H0119124B2
Authority
JP
Japan
Prior art keywords
object side
lens
surface facing
meniscus lens
concave surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55010703A
Other languages
Japanese (ja)
Other versions
JPS56107209A (en
Inventor
Yoshinori Hamanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1070380A priority Critical patent/JPS56107209A/en
Priority to US06/222,539 priority patent/US4395094A/en
Priority to DE3103012A priority patent/DE3103012A1/en
Publication of JPS56107209A publication Critical patent/JPS56107209A/en
Publication of JPH0119124B2 publication Critical patent/JPH0119124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は標準画角を有する大口径比写真レンズ
であつて、しかも撮影至近距離が通常のレンズよ
り短い光学系に関する。従来、大口径比レンズは
無限撮影を基準にして収差補正がなされているも
のが多く、近距離撮影時において結像性能は著し
く劣化し、大口径比レンズほど諸収差が大きく変
動することが知られている。実用的には至近距離
撮影時の撮影倍率は1/10程度であり、特に大口
径比レンズの場合にはこの程度の倍率でも開放撮
影での性能は決して充分であるとは言い難いもの
であつた。このような結像性能の劣化を防ぐた
め、従来からのいわゆる全体繰り出し方式に代つ
て近距離撮影時にレンズ系内で部分的に異なつた
移動を行なう各種のいわゆるフローテイング方式
が採用され、これによつて、近距離撮影状態での
諸収差の変動が小さくでき撮影距離が全体繰り出
し方式による場合より短くできている。しかしこ
れら公知のフローテイングの諸方式は一般的に複
雑に絡みあつた構造をしているものや、より高倍
撮影を実施するには困難なレンズの移動を伴うも
のや、単純な構成であつても色収差による像の劣
化が激しく、特に大口径比である場合には撮影距
離を短くすることが妨げられていた。 本発明の目的は、一眼レフレツクスカメラ用レ
ンズとして、標準画角を有する大口径比写真レン
ズでありながら、近距離撮影状態での色収差及び
諸収差の劣化が小さく、従来よりも撮影至近距離
の短いものを提供することにある。 本発明による大口径比写真レンズは全光学系を
絞りをはさんで2群に分割し、前群、後群は共に
少なくとも1個の負レンズを有し合成で正の屈折
力を有するレンズ群で構成し、無限遠から近距離
撮影に移行するとき、全系を物体側に繰り出しつ
つ、前、後群間の絞り空間を広げることによつて
合焦を行なうものであり、全系の合成焦点距離を
、前群の焦点距離を1、後群の焦点距離を2
するとき 2.4<1/<4.5 (1) 2.5<12<5.5 (2) の条件を満足するものである。そして、無限遠か
ら近距離撮影に移行するに際して、前群と後群と
の間の絞り空間の変化量をyとし、バツクフオー
カスの変化量をxとして、y=f(x)なる函数
関係において、一階微分値dy/dxが、 0.2<dy/dx<0.6 (3) なる条件を満足することが最適である。 本発明は、正の前、後群にそれぞれ少なくとも
1個の負レンズを設けることによつて、各群での
色消しを達成するとともに、合焦に際して両群の
間の絞り空間を変化させ、これによつて近距離撮
影状態における基準波長についての収差はもちろ
ん、色収差、特に軸外の色収差とのバランスで良
好に補正し得たものである。従来のフローテイン
グ方式では部分的な移動レンズに色消しの自由度
がなく軸上と軸外の色収差を同時に補正すること
ができず、また絞り空間以外の空間の変化によつ
ていたため、基準波長についての収差は補正し得
ても軸外色収差をも良好に補正することは極めて
難しく、これが従来のフローテイング方式におい
て近距離性能の向上を簡単な構成で達成するため
の障害となつていたのである。 また、本発明では近距離撮影時に、両群の間
隔、即ち絞り空間が大きくなるため、絞りが後群
と一体に設けられる場合には、入射瞳が物体から
より遠くへ移動しレンズ系へ入射る光束の光軸と
なす角度が小さくなるので収差補正が容易とな
り、また、絞りが前群と一体に設けられる場合に
は、射出瞳が像から遠ざかり、レンズ系を出射す
る光束の角度が小さくなり、この場合でも収差補
正が容易となる。このため、上記のごとき色収差
の補正を基礎としたうえで、以下のごとく前後各
群の屈折力配分を適当にバランスさせることによ
つて大口径比でありながら、近距離での収差を良
好に補正することができたのである。 本発明は高倍率の近接撮影が可能ないわゆるマ
イクロレンズあるいはマクロレンズほど高倍率を
目指さず、一層の大口径比化を目指したものであ
る。しかし通常レンズよりも更に高倍率の撮影が
可能な光学系である。球面収差、コマ収差の発生
をおさえかつ一眼レフカメラ用としてバツクフオ
ーカスの長さを十分確保するため、前群の屈折力
に対する全系の屈折力の割合が、高倍率近接撮影
をもできるレンズよりは小さくしてあるので、前
群をそれ自身で充分明るい使用に耐えうる光学系
とすることが出来る。また前群の屈折力が弱いた
め光軸上物点から発した光束は前群を通過後、い
わゆるマイクロレンズの撮影倍率よりはかなり低
い撮影倍率で発散光束となつて後群に入射するの
で輪帯球面収差、コマ収差、非点収差が急激に増
加するようになる。この光束が発散光束になり始
めたころから後群に収差補正の負担がかかり始め
るので、大口径比であるためにはマイクロレンズ
よりは低い撮影倍率に留めておく必要があり、前
群、後群の屈折力配分をこのような観点より定め
たものである。つまりこの発散光束となりうる光
束を絞り空間で光軸に対して平行かあるいはわず
か発散光束となる状態を最至近距離の限界状態と
したものである。 本発明による条件式(1)、(2)に関しては、2
のとき、1=∞となり、前群の屈折力が全く無く
なつてしまうので本発明にそぐわないものである
が、このような実現しない領域は(1)式の上限によ
つて除去されている。 (1)式は近距離物体に対して大口径比であるがた
めに必要な屈折力の配分を規定するものである。
(1)式の下限を外れると大口径比の一眼レフカメラ
用として十分なバツクフオーカスを確保すること
が難しくなり、また収差的にも前群の屈折力が強
過ぎて輪帯球面収差が著しくなり大口径比レンズ
として近距離でも十分良好な収差補正を行なうこ
とが困難である。逆に(1)式の上限を超えると十分
な絞り空間の広さを得ることは容易であるがレン
ズ全長が長くなり過ぎてしまいコンパクト化に不
利である。また近距離状態で軸上物体からの光束
が前群通過後より強い発散性の光束となるため、
後群に対する収差補正の負担が増大し、輪帯球面
収差、外向性コマ収差、非点隔差、像面彎曲等の
収差を十分補正するためには、後群に複雑なレン
ズ構成を採用しなければならず、これまたコンパ
クト化に不利である。 また、一般に大口径比のレンズ系では必然的に
各レンズの口径が大きくなるため、各レンズの縁
厚も充分に確保しなけれぱならず、各レンズの中
心厚も大きくなり、レンズの主点がレンズ内部へ
はいりがちである。本発明においては、絞り空間
が変化し、無限遠撮影時に最も小さくなるため、
上記(1)(2)の条件により絞り空間の確保をも図つ
た。 (2)式の条件は前群の屈折力に対する後群の屈折
力の割合であり(1)式と同様適正な屈折力配分を定
める条件であると共に絞り空間の広さやバツクフ
オーカスの長さを充分確保するために必要な(1)式
の補足的な条件式である。下限を超えると第1群
の屈折力は強くなり、前群が明るい使用状態に耐
えきれなくなり、諸収差の補正が困難となり、絞
り空間、バツクフオーカス共に短くなつてしまう
ので望ましくない。 上限を超えると(1)式の上限と同様、第1群の屈
折力が弱くなり過ぎるので、やはり光軸物点を発
した光束は前群通過後、低い撮影倍率で、発散光
束となり後群に入射するので後群での収差補正が
困難となり望ましくない。 以上のような正の前後2群からなる光学系にお
いて前群中の正レンズのガラスの平均屈折率をN
とするときこの値は1.75<N<1.81の範囲が望ま
しい。上限は低分散であつてこれ以上高屈折率の
ガラスが存在しなくなるからであり、下限は非点
隔差、像面彎曲、球面収差の補正が困難となつて
くるためである。また前群中の負レンズのガラス
のアツベ数をVとすると29.6<V<59の範囲が望
ましい。下限はフリント系で屈折率が高くなり非
点隔差、像面彎曲の補正はこの種大口径比レンズ
では困難になる。上限は屈折率が低くなり始め、
輪帯球面収差の補正が困難になり前群による軸上
の色消が不足になつてくる。 そして、前記条件(3)の如く、無限遠の撮影状態
から近距離撮影状態に至るとき絞り空間の変化量
をyとし、バツクフオーカスの変化量をxとする
と、y=(x)なる函数関係を保つて合焦する。
このとき、0.2<dy/dx<0.6なる範囲に一階微分
値があることが望ましい。常に関数の座標頂点は
無限遠撮影の状態である。下限を超えると全体繰
り出し方式による近距離撮影時の結像性に近くな
り、本発明の効果を発することができない。上限
を超えると、球面収差、コマ収差、非点収差がフ
ローテイングしないときとは反対に補正過剰にな
りすぎて望ましい収差バランスを実現することが
困難となる。 以上のごとき本発明の構成において、具体的に
は、いわゆる変形ガウスタイプのレンズ系を採用
した。すなわち、第1図、第3図、第5図に示す
ごとく、前群G1を物体側から順に、第1正レン
ズL1、物体側に凸面を向けた正メニスカスレン
ズL2、同じく物体側に凸面を向けたメニスカス
レンズL3で構成し、後群G2を負レンズと正レン
ズとの貼合せからなり物体側に凹面を向けたメニ
スカスレンズL4と、第2の正レンズL5とで構成
し、後群G2にはより明るくする場合にさらに第
3の正レンズL6を設ける構成とした。 このような具体的構成においては第1群中の最
も物体側の第1正レンズL1の形状因子をδ=(γ2
+γ1)/(γ2−γ1)(このレンズL1の前面の曲率
半径をγ1後面の曲率半径をγ2とする)とすると、 0.9<δ<1.3 なる範囲にあることが望ましい。下限を超えると
非点収差が負に過大となりコマ収差も大きくなり
上限を超えると歪曲収差が負に過大となり至近距
離では無限遠撮影時より著しくバランスを保つこ
とができなくなるので望ましくない。 また、前群中の正のメニスカスレンズL2の屈
折率をN2、負メニスカスレンズL3のものをN3
すると N2>N3 なる関係を持たせることが望ましい。大口径比レ
ンズは高い屈折率のガラスを用い、かつ負レンズ
成分の屈折力が弱くなるのでペツツバール和が過
大に正になり非点隔差が発生しがちであるが、こ
のように負レンズに屈折率の低いガラスを用いる
ことによつてペツツバール和を小さくし、輪帯球
面収差が発生しない範囲でこの傾向を強めること
が望ましい。さらにこの場合、低い屈折率の負レ
ンズであるため、低分散のものを使用することが
でき、これによつて軸外の色収差を至近距離で正
方向に変位させることができ、無限遠と至近距離
撮影での軸外の色収差の変動をより小さく補正が
できるので望ましい。 以下本発明による実施例について説明する。実
施例はすべて35mmカメラ用であり、絞りは常に後
群と一体になつて移動するように構成されてい
る。焦点距離=51.6、全画角2ω=45.43゜であ
る。第1実施例はFナンバー1.8で第1図に示す
ように、第1図aは無限遠撮影時の状態のレンズ
配置図であり、第1図bは至近距離物体撮影時の
状態のものである。第1実施例の諸元を表1に示
し、収差図を第2図に示した。第2図aは無限遠
物体撮影時の収差であり、第2図bは物体距離d0
=286.9196で撮影倍率β=−0.2の場合の収差図
である。フローテイングに関する平均変化率
Δy/Δx=0.4764であり前群の屈折力が比較的強
めに配置された実施例である。またフローテイン
グをしているにもかかわらず軸外色収差の変化を
従来の全体繰り出し方式程度までにおさえること
ができた。 第2実施例は第3図に示すように後群に正のメ
ニスカスレンズL6を追加しさらに大口径比化し
たものである。やはり変形ガウスタイプを採用し
第3図aは無限遠撮影時の状態のレンズ配置図で
あり、第3図bは至近距離物体撮影時の状態のも
のである。Fナンバーを1.4としたため至近距離
の長さは第1実施例より長い。第2実施例の諸元
を表2に示し、収差図を第4図に示した。第4図
aは無限遠物体撮影時の収差図であり第4図bは
物体距離d0=364.224、撮影倍率β=−0.15の場合
の収差図である。フローテイングに関する平均変
化率Δy/Δx=0.3915である。またこの実施例に
おいて歪曲収差は大口径比レンズにもかかわらず
よく補正されている。これは前群中の正レンズ群
の屈折力と形状によりここで正方向に歪曲収差を
発生させ、全系として減少をはかつたのである。 第3実施例は第5図に示すように第2実施例と
同様の変形ガウスタイプを採用したのである。第
5図aは無限遠撮影時の状態のレンズ配置図であ
り、第5図bは至近距離物体撮影時の状態のもの
である。第2実施例と同様Fナンバー1.4である。
第3実施例の諸元を表3に示し、収差図を第6図
に示した。第6図aは無限遠物体撮影時の収差図
であり、第6図bは物体距離d0=354.649、撮影
倍率β=−0.15の場合の収差図である。フローテ
イングに関する平均変化率はΔy/Δx=0.2306で
あり、前群の屈折力は比較的弱い方向に偏つた配
置の実施例である。
The present invention relates to an optical system which is a large aperture ratio photographic lens having a standard angle of view, and which has a shorter shooting distance than a normal lens. Conventionally, many large aperture ratio lenses have been corrected for aberrations based on infinity shooting, and it is known that the imaging performance deteriorates significantly when shooting at close range, and that the larger the aperture ratio lens, the more the various aberrations fluctuate. It is being In practical terms, the magnification when shooting at close range is about 1/10, and even with a large aperture ratio lens, the performance when shooting wide open is far from sufficient. Ta. In order to prevent this kind of deterioration in imaging performance, various so-called floating methods have been adopted, in which parts of the lens system are moved differently during close-up photography, in place of the conventional so-called whole-feeding method. Therefore, fluctuations in various aberrations in close-range shooting conditions can be reduced, and the shooting distance can be made shorter than in the case of the entire extension method. However, these known floating methods generally have complex intertwined structures, require lens movement that is difficult to achieve higher magnification, or have simple structures. However, image deterioration due to chromatic aberration was severe, and it was difficult to shorten the shooting distance, especially when using a large aperture ratio. An object of the present invention is to provide a large aperture ratio photographic lens with a standard angle of view as a lens for a single-lens reflex camera, but with less deterioration in chromatic aberration and various aberrations in close-up shooting conditions, and with a closer shooting distance than before. The goal is to provide a short version of the content. In the large aperture ratio photographic lens according to the present invention, the entire optical system is divided into two groups with an aperture in between, and both the front group and the rear group have at least one negative lens and have a composite positive refractive power. When moving from infinity to close-up photography, focusing is performed by extending the entire system toward the object side and widening the aperture space between the front and rear groups, and the composite focus of the entire system is When the focal length of the front group is 1 and the focal length of the rear group is 2 , the distances satisfy the following conditions: 2.4< 1 /<4.5 (1) 2.5< 1/2 <5.5 (2). When transitioning from infinity to close-up photography, let y be the amount of change in the aperture space between the front group and the rear group, and let the amount of change in back focus be x, and in the functional relationship y=f(x), It is optimal that the differential value dy/dx satisfies the following condition: 0.2<dy/dx<0.6 (3). The present invention achieves achromatization in each group by providing at least one negative lens in each of the positive front and rear groups, and also changes the aperture space between both groups during focusing, As a result, not only aberrations related to the reference wavelength in close-range photography but also chromatic aberrations, particularly off-axis chromatic aberrations, can be well balanced and corrected. In the conventional floating method, the partially movable lens does not have a degree of freedom for achromatization, making it impossible to correct on-axis and off-axis chromatic aberrations at the same time, and because it depends on changes in space other than aperture space. Although wavelength aberrations can be corrected, it is extremely difficult to properly correct off-axis chromatic aberrations, and this has been an obstacle to improving short-range performance with a simple configuration in the conventional floating method. It is. In addition, in the present invention, when shooting at close range, the distance between both groups, that is, the aperture space becomes large, so if the aperture is provided integrally with the rear group, the entrance pupil moves farther from the object and enters the lens system. This makes it easier to correct aberrations because the angle it makes with the optical axis of the light flux becomes smaller, and when the aperture is integrated with the front group, the exit pupil moves away from the image, making the angle of the light flux exiting the lens system smaller. Therefore, even in this case, aberration correction becomes easy. Therefore, based on the correction of chromatic aberrations as described above, by appropriately balancing the distribution of refractive power between the front and rear groups as shown below, it is possible to achieve good aberrations at close distances while maintaining a large aperture ratio. I was able to correct it. The present invention does not aim to achieve a magnification as high as that of a so-called microlens or macrolens that is capable of close-up photography at high magnification, but rather to achieve an even larger aperture ratio. However, it is an optical system that can take images at higher magnification than normal lenses. In order to suppress the occurrence of spherical aberration and coma aberration and to ensure a sufficient back focus length for single-lens reflex cameras, the ratio of the refractive power of the entire system to the refractive power of the front group is lower than that of a lens that can also perform high-magnification close-up photography. Since it is small, the front group can be made into a sufficiently bright optical system on its own that can withstand use. In addition, since the refractive power of the front group is weak, the light beam emitted from the object point on the optical axis passes through the front group and then becomes a divergent light beam and enters the rear group at a much lower photographic magnification than that of a so-called microlens. Band spherical aberration, coma aberration, and astigmatism begin to increase rapidly. When this light beam starts to become a divergent light beam, the burden of aberration correction begins to be placed on the rear group, so in order to maintain a large aperture ratio, it is necessary to keep the imaging magnification lower than that of a microlens. The refractive power distribution of the group is determined from this perspective. In other words, the limit state of the closest distance is a state in which the light flux that can become a divergent light flux is parallel to the optical axis in the aperture space or becomes a slightly divergent light flux. Regarding conditional expressions (1) and (2) according to the present invention, 2 =
When 1 = ∞, the refractive power of the front group is completely lost, which is not suitable for the present invention, but such an unrealized region is eliminated by the upper limit of equation (1). Equation (1) defines the distribution of refractive power necessary for a large aperture ratio for close objects.
If the lower limit of equation (1) is exceeded, it becomes difficult to secure sufficient back focus for a large-aperture single-lens reflex camera, and in terms of aberrations, the refractive power of the front group is too strong, resulting in significant annular spherical aberration. As a lens with a large aperture ratio, it is difficult to perform sufficiently good aberration correction even at short distances. On the other hand, if the upper limit of equation (1) is exceeded, it is easy to obtain a sufficient aperture space, but the overall length of the lens becomes too long, which is disadvantageous for compactness. In addition, at close range, the light flux from an on-axis object becomes a stronger divergent light flux after passing through the front group, so
The burden of aberration correction on the rear group increases, and in order to sufficiently correct aberrations such as annular spherical aberration, extroverted coma, astigmatism, and field curvature, a complex lens configuration must be adopted for the rear group. However, this is also disadvantageous for compactness. In addition, in general, in a lens system with a large aperture ratio, the aperture of each lens inevitably becomes large, so the edge thickness of each lens must also be sufficiently thick, and the center thickness of each lens also becomes large, which means that the principal point of the lens tends to enter the inside of the lens. In the present invention, the aperture space changes and becomes the smallest when shooting at infinity, so
We also attempted to secure aperture space using the conditions (1) and (2) above. The condition of equation (2) is the ratio of the refractive power of the rear group to the refractive power of the front group, and like equation (1), it is a condition that determines an appropriate distribution of refractive power, and it also ensures that the aperture space is wide and the back focus is sufficiently long. This is a supplementary conditional expression to equation (1) that is necessary to ensure. If the lower limit is exceeded, the refractive power of the first group becomes strong, making it impossible for the front group to withstand bright usage conditions, making it difficult to correct various aberrations, and shortening both the aperture space and the back focus, which is not desirable. If the upper limit is exceeded, the refractive power of the first group becomes too weak, similar to the upper limit of equation (1), so the light beam emitted from the optical axis object point passes through the front group and becomes a diverging light beam at a low imaging magnification and enters the rear group. This is not desirable because it makes it difficult to correct aberrations in the rear group. In the above optical system consisting of two positive front and rear groups, the average refractive index of the glass of the positive lens in the front group is N.
This value is preferably in the range of 1.75<N<1.81. The upper limit is because there is no glass with low dispersion and high refractive index, and the lower limit is because it becomes difficult to correct astigmatism, field curvature, and spherical aberration. Further, if the Abbe number of the glass of the negative lens in the front group is V, it is desirable that the range be 29.6<V<59. The lower limit is the flint system, which has a high refractive index, making it difficult to correct astigmatism and field curvature with this type of large aperture ratio lens. At the upper limit, the refractive index begins to decrease,
It becomes difficult to correct the annular spherical aberration, and the axial achromatization by the front group becomes insufficient. Then, as in condition (3) above, when going from an infinity shooting state to a close-up shooting state, if the amount of change in aperture space is y and the amount of change in back focus is x, then the functional relationship y = (x) is obtained. Hold and focus.
At this time, it is desirable that the first-order differential value be in the range of 0.2<dy/dx<0.6. The coordinate vertices of the function are always photographed at infinity. If the lower limit is exceeded, the imaging performance will be close to that in close-range photography using the entire extension method, and the effects of the present invention cannot be achieved. If the upper limit is exceeded, spherical aberration, coma aberration, and astigmatism will be overcorrected, contrary to when they do not float, making it difficult to achieve a desired aberration balance. In the configuration of the present invention as described above, specifically, a so-called modified Gauss type lens system is adopted. That is, as shown in Figs. 1, 3, and 5, the front group G1 is arranged in order from the object side: the first positive lens L1, the positive meniscus lens L2 with its convex surface facing the object side, and the first positive lens L2 , which is also on the object side. The rear group G2 consists of a meniscus lens L3 with a convex surface facing the object side, and the rear group G2 consists of a meniscus lens L4 made up of a negative lens and a positive lens with a concave surface facing the object side, and a second positive lens L5 . The rear group G 2 is further provided with a third positive lens L 6 to make it brighter. In such a specific configuration, the shape factor of the first positive lens L 1 closest to the object in the first group is δ=(γ 2
1 )/(γ 2 −γ 1 ) (where the radius of curvature of the front surface of this lens L 1 is γ 1 and the radius of curvature of the rear surface is γ 2 ), it is desirable that the range is 0.9<δ<1.3. If the lower limit is exceeded, the astigmatism becomes too negative and the coma aberration becomes large, and if the upper limit is exceeded, the distortion becomes too negative and it becomes impossible to maintain balance significantly more at close range than when shooting at infinity, which is not desirable. Further, if the refractive index of the positive meniscus lens L 2 in the front group is N 2 and the refractive index of the negative meniscus lens L 3 is N 3 , it is desirable to have a relationship of N 2 >N 3 . Large aperture ratio lenses use glass with a high refractive index, and the refractive power of the negative lens component becomes weak, so the Petzval sum becomes excessively positive and astigmatism tends to occur. It is desirable to reduce the Petzval sum by using glass with a low index, and to strengthen this tendency within a range where zonal spherical aberration does not occur. Furthermore, in this case, since it is a negative lens with a low refractive index, one with low dispersion can be used, which allows off-axis chromatic aberration to be positively displaced at close range, and between infinity and close range. This is desirable because it allows for smaller correction of fluctuations in off-axis chromatic aberration during distance photography. Examples according to the present invention will be described below. All of the examples are for 35mm cameras, and the aperture is configured to always move together with the rear group. Focal length = 51.6, total angle of view 2ω = 45.43°. The first embodiment has an F number of 1.8, and as shown in Fig. 1, Fig. 1a shows the lens arrangement when photographing at infinity, and Fig. 1b shows the lens arrangement when photographing a close-up object. be. The specifications of the first embodiment are shown in Table 1, and the aberration diagram is shown in FIG. Figure 2a shows the aberration when photographing an object at infinity, and Figure 2b shows the object distance d 0
=286.9196 and photographing magnification β=-0.2. This is an example in which the average rate of change regarding floating is Δy/Δx=0.4764, and the refractive power of the front group is relatively strong. In addition, despite floating, changes in off-axis chromatic aberration were suppressed to the same level as with the conventional full-floating system. In the second embodiment, as shown in FIG. 3, a positive meniscus lens L6 is added to the rear group to further increase the aperture ratio. A modified Gauss type lens is also used, and FIG. 3a shows the lens arrangement when photographing at infinity, and FIG. 3b shows the lens arrangement when photographing an object at close range. Since the F number is set to 1.4, the close range is longer than in the first embodiment. The specifications of the second example are shown in Table 2, and the aberration diagram is shown in FIG. FIG. 4a is an aberration diagram when photographing an object at infinity, and FIG. 4b is an aberration diagram when the object distance d 0 =364.224 and the photographing magnification β=−0.15. The average rate of change regarding floating is Δy/Δx=0.3915. Furthermore, in this example, distortion is well corrected despite the large aperture ratio lens. This is due to the refractive power and shape of the positive lens group in the front group, which causes distortion in the positive direction, which reduces the overall system. The third embodiment employs a modified Gaussian type similar to the second embodiment, as shown in FIG. FIG. 5a is a lens arrangement diagram when photographing at infinity, and FIG. 5b is a diagram showing the lens arrangement when photographing an object at close range. Like the second embodiment, the F number is 1.4.
The specifications of the third embodiment are shown in Table 3, and the aberration diagram is shown in FIG. FIG. 6a is an aberration diagram when photographing an object at infinity, and FIG. 6b is an aberration diagram when object distance d 0 =354.649 and photographing magnification β=−0.15. The average rate of change with respect to floating is Δy/Δx=0.2306, and this is an example of an arrangement in which the refractive power of the front group is biased toward a relatively weak direction.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 以上の如き構成の本発明によれば、一眼レフレ
ツクスカメラ用レンズとして標準画角を有する大
口径比写真レンズでありながら近距離撮影状態で
の色収差及び諸収差の劣化が小さく、従来より撮
影至近距離が短かい大口径比写真レンズが得られ
る。
[Table] According to the present invention configured as described above, although it is a large aperture ratio photographic lens having a standard angle of view as a lens for a single-lens reflex camera, the deterioration of chromatic aberration and various aberrations is small in close-range shooting conditions. It is possible to obtain a large aperture ratio photographic lens with a shorter shooting distance than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例のレンズ配置図を
示し第1図aは無限遠撮影時の状態のレンズ配置
図、第1図bは至近距離物体撮影時の状態のレン
ズ配置図、第2図は第1実施例の収差図で、第2
図aは無限遠物体撮影時の収差図、第2図bは物
体距離d0=286.9196で撮影倍率β=−0.2の場合の
収差図、第3図は第2実施例のレンズ配置図で第
3図aは無限遠撮影時の状態のレンズ配置図、第
3図bは至近距離物体撮影時の状態のレンズ配置
図、第4図は第2実施例の収差図で、第4図aは
無限遠物体撮影時の収差図、第4図bは物体距離
d0=364.224、撮影倍率β=−0.15の場合の収差
図、第5図は第3実施例のレンズ配置図で、第5
図aは無限遠撮影時の状態のレンズ配置図、第5
図bは至近距離物体撮影時の状態のレンズ配置
図、第6図は第3実施例の収差図で、第6図aは
無限遠物体撮影時の収差図、第6図bは物体距離
d0=354.649、撮影倍率β=−0.15の場合の収差図
である。 〔主要部分の符号の説明〕 G1…前群、G2
後群。
FIG. 1 is a lens arrangement diagram of the first embodiment of the present invention, FIG. 1a is a lens arrangement diagram when photographing an object at infinity, FIG. Fig. 2 is an aberration diagram of the first embodiment;
Figure a is an aberration diagram when photographing an object at infinity, Figure 2 b is an aberration diagram when object distance d 0 = 286.9196 and photographing magnification β = -0.2, and Figure 3 is a lens arrangement diagram of the second embodiment. Figure 3a is a lens layout diagram when photographing at infinity, Figure 3b is a lens layout diagram when photographing a close-up object, Figure 4 is an aberration diagram of the second embodiment, and Figure 4a is a diagram of the lens layout when photographing an object at close range. Aberration diagram when photographing an object at infinity, Figure 4b is the object distance
An aberration diagram when d 0 = 364.224 and photographing magnification β = -0.15. Figure 5 is a lens arrangement diagram of the third embodiment.
Figure a is a lens arrangement diagram when shooting at infinity;
Figure b is a lens arrangement diagram when photographing a close-up object, Figure 6 is an aberration diagram of the third embodiment, Figure 6a is an aberration diagram when photographing an object at infinity, and Figure 6b is an object distance diagram.
It is an aberration diagram when d 0 =354.649 and imaging magnification β = −0.15. [Explanation of symbols of main parts] G 1 ...front group, G 2 ...
rear group.

Claims (1)

【特許請求の範囲】 1 正の屈折力を有する前群と、同じく正の屈折
力を有する後群と、前記両群の間に設けられた絞
りとを有し、前記前群はその物体側に配置された
正レンズと、その像側に配置された物体側に凸面
を向けたメニスカスレンズとを有し、前記後群は
物体側に凹面を向けたメニスカスレンズとその像
側に配置された正レンズとを有し、無限遠物体の
撮影状態から近距離物体の撮影状態への移行に際
して、前記両群を該両群の間の絞りが配置された
間隔を大きくしつつ共に物体側へ移動させること
によつて合焦を行い、無限遠撮影状態で全系の合
成焦点距離をf、前記前群の焦点距離をf1、前記
後群の焦点距離をf2とするとき、 2.4 <f1/f < 4.5 (1) 2.5 <f1/f2< 5.5 (2) の各条件を満足すると共に、無限遠の撮影状態か
ら近距離撮影状態への移行に際し、前記両群の間
の絞り空間の変化量をyとし、バツクフオーカス
の変化量をxとして、y=f(x)なる函数関係
において、一階微分値dy/dxが、 0.2 <dy/dx< 0.6 (3) なる条件を満足することを特徴とする近距離補正
された大口径比写真レンズ。
[Scope of Claims] 1. A front group having a positive refractive power, a rear group also having a positive refractive power, and a diaphragm provided between the two groups, and the front group is located on the object side. and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a convex surface facing the object side, and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a concave surface facing the object side, and a meniscus lens with a concave surface facing the object side and a positive lens, and when transitioning from a state of photographing an object at infinity to a state of photographing a close object, both groups are moved toward the object side while increasing the distance between the two groups where the aperture is arranged. When the composite focal length of the entire system is f, the focal length of the front group is f1 , and the focal length of the rear group is f2 in the infinity shooting state, 2.4 < f. 1 / f < 4.5 (1) 2.5 < f 1 / f 2 < 5.5 (2) In addition to satisfying the following conditions, the aperture between the two groups is When the amount of change in space is y and the amount of change in back focus is x, in the functional relationship y=f(x), the first differential value dy/dx satisfies the condition 0.2 < dy/dx < 0.6 (3) A close-range corrected large aperture ratio photographic lens.
JP1070380A 1980-01-31 1980-01-31 Photographic lens of large aperture ratio corrected for short distance Granted JPS56107209A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1070380A JPS56107209A (en) 1980-01-31 1980-01-31 Photographic lens of large aperture ratio corrected for short distance
US06/222,539 US4395094A (en) 1980-01-31 1981-01-05 Large aperture ratio photographic lens with means for correcting aberrations
DE3103012A DE3103012A1 (en) 1980-01-31 1981-01-29 "HIGH OPENED PHOTOGRAPHIC LENS"

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1070380A JPS56107209A (en) 1980-01-31 1980-01-31 Photographic lens of large aperture ratio corrected for short distance

Publications (2)

Publication Number Publication Date
JPS56107209A JPS56107209A (en) 1981-08-26
JPH0119124B2 true JPH0119124B2 (en) 1989-04-10

Family

ID=11757648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1070380A Granted JPS56107209A (en) 1980-01-31 1980-01-31 Photographic lens of large aperture ratio corrected for short distance

Country Status (3)

Country Link
US (1) US4395094A (en)
JP (1) JPS56107209A (en)
DE (1) DE3103012A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862607A (en) * 1981-10-09 1983-04-14 Canon Inc Gaussian lens
JPS58186714A (en) * 1982-04-26 1983-10-31 Nippon Kogaku Kk <Nikon> Large aperture ratio photographic lens corrected to short distance
JPS59121018A (en) * 1982-12-27 1984-07-12 Asahi Optical Co Ltd Photographic lens for magnifying photographing
JPS61124913A (en) * 1984-11-22 1986-06-12 Konishiroku Photo Ind Co Ltd Modified gaussian lens
JPH0820596B2 (en) * 1989-11-14 1996-03-04 大日本スクリーン製造株式会社 Projection lens
JP4197886B2 (en) * 2002-04-19 2008-12-17 オリンパス株式会社 Electronic imaging device
US8169717B2 (en) * 2007-08-24 2012-05-01 Caldwell Photographic, Inc. Large aperture imaging optical systems
US7733581B2 (en) * 2007-08-24 2010-06-08 Caldwell J Brian Large aperture imaging optical system
JP6701831B2 (en) * 2016-03-11 2020-05-27 株式会社ニコン Optical system and optical equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211929A (en) * 1975-07-18 1977-01-29 Olympus Optical Co Ltd Telephoto lens of the short whole length
JPS54104334A (en) * 1978-02-03 1979-08-16 Nippon Chemical Ind Gauss type photographic lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815974A (en) * 1970-03-30 1974-06-11 Canon Kk Camera lens system with means for correcting aberrations
JPS5425810B2 (en) * 1973-02-27 1979-08-30
JPS5528038A (en) * 1978-08-21 1980-02-28 Nippon Kogaku Kk <Nikon> Lens system for close distance photographing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211929A (en) * 1975-07-18 1977-01-29 Olympus Optical Co Ltd Telephoto lens of the short whole length
JPS54104334A (en) * 1978-02-03 1979-08-16 Nippon Chemical Ind Gauss type photographic lens

Also Published As

Publication number Publication date
US4395094A (en) 1983-07-26
JPS56107209A (en) 1981-08-26
DE3103012A1 (en) 1981-12-10

Similar Documents

Publication Publication Date Title
US5243468A (en) Wide angle objective lens
US5315441A (en) Inverse telephoto large aperture wide angle lens
US4260223A (en) Lens system for photographing objects from infinity to a very short distance
JP2924117B2 (en) Zoom lens
JPH08220424A (en) Gauss type lens having vibration proof function
JPH06201988A (en) Large aperture ratio internal focusing telephoto lens
JPS6113205B2 (en)
US5557473A (en) Wide angle lens
JPH05224119A (en) Large-diameter intermediate telephoto lens
JPH06130291A (en) Standard lens
JP3607958B2 (en) Retro focus lens
JPH0119124B2 (en)
US4412725A (en) Rear stop diaphragm zoom lens
JPH0123763B2 (en)
JPH0410609B2 (en)
JPS627525B2 (en)
JP4491865B2 (en) Eyepiece
US4610514A (en) Telephoto lens system
US4449794A (en) Imaging optical system
JPS62227111A (en) Telephoto lens capable of close-up photography
JPS623928B2 (en)
JP3234618B2 (en) Large aperture medium telephoto lens
JPH0713704B2 (en) Wide-angle lens
JPH0833512B2 (en) Gauss type rear focus lens
CN115453721A (en) Optical lens