JPH0118998B2 - - Google Patents

Info

Publication number
JPH0118998B2
JPH0118998B2 JP5905982A JP5905982A JPH0118998B2 JP H0118998 B2 JPH0118998 B2 JP H0118998B2 JP 5905982 A JP5905982 A JP 5905982A JP 5905982 A JP5905982 A JP 5905982A JP H0118998 B2 JPH0118998 B2 JP H0118998B2
Authority
JP
Japan
Prior art keywords
diaphragm
anode chamber
plating
anode
chamber liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5905982A
Other languages
Japanese (ja)
Other versions
JPS58177487A (en
Inventor
Nobukazu Suzuki
Atsuyoshi Shibuya
Juji Terada
Takashi Deo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tokuyama Corp
Original Assignee
Sumitomo Metal Industries Ltd
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Tokuyama Corp filed Critical Sumitomo Metal Industries Ltd
Priority to JP5905982A priority Critical patent/JPS58177487A/en
Publication of JPS58177487A publication Critical patent/JPS58177487A/en
Publication of JPH0118998B2 publication Critical patent/JPH0118998B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は隔膜電解メツキ方法および装置に関す
る。 隔膜電解メツキは、たとえば特公昭51−2900号
に記載されているように、電解メツキにおいて不
溶性陽極を使用し、メツキ金属を金属の硫酸塩あ
るいは塩化物等の形で供給する場合に、金属イオ
ンはメツキにより系外に取り出されるのに対し
SO4…あるいはCl-等の陰イオンはメツキ浴中に
著積してメツキ浴のPHを下げてしまうので、これ
をメツキ浴系外へ取り出すために陰イオン交換膜
を隔膜として使用し、メツキと分離して陽極室を
形成して電解メツキを行う方法である。陽極室液
としては通常電解質を含む溶液が使用され、たと
えばメツキ金属を硫酸塩の形で補給する場合に
は、H2SO4またはNa2SO4が使用される。 イオン交換膜は、一般に、スチレンおよびジビ
ニルベンゼンにポリ塩化ビニル等の高分子微粉末
を混合し、これを布に塗布した後加熱重合して膜
状となし、その後交換基を導入する方法、あるい
は、スチレン=ブタジエンのラテツクスに布を浸
漬し、乾燥後交換基を導入する方法等により製造
される。このため、イオン交換膜の耐熱性は、使
用される高分子材料の耐熱性に依存し、一般に
は、60℃が耐熱の限界である。 イオン交換膜を上記した隔膜電解メツキに用い
る場合には、隔膜は抵抗体であるためにメツキ電
流によりジユール熱が発生し、発熱現象を生じ
る。このためイオン交換膜の耐熱性が問題とな
る。特に、高電流密度でメツキを行うことはメツ
キ効率の点で望ましく、かつ実際に工業的にメツ
キを行う上で必要ではあるが、高電流密度であれ
ばある程隔膜の発熱量が大きくなり、隔膜の膨潤
あるいは熱焼け等深刻な問題を招来する。実際
に、メツキ浴温が60℃で、かつ40A/dm2以上の
高電流密度でメツキを行う場合には、焼けにより
隔膜は損傷されてしまう。したがつて、隔膜の発
熱問題を解決しない限り、イオン交換膜隔膜を用
いて高効率の電解メツキを実施することは不可能
である。なお、隔膜を使用する食塩電解等の技術
においても、実用化されている最高電流密度は約
30A/dm2程度である。 そこで、本発明の目的は、隔膜を冷却すること
により、隔膜の膨潤、焼け等による性能劣化又は
損傷を防止し、電解メツキの高電流密度化を図る
ことができる隔膜電解メツキ方法および装置を提
供することにある。 上記目的を達成するために、本発明の発明者ら
が隔膜を冷却する手段につき種々研究を行つたと
ころ、まず、メツキ浴の温度を下げて隔膜の冷却
を行う方法は、メツキ浴の電気伝導度が温度と正
比例関係にあるため、メツキ浴の温度を下げると
メツキ浴の電気伝導度を下げることになり、電力
効率面で不利となり、さらにメツキ皮膜にむらを
生じる等の問題があることが判明した。ところ
が、一方、陽極室液を用いて隔膜を冷却する方法
は、陽極室液は通常高濃度の酸(たとえば0.5〜
3NH2SO4)が使用されているため電気伝導度は、
メツキ浴が通常50℃で100m/cmであるのに対
して、50℃で150〜500m/cmと高い。従つて、
20℃程度まで陽極室液の温度を下げても100m
/cm以下とならず電力効率面であまり不利にな
ることはなく、隔膜を有効に冷却することができ
ることを知見した。 すなわち、本発明は、陰イオン交換膜隔膜によ
りメツキ浴室から分離形成された陽極室中に不溶
性陽極を設置した隔膜電解槽でメツキする際、陽
極室液の循環系に熱交換器を設けて陽極室液を冷
却し、冷却された陽極室液を陰イオン交換膜隔膜
と接触させて該隔膜を冷却することを特徴とする
ものである。 次に、本発明を添付の図面に基いて説明する。
第1図は本発明方法を実施する電解メツキ装置の
概要を示すものである。第1図において、1はメ
ツキすべき金属の塩、一般的にはメツキすべき金
属の硫酸塩を含む水溶液を満すメツキ浴室、2は
メツキ浴室1内に陰イオン交換膜隔膜3により分
離形成された陽極室である。4は、通電ロール5
によりに帯電された後メツキ浴室1内に導かれ
メツキ浴室1内でメツキ処理を受ける被メツキ材
料たとえば帯状鋼板である。鋼板4はメツキ処理
後通電ロール6によりメツキ浴室外へ導き出され
次工程に供給される。7をメツキ浴室1内にあつ
て鋼板4の案内をするシンクロールである。上記
構成において、陽極室2は鋼板4の進行方向に沿
つて延在する形状に形成され、陰イオン交換膜隔
膜3が鋼板4に対向する位置に設けられている。
陽極室2にはさらに不溶性多孔質陽極、たとえ
ば、Ti−Ptメツキを施したエキスパンドメタル
よりなる不溶性陽極8(第2図)が設けられてお
り、この陽極の背後には空間部9が形成されて陽
極室液が循環するようになつている。陽極室液と
しては電解質を含む溶液、たとえばメツキ浴とし
て金属の硫酸塩水溶液を使用する場合には、
H2SO4水溶液あるいはNa2SO4水溶液、特に、0.5
〜3N程度の高濃度のH2SO4水溶液が好適に使用
される。 10は、陽極室液のガス抜きを行うガス抜き装
置である。不溶性陽極8の表面では、水の電解
(2H2O→4H++4e+O2↑)によりO2ガスが発生
する。このO2ガスを放置しておくと、極間電圧
が上昇して好ましくない。このため、陽極室2か
ら陽極室液を抜き出してガス抜き処理を行つた
後、陽極室2へ再循環できるよう設けられてい
る。11は陽極室液タンクで、ガス抜き装置10
によりガス抜きされた陽極室液を貯えておくため
に設けられ、このタンク11内の陽極室液はポン
プ12により陽極室2へ再循環される。13は、
この陽極室液の循環系内に設けられる熱交換器で
ある。 いま、上記のような構成において陽極室液を循
環させると、陽極室液はガス抜き装置10により
O2ガスが除去された後、陽極室液タンク11に
貯えられ、その後熱交換器13により冷却されて
陽極室2に再循環される。この冷却された陽極室
液は、陽極室2において、陰イオン交換膜隔膜3
と不溶性陽極8との間隙を通過する際に、隔膜3
で発生したジユール熱を奪い、隔膜3を冷却す
る。この時、陽極室液はたえず循環されているの
で、循環3は冷却された陽極室液により有効に冷
却される。冷却された陽極室液の温度としては、
隔膜3の熱による劣化を防ぐことができ、しか
も、電気伝導度の低下を許容範囲内にとどめてお
ける温度が選ばれる。一般に、隔膜3の熱による
劣化を防ぐためには、陽極室液を50℃以下とする
ことが有効である。一方、電気伝導度の面から
は、陽極室液の温度は20℃以上であることが好ま
しい。したがつて、電流密度を40〜60A/dm2
して電解メツキを行う場合には、陽極室液を20〜
50℃程度に冷却することが好ましい。 次に、本発明の効果を実施例により示す。 第1図に示す隔膜電解メツキ装置を使用し、メ
ツキ浴としてFe=Zn合金メツキ浴(FeSO4
7H2O250g/、ZnSO4150g/、Na2SO4100
g/、PH=2)を、陽極室液として2.0NH2SO4
を用いて、メツキ浴温度、H2SO4温度を種々変
化させてメツキを行い、隔膜の状態を調査した。
なお、隔膜としては徳山ソーダ製NeoseptaACH
−45Tを用いた。 メツキ浴温度、H2SO4温度、電流密度および
H2SO4流速とメツキ皮膜および隔膜の状態との
関係を第1表に示す。 なお、H2SO4流速(V)は、電流密度が60A/
dm2の場合に、v=3cm/secでは、極間電圧の
上昇が認められたが、v=5cm/sec以上では電
圧上昇がないことから、十分にガス抜き効果があ
つたことが確認された。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for electroplating a diaphragm. Diaphragm electrolytic plating uses an insoluble anode in electrolytic plating, as described in Japanese Patent Publication No. 51-2900, and when the plating metal is supplied in the form of metal sulfate or chloride, metal ions are removed. is taken out of the system by metal removal, whereas
Since anions such as SO 4 ... or Cl - accumulate in the plating bath and lower the pH of the plating bath, an anion exchange membrane is used as a diaphragm to remove them from the plating bath system. This is a method in which electrolytic plating is performed by forming an anode chamber separately. As the anode chamber solution, a solution containing an electrolyte is usually used, for example, when plating metal is supplied in the form of sulfate, H 2 SO 4 or Na 2 SO 4 is used. Ion exchange membranes are generally produced by mixing styrene and divinylbenzene with fine polymer powder such as polyvinyl chloride, applying this to cloth, heating and polymerizing it to form a membrane, and then introducing exchange groups, or It is manufactured by a method such as dipping a cloth in styrene-butadiene latex and introducing an exchange group after drying. Therefore, the heat resistance of an ion exchange membrane depends on the heat resistance of the polymer material used, and generally, 60°C is the limit of heat resistance. When an ion exchange membrane is used in the above-mentioned diaphragm electrolytic plating, since the diaphragm is a resistor, the plating current generates Joule heat, causing a heat generation phenomenon. Therefore, the heat resistance of the ion exchange membrane becomes a problem. In particular, plating at a high current density is desirable from the point of view of plating efficiency and is necessary for actual plating on an industrial scale, but the higher the current density, the greater the amount of heat generated by the diaphragm. This can lead to serious problems such as swelling of the diaphragm or heat burns. In fact, when plating is performed at a plating bath temperature of 60° C. and a high current density of 40 A/dm 2 or more, the diaphragm is damaged by burning. Therefore, unless the heat generation problem of the diaphragm is solved, it is impossible to carry out highly efficient electrolytic plating using an ion exchange membrane diaphragm. Furthermore, even in technologies such as salt electrolysis that use diaphragms, the highest current density that has been put into practical use is approximately
It is about 30A/dm2. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a diaphragm electrolytic plating method and apparatus that can prevent performance deterioration or damage due to swelling, burning, etc. of the diaphragm by cooling the diaphragm, and increase the current density of electrolytic plating. It's about doing. In order to achieve the above object, the inventors of the present invention have conducted various studies on means for cooling the diaphragm. First, the method of cooling the diaphragm by lowering the temperature of the plating bath is based on the electrical conductivity of the plating bath. Since the temperature of the plating bath is directly proportional to the temperature, lowering the temperature of the plating bath will lower the electrical conductivity of the plating bath, which will be disadvantageous in terms of power efficiency and may also cause problems such as unevenness of the plating film. found. However, on the other hand, in the method of cooling the diaphragm using the anode chamber liquid, the anode chamber liquid usually contains a highly concentrated acid (for example, 0.5~
3 N H 2 SO 4 ) is used, so the electrical conductivity is
While the plating bath is usually 100 m/cm at 50°C, it is high at 150 to 500 m/cm at 50°C. Therefore,
100m even if the temperature of the anode chamber liquid is lowered to about 20℃
It was found that the diaphragm can be effectively cooled without being too disadvantageous in terms of power efficiency since the temperature is less than /cm. That is, the present invention provides a method for plating in a diaphragm electrolytic cell in which an insoluble anode is installed in an anode chamber separated from a plating bath by an anion exchange membrane diaphragm, and a heat exchanger is provided in the circulation system of the anode chamber liquid to remove the anode. The method is characterized in that the chamber liquid is cooled, and the cooled anode chamber liquid is brought into contact with an anion exchange membrane diaphragm to cool the diaphragm. Next, the present invention will be explained based on the accompanying drawings.
FIG. 1 shows an outline of an electrolytic plating apparatus for carrying out the method of the present invention. In Figure 1, 1 is a plating bath filled with an aqueous solution containing a salt of the metal to be plated, generally a sulfate of the metal to be plated, and 2 is a plating bath 1 which is separated by an anion exchange membrane diaphragm 3. This is the anode chamber. 4 is the energizing roll 5
The material to be plated, for example, a strip-shaped steel plate, is electrically charged by the plating bath 1, and then guided into the plating bath 1 and subjected to the plating treatment in the plating bath 1. After the plating process, the steel plate 4 is led out of the plating bath by an energized roll 6 and supplied to the next process. 7 is a sink roll placed in the plating bathroom 1 to guide the steel plate 4. In the above configuration, the anode chamber 2 is formed in a shape extending along the traveling direction of the steel plate 4, and the anion exchange membrane diaphragm 3 is provided at a position facing the steel plate 4.
The anode chamber 2 is further provided with an insoluble porous anode, for example, an insoluble anode 8 (FIG. 2) made of expanded metal plated with Ti-Pt, and a space 9 is formed behind this anode. The anode chamber liquid is circulated. When using a solution containing an electrolyte as the anode chamber solution, for example, a metal sulfate aqueous solution as the plating bath,
H 2 SO 4 aqueous solution or Na 2 SO 4 aqueous solution, especially 0.5
A high concentration H 2 SO 4 aqueous solution of about 3N is preferably used. 10 is a degassing device for degassing the anode chamber liquid. On the surface of the insoluble anode 8, O 2 gas is generated by electrolysis of water (2H 2 O→4H + +4e+O 2 ↑). If this O 2 gas is left undisturbed, the voltage between electrodes will increase, which is undesirable. For this reason, the anode chamber 2 is provided so that the anode chamber liquid can be extracted from the anode chamber 2 and recirculated to the anode chamber 2 after being subjected to a degassing process. 11 is an anode chamber liquid tank, and gas venting device 10
The tank 11 is provided to store the anode chamber liquid degassed by the tank 11, and the anode chamber liquid in the tank 11 is recirculated to the anode chamber 2 by the pump 12. 13 is
This is a heat exchanger installed within the circulation system of this anode chamber liquid. Now, when the anode chamber liquid is circulated in the above configuration, the anode chamber liquid is removed by the gas venting device 10.
After the O 2 gas is removed, it is stored in the anode compartment liquid tank 11 and then cooled by the heat exchanger 13 and recycled to the anode compartment 2 . This cooled anode chamber liquid is transferred to an anion exchange membrane diaphragm 3 in an anode chamber 2.
When passing through the gap between the anode 8 and the insoluble anode 8, the diaphragm 3
The diaphragm 3 is cooled by removing the Joule heat generated in the diaphragm 3. At this time, since the anode chamber liquid is constantly being circulated, the circulation 3 is effectively cooled by the cooled anode chamber liquid. The temperature of the cooled anode chamber liquid is:
A temperature is selected that can prevent the diaphragm 3 from deteriorating due to heat and can keep the decrease in electrical conductivity within an allowable range. Generally, in order to prevent deterioration of the diaphragm 3 due to heat, it is effective to keep the anode chamber liquid at 50° C. or lower. On the other hand, from the viewpoint of electrical conductivity, the temperature of the anode chamber liquid is preferably 20° C. or higher. Therefore, when performing electrolytic plating at a current density of 40 to 60 A/ dm2 , the anode chamber solution should be
It is preferable to cool to about 50°C. Next, the effects of the present invention will be illustrated by examples. The diaphragm electrolytic plating device shown in Fig. 1 was used, and the plating bath was an Fe=Zn alloy plating bath ( FeSO4 .
7H 2 O 250g/, ZnSO 4 150g/, Na 2 SO 4 100
g/, PH=2) as the anode chamber solution, 2.0 N H 2 SO 4
The condition of the diaphragm was investigated by plating by changing the plating bath temperature and H 2 SO 4 temperature variously.
The diaphragm is NeoseptaACH manufactured by Tokuyama Soda.
−45T was used. plating bath temperature, H2SO4 temperature, current density and
Table 1 shows the relationship between the H 2 SO 4 flow rate and the condition of the plating film and diaphragm. In addition, the H 2 SO 4 flow rate (V) has a current density of 60A/
In the case of dm 2 , an increase in interelectrode voltage was observed at v = 3 cm/sec, but no voltage increase was observed at v = 5 cm/sec or higher, confirming that there was a sufficient degassing effect. Ta. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する隔膜電解メツキ装置
の一例を示す概要図、第2図は陽極室を示す概要
図である。 1……メツキ浴室、2……陽極室、3……隔
膜、4……被メツキ材(鋼板)、8……不溶性陽
極、10……ガス抜き装置、11……陽極室液タ
ンク、13……熱交換器。
FIG. 1 is a schematic diagram showing an example of a diaphragm electrolytic plating apparatus for carrying out the present invention, and FIG. 2 is a schematic diagram showing an anode chamber. 1... Plating bathroom, 2... Anode chamber, 3... Diaphragm, 4... Material to be plated (steel plate), 8... Insoluble anode, 10... Gas venting device, 11... Anode chamber liquid tank, 13... …Heat exchanger.

Claims (1)

【特許請求の範囲】 1 陰イオン交換膜隔膜によりメツキ浴室から分
離形成された陽極室中に不溶性陽極を設置した隔
膜電解槽でメツキする際、陽極室液の循環系に熱
交換器を設けて陽極室液を冷却し、冷却された陽
極室液を陰イオン交換膜隔膜と接触させて該隔膜
を冷却することを特徴とする隔膜電解メツキ方
法。 2 陰イオン交換膜隔膜によりメツキ浴室から分
離形成され、不溶性陽極をその中に収容する陽極
室をメツキ浴室内に設け、陽極室液のガス抜き装
置と熱交換器とを陽極室液の循環系に設けたこと
を特徴とする隔膜電解メツキ装置。
[Scope of Claims] 1. When plating in a diaphragm electrolytic cell in which an insoluble anode is installed in an anode chamber separated from a plating bath by an anion exchange membrane diaphragm, a heat exchanger is provided in the circulation system of the anode chamber liquid. A diaphragm electrolytic plating method characterized by cooling an anode chamber liquid and bringing the cooled anode chamber liquid into contact with an anion exchange membrane diaphragm to cool the diaphragm. 2 An anode chamber that is separated from the plating bath by an anion exchange membrane diaphragm and houses an insoluble anode therein is provided in the plating bath, and an anode chamber liquid degassing device and a heat exchanger are connected to the anode chamber liquid circulation system. A diaphragm electrolytic plating device characterized by being installed in a diaphragm electrolytic plating device.
JP5905982A 1982-04-08 1982-04-08 Method and device for diaphragm electroplating Granted JPS58177487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5905982A JPS58177487A (en) 1982-04-08 1982-04-08 Method and device for diaphragm electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5905982A JPS58177487A (en) 1982-04-08 1982-04-08 Method and device for diaphragm electroplating

Publications (2)

Publication Number Publication Date
JPS58177487A JPS58177487A (en) 1983-10-18
JPH0118998B2 true JPH0118998B2 (en) 1989-04-10

Family

ID=13102390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5905982A Granted JPS58177487A (en) 1982-04-08 1982-04-08 Method and device for diaphragm electroplating

Country Status (1)

Country Link
JP (1) JPS58177487A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100257807B1 (en) * 1991-05-30 2000-06-01 엔.프럼 Electrode chamber for an electrolytic cell, use thereof and method for electrolytically depositing or removing a metal layer
KR20010069918A (en) * 2001-05-18 2001-07-25 이수재 Plating apparatus
JP6129497B2 (en) * 2011-09-29 2017-05-17 アルメックスPe株式会社 Continuous plating equipment
JP2015021154A (en) * 2013-07-18 2015-02-02 ペルメレック電極株式会社 Method and apparatus for continuous product of electrolytic metal foil

Also Published As

Publication number Publication date
JPS58177487A (en) 1983-10-18

Similar Documents

Publication Publication Date Title
JP2537525B2 (en) Electrolytic bath for metal electrolytic deposition
US3764503A (en) Electrodialysis regeneration of metal containing acid solutions
US3481851A (en) Apparatus and procedure for reconditioning metal treating solutions
JPS6315354B2 (en)
US4149946A (en) Recovery of spent pickle liquor and iron metal
US4482440A (en) Electrochemical cell and process for manufacturing temperature sensitive solutions
CA1044641A (en) Processes and installations for the regeneration of spent pickling solutions
JPH0118998B2 (en)
JPH10121297A (en) Electrolytic copper plating device using insoluble anode and copper plating method employing the device
JPH05171499A (en) Method and device for electroplating with tin or tin-lead alloy using insoluble anode
JP2009024186A (en) Method and apparatus for regenerating chromium plating solution
JP2020026576A (en) Producing method of sulfuric acid solution and electrolytic cell used in producing method thereof
JPS629205B2 (en)
JPH0578880A (en) Preparation of iron foil through electro- deposition
JP2000218274A (en) Production of nickel phosphinate by electrolytic membrane technique
US4177118A (en) Process for electrolyzing water
JPS6026689A (en) Method and device for producing metallic foil by electrodeposition
JPH06158397A (en) Method for electroplating metal
JPS5983785A (en) Preparation of highly concentrated aqueous cobalt sulfate solution
JPS5839916B2 (en) ROUKA CHROME SANYO EKI NO SAISEI SHIYORIHOHOOUOYOBISOUCHI
US3715290A (en) Method and apparatus for preparation of aluminium coagulating agent
JPS5873783A (en) Electrolytic extraction of massive zinc with hydrogen anode
JP3651871B2 (en) Ion exchange membrane electrolytic cell operation start method
GB992767A (en) Process for electroplating of metals and apparatus for effecting the same
GB2383337A (en) Electroplating plant and method