JPH01189885A - Infrared heater - Google Patents

Infrared heater

Info

Publication number
JPH01189885A
JPH01189885A JP63014917A JP1491788A JPH01189885A JP H01189885 A JPH01189885 A JP H01189885A JP 63014917 A JP63014917 A JP 63014917A JP 1491788 A JP1491788 A JP 1491788A JP H01189885 A JPH01189885 A JP H01189885A
Authority
JP
Japan
Prior art keywords
infrared
quartz glass
glass
film
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63014917A
Other languages
Japanese (ja)
Inventor
Akio Fukuda
明雄 福田
Yasunori Kaneko
金子 康典
Masao Maki
正雄 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63014917A priority Critical patent/JPH01189885A/en
Publication of JPH01189885A publication Critical patent/JPH01189885A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To obtain the excellent radiation characteristic by forming an infrared radiation film made of a specific material on the surface of glass or quartz glass. CONSTITUTION:An infrared radiation film 1 is formed on the surface of glass 1 or quartz glass 2 and is heated by an electric resistor heating element 3 made of metal. The film 1 is the sintered body of a mixture made of polyborosiloxane and a metal oxide, the metal oxide is an oxide of the metal selected among metals belonging to groups IB, IIB, IIIB, IVB, VB, VIB, VIIB, IIA, IIIA, IVA, VA in the periodic table. When the film is formed with this material, the excellent radiation characteristic can be obtained, e.g., the wavelength dependency of the permeation and absorption of infrared rays is made homogeneous, the difference of generating sources is eliminated, mild and comfortable temperature feeling is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は家庭用電気暖房器等に使用できる赤外線ヒータ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to an infrared heater that can be used in household electric heaters and the like.

従来の技術 暖房用の電気ヒータは、ニクロムやタングステン等の電
気抵抗発熱体(以下抵抗体)を石英ガラス管で保護する
構成である。この構成で、抵抗体(温度は約10oO℃
)が発生する赤外線は一部石英ガラス保護管を透過し、
又、一部は石英ガラスに吸収され、一部は対流あるいは
伝導によるロスとなる。さらに、石英ガラスを透過した
赤外線が人体等の暖房を行い、石英ガラスに吸収された
赤外線は石英ガラスの温度を上昇させ抵抗体よりもかな
り温度は低いが、それでも600℃前後にはなるので、
この温度による石英ガラスからの輻射光(赤外線である
)も人体等の暖房を行う。上記のごとく、電気ヒータの
構成は、これまでの間、抵抗体を石英ガラスで保護する
ことに特に変化はなかった。
A conventional electric heater for space heating has a structure in which an electric resistance heating element (hereinafter referred to as a "resistance element") made of nichrome or tungsten is protected by a quartz glass tube. With this configuration, the resistor (temperature is about 10oO℃)
) emitted infrared rays partially pass through the quartz glass protection tube,
Also, some of it is absorbed by the quartz glass, and some of it becomes a loss due to convection or conduction. Furthermore, the infrared rays transmitted through the quartz glass heat the human body, etc., and the infrared rays absorbed by the quartz glass raise the temperature of the quartz glass, which is much lower in temperature than the resistor, but still reaches around 600 degrees Celsius.
Radiant light (infrared rays) from the quartz glass at this temperature also heats the human body. As mentioned above, the structure of the electric heater has not changed in particular in that the resistor is protected with quartz glass.

発明が屏決しようとする截頭 上記の従来構成によれば、暖房として利用されている赤
外線は2種類である。1つは、石英ガラスを透過した赤
外線(以下、透過光)、もう1つは石英ガラスの温度上
昇に伴う石英ガラスから2次的に発生した赤外線(以下
、2次嘉射光)で、仁の2皿類の赤外線には大きな違い
がある。理由を以下に説明する。
According to the above conventional configuration, there are two types of infrared rays used for heating. One is the infrared rays that have passed through the quartz glass (hereinafter referred to as transmitted light), and the other is the infrared rays that are secondarily generated from the quartz glass as the temperature of the quartz glass increases (hereinafter referred to as secondary radiation). There is a big difference in the infrared rays of the two dishes. The reason is explained below.

第1は、赤外線の発生源の温度差によるエネルギー強度
の差である。透過光は温度が1000℃前後の抵抗体か
らの赤外線、2次輻射光は温度が600℃前後の石英ガ
ラスからの赤外線である。
The first is the difference in energy intensity due to the difference in temperature of the source of the infrared rays. The transmitted light is infrared rays from the resistor at a temperature of about 1000°C, and the secondary radiation light is infrared rays from the quartz glass at a temperature of about 600°C.

光のエネルギー強度は温度の4乗に比例するので、これ
による両者の差は明らかである。
Since the energy intensity of light is proportional to the fourth power of temperature, the difference between the two is obvious.

第2は、石英ガラスの赤外線透過、吸収特性の波長依存
性からくる差である。石英ガラスは、赤外線に対して波
長約5μmを境にして短波長は殆ど透過し、長波長は殆
で吸収してしまう性質をもつ。もちろん、反射する部分
もあるが、以下わかりやすくするため、透過と吸収で説
明する。約1000℃となった抵抗体からはウィーンの
変位量(関係式;T・λ、、、、x=o、2asa) 
 から、λmaxが約2μ、暉の輻射光(以下、1次幅
射光)が発生する。実際には抵抗体の輻射率を用いて黒
体からのずれを考慮しなければならない。1次輻射光は
、波長分布が連続的なものであるが、石英ガラスを透過
すると約5μm以上の長波長光は殆どカットされてしま
う。よって透過光は波長約5μm以下であり、エネルギ
ー強度も最も強い部分(ウィーンの変位量)となり、人
体には痛いような熱さを感じさせるのである。又、石英
ガラスからの2次輻射光は、透過光に比べるとエネルギ
ー強度も弱く、波長分布も約5μm以上となるから人体
にはマイルドな熱さを感じさせるが、透過光の強度が圧
倒的に強いので2次輻射光の効果は見かけ上、無くなる
The second difference is due to the wavelength dependence of the infrared transmission and absorption characteristics of silica glass. Quartz glass has the property of transmitting most of the short wavelengths of infrared rays with a wavelength of about 5 μm as the boundary, and absorbing most of the long wavelengths. Of course, there are parts that reflect, but for the sake of clarity, we will explain them in terms of transmission and absorption below. Wien's displacement from the resistor at about 1000°C (relationship: T・λ, , x=o, 2asa)
, λmax is about 2μ, and a wide radiation light (hereinafter referred to as primary radiation light) is generated. In reality, the emissivity of the resistor must be used to account for the deviation from the black body. Although the primary radiation light has a continuous wavelength distribution, when it passes through quartz glass, most of the long wavelength light of about 5 μm or more is cut off. Therefore, the transmitted light has a wavelength of about 5 μm or less and has the strongest energy intensity (Vienna displacement), making the human body feel a painful heat. In addition, the energy intensity of secondary radiation from silica glass is weaker than that of transmitted light, and the wavelength distribution is approximately 5 μm or more, making the human body feel mild heat, but the intensity of transmitted light is overwhelming. Because it is so strong, the effect of secondary radiation appears to disappear.

以上のように従来構成によれば、赤外線の発生源の差が
人体への温域に影響し、短波長の赤外線による不快な熱
さに問題があった。
As described above, according to the conventional configuration, differences in the sources of infrared rays affect the temperature range of the human body, and there is a problem in that the short wavelength infrared rays cause uncomfortable heat.

LLを解決するための手段 上記の問題点は、石英ガラスの赤外線透過・吸収特性に
起因するところが大である。よって、この問題を解決す
る手段として、ガラスあるいは石英ガラスの表面に赤外
線透過・吸収の波長依存性が均一な被膜を形成し、赤外
線の発生源の差異を無くすことを図る。これによって不
快な熱から逃れ、マイルドで快適な温感を得る。従って
、構成はガラスあるいは石英ガラスの表面に赤外線輻射
被膜を形成して、これを赤外線輻射体として、前記赤外
線輻射体を金属の電気抵抗発熱体で加熱するものである
。さらには、前記赤外線1射被膜が、ポリボロシロキサ
ンと金属酸化物とから成る混合物の焼結体であり、前記
金属酸化物は周期律表中のIs、Ia、ff1a、IV
a、V日、VIB、VIB、IA、IA、lVA、VA
族に属するところの金属より選択される金属の酸化物で
ある。
Means for Solving LL The above problems are largely due to the infrared transmission and absorption characteristics of quartz glass. Therefore, as a means to solve this problem, a coating with uniform wavelength dependence of infrared transmission and absorption is formed on the surface of glass or quartz glass, thereby eliminating differences in the sources of infrared rays. This allows you to escape from unpleasant heat and get a mild and comfortable feeling of warmth. Therefore, the structure is such that an infrared radiation coating is formed on the surface of glass or quartz glass, this is used as an infrared radiator, and the infrared ray radiator is heated with a metal electric resistance heating element. Furthermore, the infrared radiation coating is a sintered body of a mixture consisting of polyborosiloxane and a metal oxide, and the metal oxide is Is, Ia, ff1a, IV in the periodic table.
a, V day, VIB, VIB, IA, IA, lVA, VA
It is an oxide of a metal selected from the metals belonging to the group.

作  用 上記構成によれば、以下の作用がある。For production According to the above configuration, there are the following effects.

赤外線輻射体の表面にポリボロシワキサンと金属酸化物
との焼結体の被膜があるので、ガラスあるいは石英ガラ
スの赤外線透過・吸収特性を見かけ上無(すことができ
る。よって、従来にあったような透過光による人体への
痛いような熱さが無くなるのである。これは、被膜温度
が約600’Cで抵抗体よりかなり低温であることと、
赤外線透過・吸収特性、いいかえれば赤外線透過率が高
く低温であっても、高効率で赤外線を発生することによ
る。
Since the surface of the infrared radiator is coated with a sintered body of polyborosiwaxane and metal oxide, the infrared transmission and absorption characteristics of glass or quartz glass can be seemingly eliminated. This eliminates the painful heat on the human body caused by transmitted light.This is because the coating temperature is approximately 600'C, which is much lower than the resistor.
Infrared transmission and absorption characteristics, in other words, high infrared transmittance and ability to generate infrared rays with high efficiency even at low temperatures.

実施例 赤外線輻射のエネルギー強度は温度4乗に比例すること
と、物体の輻射率に依存することを考慮しなければなら
ない。櫃射体の温度が高いとエネルギ強度は強いが、人
体の温感は不快である。温度が低ければ、エネルギ強度
も適度になり、人体の温感もマイルドで快適感があるが
、赤外線透過率が低ければ、効率良い赤外線の発生はな
い。本発明の構成では、赤外線1射被膜の輻射率は波長
2μmから30μmの間でα7〜0.9以上と高いので
、600℃程度の温度でも効率よく赤外線を発生する。
Example It must be taken into consideration that the energy intensity of infrared radiation is proportional to the fourth power of temperature and that it depends on the emissivity of the object. When the temperature of the projector is high, the energy intensity is strong, but the human body feels uncomfortable. If the temperature is low, the energy intensity will be moderate, and the human body will feel mild and comfortable, but if the infrared transmittance is low, infrared rays will not be generated efficiently. In the configuration of the present invention, the emissivity of the infrared ray coating is high at α7 to 0.9 or more in the wavelength range of 2 μm to 30 μm, so infrared rays can be efficiently generated even at a temperature of about 600° C.

以下、本発明による模式的なヒータの作用について、上
記内容を具体的に説明する。次表は、石英ガラスの赤外
線透過率及び輻射率と前記赤外線輻射被膜の同じく透過
率及び輻射率である。抵抗体を管状の石英ガラスが保護
しているものとする。
Hereinafter, the above-mentioned contents will be specifically explained regarding the operation of the typical heater according to the present invention. The following table shows the infrared transmittance and emissivity of quartz glass and the same transmittance and emissivity of the infrared radiation coating. Assume that the resistor is protected by a tubular quartz glass.

抵抗体が発生する赤外線エネルギー強度を量0とし、保
護の石英ガラス温度(T)における強度を岬、石英ガラ
スに被膜形成した時(温度T′)B         
    EIB 1□′とする。ただしIT、lT/ともに黒体が温度T
、Tにおいて発生する強度とする。実際のエネルギー強
度は輻射率(ε)を乗じた形で表わされる。
Let the intensity of infrared energy generated by the resistor be 0, and the intensity at the protective quartz glass temperature (T) is the cape, and when a film is formed on the quartz glass (temperature T') B
EIB 1□'. However, in both IT and lT, the blackbody has a temperature T
, T is the intensity generated at T. The actual energy intensity is multiplied by the emissivity (ε).

(ε×18) 表 ら 日     B IQ>>I    l/        (1)式7式
% とTの差が大きくないので I8坂 18/          (2)式とみなす
と、ヒータとしての赤外線の輻射エネルギーは、 石英ガラスだけの場合、 波長2〜5μmでは、 B    ・ 0.9XIQ(λ)+ 0.I X I 、(λ)(竺
0.9 X I □(λ))(3)式波長5〜30μm
では OXI□(λ)+0JXI町λ)(4)式本発明の構成
によれば 波長2〜5μmでは OXI□(ス)+ 0.7 X I Bt(λ)エ  
     (5)式 波長5〜30μmでは 0XI()(λ)+ o、e x I 8/(λ)(6
)式(3)〜(6)式の比較から、構成の差からくる両
者の差は明かであり、石英ガラスだけの場合、短波長側
の項が、人体に痛いような熱さをもたらすのである。こ
れに対し、本発明の構成によれば、波長全体に渡り、I
Tlの項で表わされるので発熱体の直接の影響がない、
マイルドな温感が得られる。
(ε×18) Expression B IQ >> I l/ (1) Equation 7 Since the difference between % and T is not large, I8 slope 18/ Considering Equation (2), the radiant energy of infrared rays as a heater is , In the case of only quartz glass, at a wavelength of 2 to 5 μm, B · 0.9XIQ (λ) + 0. I X I , (λ) (line 0.9 X I □ (λ)) (3) Formula Wavelength 5 to 30 μm
According to the configuration of the present invention, OXI□ (λ) + 0.7
(5) For wavelengths of 5 to 30 μm, 0XI()(λ)+o, e x I 8/(λ)(6
) From a comparison of equations (3) to (6), it is clear that there is a difference between the two due to the difference in structure; in the case of only silica glass, the term on the short wavelength side causes heat that is painful to the human body. . In contrast, according to the configuration of the present invention, I
Since it is expressed in terms of Tl, there is no direct influence of the heating element.
Provides a mild warming sensation.

以下、本発明の一実施例について説明する。An embodiment of the present invention will be described below.

まず、被膜を形成するためのポリボロシロキサンと金属
酸化物との混合物の製法について説明する。
First, a method for producing a mixture of polyborosiloxane and metal oxide for forming a film will be described.

ポリボロシロキサンは、次の構造をもちN−メチル−2
−ピロリドン(以下、NMP)を真溶剤としているポリ
マーである。
Polyborosiloxane has the following structure: N-methyl-2
- A polymer that uses pyrrolidone (hereinafter referred to as NMP) as a true solvent.

(7)式 このポリボロシロキサン(以下、pss I)  は、
フェニル基を有するので常温では限られてはいるが、溶
剤に溶けるなど有機物としての扱いが可能である。加熱
すれば600’Cまでにおいてフェニル基が完全に無(
なり、st、e、oから成るセラミックとなる。セラミ
−lりとなると、ポーラスで1,000t程度において
も分解などせず、基材との密着を十分に保つ。このよう
な性質をもつポリボロシロキサンに金属酸化物を混合す
るのであるが、例えば金属酸化物としてチタンイエロー
(7) This polyborosiloxane (hereinafter referred to as pss I) is:
Since it has a phenyl group, it can be treated as an organic substance by being soluble in solvents, although it is limited at room temperature. If heated up to 600'C, phenyl groups are completely eliminated (
It becomes a ceramic consisting of st, e, and o. Ceramic material is porous and does not decompose even at about 1,000 tons, maintaining sufficient adhesion to the base material. Metal oxides are mixed with polyborosiloxane, which has these properties. For example, titanium yellow is used as a metal oxide.

ZrO2,Aj’203を用いて、撹拌混合によりミキ
シングした。分散が効率よくなるように、トルエン、キ
シレンなどの溶剤を適量加える。もちろんP B 51
 の真溶剤のNMPも含んでいる。
Mixing was performed by stirring using ZrO2, Aj'203. Add an appropriate amount of a solvent such as toluene or xylene to ensure efficient dispersion. Of course P B 51
It also contains NMP, a true solvent.

次に被膜の形成の方法であるが、このようにしてできた
混合物を管状の石英ガラスにスプレー法により塗布し溶
剤の蒸発、フェニル基切断のための加熱を行い、最終a
OO℃で5分間の焼成を行った。膜厚は約10μmであ
った。
Next, as for the method of forming a film, the mixture thus prepared is applied to a tubular quartz glass by a spray method, the solvent is evaporated and the phenyl group is cut off by heating, and the final a
Firing was performed at OO°C for 5 minutes. The film thickness was approximately 10 μm.

上記製法により得られた被膜を用いたヒータについて説
明する。ヒータの一部断面図を第1図に示した。第1図
(−はヒータ構成の概念的な断面図、同じ<(b)は被
膜部の拡大断面図である。(a)において、金属電気抵
抗発熱体3を、石英ガラス2が保護し、石英ガラス2の
表面に本発明の被膜1が形成されている。(b)は被膜
1の拡大図で、Pa5tの焼結部4とチタンイエロー5
、Zr026 。
A heater using the film obtained by the above manufacturing method will be explained. A partial sectional view of the heater is shown in FIG. FIG. 1 (- is a conceptual cross-sectional view of the heater configuration, and (b) is an enlarged cross-sectional view of the coating part. In (a), the metal electric resistance heating element 3 is protected by the quartz glass 2, A coating 1 of the present invention is formed on the surface of a quartz glass 2. (b) is an enlarged view of the coating 1, showing a sintered part 4 of Pa5t and titanium yellow 5.
, Zr026.

Az2o37から成る。初期におけるPBS I  と
金属酸化物の配合比は重量比でかなり広範囲に振り分け
ることができる。
Consists of Az2o37. The initial mixing ratio of PBS I and metal oxide can be varied over a fairly wide range in terms of weight ratio.

第2図は、本実施例による被膜の赤外線分光(@対特性
図である。第3図には、参考のため石英ガラス、ステン
レスの赤外線分光輻射特性図を示した。赤外線分光輻射
特性は、ダブルビーム方式で温度500’Cで測定した
。第2図及び第3図から、本実施例の輻射特性が優れて
いることが明らかである。
Fig. 2 is an infrared spectral radiation characteristic diagram of the coating according to this example. Fig. 3 shows an infrared spectral radiation characteristic diagram of quartz glass and stainless steel for reference. Measurements were made using a double beam method at a temperature of 500' C. It is clear from FIGS. 2 and 3 that the radiation characteristics of this example are excellent.

以下、輻射率について説明する。物体の光学的な透過率
tと、吸収率機と、反射率rとの間には次式が成立する
The emissivity will be explained below. The following equation holds true between the optical transmittance t of an object, the absorption coefficient, and the reflectance r.

t + a + r = 1           (
8)式キルヒホッフ則より輻射率εと吸収率aは等しい
から t十ε+r = 1(9)式 一方、物体の屈折率nと反射率rは、フレネルの式 の関係にあり(ただし垂直入射光に対して)、これより
(9)、(10)式からnが小さければεあるいはtが
大きくなることがわかる。又、本発明のように媒体(P
BSIのセラミック化したもの)中に粒子(金属酸化物
)を分散させた場合には、第1図(b)からも予想され
るように、被膜表面、粒子表面、基材表面で赤外線は反
射する。なぜなら、赤外線が被膜内部に侵入するからで
ある。被膜表面では、その屈折率により赤外線は空気中
に反射されるが、粒子表面あるいは基材表面で反射され
た赤外線は、周囲に存在する媒体や粒子により吸収ある
いは再度反射される。このような現象の重なりで媒体中
に粒子が分散している場合の輻射率εが決定される。従
って、媒体の屈折率は低い方が好ましく、粒子について
は、分散度、配合量、粒子径、屈折率等が関係するので
最適条件を見つけることが必要である。例えば、屈折率
の高いものについては配合量を減らし、粒子間距離を大
きくすればεが高くなり、逆に屈折率の低いものについ
ては配合量を増やし、粒子間互層を小さくするとεが高
くなるなど、様々な条件で制約される。
t + a + r = 1 (
Equation 8) According to Kirchhoff's law, the emissivity ε and the absorption rate a are equal, so tε+r = 1 Equation (9) On the other hand, the refractive index n and reflectance r of an object have a relationship according to Fresnel's equation (however, for vertically incident light From this, it can be seen from equations (9) and (10) that if n is small, ε or t becomes large. In addition, as in the present invention, the medium (P
When particles (metal oxide) are dispersed in BSI (ceramized material), infrared rays are reflected on the coating surface, particle surface, and base material surface, as expected from Figure 1 (b). do. This is because infrared rays penetrate into the coating. At the coating surface, infrared rays are reflected into the air due to its refractive index, but infrared rays reflected from the particle surface or the base material surface are absorbed or reflected again by surrounding media and particles. The combination of these phenomena determines the emissivity ε when particles are dispersed in a medium. Therefore, it is preferable that the refractive index of the medium is low, and it is necessary to find the optimum conditions for the particles since they are affected by the degree of dispersion, blending amount, particle size, refractive index, etc. For example, for a material with a high refractive index, reducing the blending amount and increasing the distance between particles will increase ε; conversely, for a material with a low refractive index, increasing the blending amount and reducing the alternating layer between particles will increase ε. etc. are restricted by various conditions.

本発明による被膜構成は、上記条件を最適化することが
でき、輻射被膜としての設計は容易である。
The coating structure according to the present invention can optimize the above conditions, and can be easily designed as a radiation coating.

以上説明したように本発明の被膜を使ったヒータは優れ
た赤外線輻射特性を持つが、実際に通電して被膜の有無
による人体の温感の評価を行った。
As explained above, the heater using the coating of the present invention has excellent infrared radiation characteristics, but the heater was actually energized to evaluate the thermal sensation of the human body depending on the presence or absence of the coating.

その結果、従来の被膜無しに比べ、被膜有りの方がマイ
ルドな温感であった。第4図、第5図に、ここでの評価
に使用したヒータの概略の見取図を示した。又、被膜形
成した石英ガラスを700’Cの炉中から水中へ急激に
投入しても膜の剥離はなかった。
As a result, the warm sensation with the film was milder than the conventional one without the film. FIGS. 4 and 5 show schematic diagrams of the heaters used in this evaluation. Further, even when the coated quartz glass was suddenly thrown into water from a 700'C furnace, the film did not peel off.

このように、本発明によれば、輻射特性の優れた赤外線
ヒータが得られる。輻射特性が優れているために輻射以
外での赤外線のロスも少くなる。
As described above, according to the present invention, an infrared heater with excellent radiation characteristics can be obtained. Due to its excellent radiation characteristics, loss of infrared rays other than radiation is also reduced.

発明の効果 以上、説明してきたように本発明の赤外線ヒータによれ
ば、従来なかったマイルドな温感が得られる事、赤外線
のロスが少なくなるなどの効果がある。
Effects of the Invention As described above, the infrared heater of the present invention has effects such as being able to obtain a milder feeling of warmth that has not been seen before, and reducing loss of infrared rays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による赤外線ヒータの一部断
面図、第2図は同赤外線ヒータの被膜の赤外線分光輻射
特性図、第3図は石英ガラス、ステンレスの赤外線分光
輻射特性図、第4図及び第5図は温感評価を行った赤外
線ヒータの概略の斜視図である。 1・・・・・・被膜、2・・・・・・石英ガラス、3・
・・・・・金属製電気抵抗発熱体、4・・・・・・セラ
ミック化したポリボロシロキサン、5・・・・・・チタ
ンイエロー、6・・・・・・zr02.7・・・・・・
Al2O3、8・・・・・・ヒータ、9・・・・・・反
射板、10・・・・・・本体外装、11・・・・・・反
射板、12・・・・・・本体外装。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1 
°゛被   膜 2−石英力ラス 3− 金属展電気底徒が一体 第1図 $2図 第3図 倣長(AI町
FIG. 1 is a partial cross-sectional view of an infrared heater according to an embodiment of the present invention, FIG. 2 is an infrared spectral radiation characteristic diagram of the coating of the same infrared heater, and FIG. 3 is an infrared spectral radiation characteristic diagram of quartz glass and stainless steel. FIGS. 4 and 5 are schematic perspective views of the infrared heater on which thermal sensation evaluation was performed. 1... Coating, 2... Quartz glass, 3.
...Metal electric resistance heating element, 4 ... Ceramic polyborosiloxane, 5 ... Titanium yellow, 6 ... Zr02.7 ...・・・
Al2O3, 8...Heater, 9...Reflector, 10...Body exterior, 11...Reflector, 12...Body exterior . Name of agent: Patent attorney Toshio Nakao and 1 other person1
°゛Coating 2-Quartz power lath 3-Metal exhibition Electric base unit Figure 1 $2 Figure 3 Copy length (AI town

Claims (1)

【特許請求の範囲】[Claims] ガラスあるいは石英ガラスの表面に赤外線輻射被膜を形
成し、電気抵抗発熱体で加熱して輻射熱を得る赤外線輻
射体を設け、前記赤外線輻射被膜がポリボロシロキサン
と金属酸化物とを主成分とする混合物の焼結体であり、
前記金属酸化物は、周期律表中の I B、IIB、IIIB、
IVB、VB、VIB、VIIB、VIII、IIA、IIIA、IVA、
VA族に属する金属より選択される少なくとも一種の金
属の酸化物である赤外線ヒータ。
An infrared radiation coating is formed on the surface of glass or quartz glass, and an infrared radiation coating is provided to obtain radiant heat by heating with an electric resistance heating element, and the infrared radiation coating is a mixture whose main components are polyborosiloxane and metal oxide. It is a sintered body of
The metal oxides include IB, IIB, IIIB,
IVB, VB, VIB, VIIB, VIII, IIA, IIIA, IVA,
An infrared heater that is an oxide of at least one metal selected from metals belonging to Group VA.
JP63014917A 1988-01-26 1988-01-26 Infrared heater Pending JPH01189885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63014917A JPH01189885A (en) 1988-01-26 1988-01-26 Infrared heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63014917A JPH01189885A (en) 1988-01-26 1988-01-26 Infrared heater

Publications (1)

Publication Number Publication Date
JPH01189885A true JPH01189885A (en) 1989-07-31

Family

ID=11874317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63014917A Pending JPH01189885A (en) 1988-01-26 1988-01-26 Infrared heater

Country Status (1)

Country Link
JP (1) JPH01189885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378993A (en) * 1989-08-23 1991-04-04 Matsushita Electric Ind Co Ltd Far infrared beam halogen heater and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027448B1 (en) * 1970-02-16 1975-09-08
JPS6196688A (en) * 1984-10-18 1986-05-15 松下電器産業株式会社 Infrared ray radiating body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027448B1 (en) * 1970-02-16 1975-09-08
JPS6196688A (en) * 1984-10-18 1986-05-15 松下電器産業株式会社 Infrared ray radiating body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378993A (en) * 1989-08-23 1991-04-04 Matsushita Electric Ind Co Ltd Far infrared beam halogen heater and its manufacture

Similar Documents

Publication Publication Date Title
JP5450331B2 (en) Method and apparatus for uniformly heating glass and / or glass ceramic using infrared radiation
JP6896075B2 (en) An oven with a dielectrically coated glass substrate that absorbs electromagnetic radiation and emits heat radiation
RU2245851C2 (en) Method and a device for even heating of glass and\or glass ceramics with the help of infrared radiation
JPH01189885A (en) Infrared heater
EP0489834A1 (en) Infra-red radiation emission arrangement.
JPS60134126A (en) Far infrared ray radiant material
JPS62299610A (en) Infrared ray composite radiation stove
EP0230831B1 (en) Product for the instantaneous use as a thermal protection or dissipation screen
JPS58158241A (en) Infrared emission composite body
JPH0350164A (en) Film mixture having low radiatability of infrared ray and heat resistance and heat insulating material
JPS59226064A (en) Infrared-radiating coating composition
Harrison et al. Simple model of thermal emission from burning aluminum in solid propellants
CN107995700A (en) The infrared radiator of fast reaction
JPH02118329A (en) Radiation heater
JP2819646B2 (en) Far infrared halogen heater
Frolov et al. Reflectivity of heatproof materials under radiative-convective heating
JPS58157078A (en) Infrared heater
Pavshukov et al. Heating of multilayer dielectric coatings exposed to laser radiation
JPH0311606Y2 (en)
JPS5923487A (en) Heater
JPS5814482A (en) Heater
JPH03250558A (en) Photo-thermal element
JPS60251185A (en) Radiator
JPS60188738A (en) Radiator
JPH0363192B2 (en)