JPH01189494A - Heating of fluid in fluidized bed of fine powder - Google Patents

Heating of fluid in fluidized bed of fine powder

Info

Publication number
JPH01189494A
JPH01189494A JP1076888A JP1076888A JPH01189494A JP H01189494 A JPH01189494 A JP H01189494A JP 1076888 A JP1076888 A JP 1076888A JP 1076888 A JP1076888 A JP 1076888A JP H01189494 A JPH01189494 A JP H01189494A
Authority
JP
Japan
Prior art keywords
fluidized bed
fluidized
fluid
particles
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076888A
Other languages
Japanese (ja)
Inventor
Terukatsu Miyauchi
宮内 照勝
Yoneichi Ikeda
米一 池田
Kazumi Yamamoto
一巳 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Kagaku KK
Original Assignee
Soken Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soken Kagaku KK filed Critical Soken Kagaku KK
Priority to JP1076888A priority Critical patent/JPH01189494A/en
Publication of JPH01189494A publication Critical patent/JPH01189494A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the efficiency of the heating and achieve stability of the operation by using as solid particles spherical particles with a specified weight mean diameter and specified bulk densities and controlling the upward flow of the fluidizing gas at specified superficial standard velocities in fluidized bed. CONSTITUTION:By introducing as solid particles forming a fluidized bed particles which are substantially spherical and have a weight mean diameter of 30-120mum and bulk densities in the range of 0.3-1.5g/cm<3> bubbles formed in the fluidized bed are rendered small in size, changes in static pressure of the fluidized bed are reduced, and a pronounced improvement can be achieved in smoothness and uniformity of the fluidized condition. Furthermore, the solid particles are so fine in size and light in weight that the fluidized condition can be satisfactory by controlling the upward flow of the fluidizing gas at 2-40cm/sec in terms of superficial standard velocity in fluidized bed. In a fluidized-bed heater 1, the fluidizing gas is supplied from a conduit 4 to the bottom of the apparatus, passed through a distributor 3, and blown into the fluidized bed 2. In the fluidized bed runs a conduit 6 through which a fluid to be heated flows, entering the bed at 6A and going out at 6B. The fluidized bed is heated by an electric heater 5 and at a constant temperature by automatic control of the heating.

Description

【発明の詳細な説明】 イ1発明の目的 −の1 本発明は、流動層を用いて、ガス状又は液状の流体を加
熱する方法に関するもので、特に従来法に比して効率の
よい加熱と、安定な操作か回部な方法を提供するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (1) Objectives of the Invention (1) The present invention relates to a method of heating a gaseous or liquid fluid using a fluidized bed, and in particular a heating method that is more efficient than conventional methods. This provides a stable and easy-to-use method.

え1立且遣 ガスにより固体粒子が流動化されている流動層は、層内
温度が均一で且つ伝熱性がよいことなどから、その中に
被加熱物を直接送入して加熱したり、伝熱面を有する容
器、例えば金属製の管状容器を流動層内に設置しその中
にガスや液などの流体を流して間接的に加熱したりする
ことが従来から行われていた。
E1: A fluidized bed in which solid particles are fluidized by a standing gas has a uniform temperature inside the bed and good heat conductivity, so it is possible to heat the object by directly feeding it into the fluidized bed. BACKGROUND ART Conventionally, a container having a heat transfer surface, for example, a metal tubular container, is placed in a fluidized bed and a fluid such as gas or liquid is passed through the container to indirectly heat the container.

いずれの場合にも、流動層そのものの加熱は。In both cases, the heating of the fluidized bed itself.

流動層の壁面や加熱用内挿物な電気や高温液体で加熱し
たり、高温なガスで直接流動化するなどの方法が行われ
ていた。
Methods used include heating the wall of a fluidized bed or heating inserts using electricity or high-temperature liquid, or direct fluidization using high-temperature gas.

加熱用の流動層において流動化される固体粒子としては
、従来は重量平均径が0.2〜2 m m程度で、嵩密
度が1.3〜4 g / c m ’程度の、比較的粗
大で、密度の大きな砂や鉄粉などが用いられてきた。
Conventionally, solid particles fluidized in a heating fluidized bed are relatively coarse particles with a weight average diameter of about 0.2 to 2 mm and a bulk density of about 1.3 to 4 g/cm'. Therefore, dense sand and iron powder have been used.

このような粗大で密度の大きな固体粒子は、流動用ガス
に伴われて飛散する粒子が少なく、流動層の熱容量が大
きく、熱的に安定しているなどの特長があるので専ら用
いられてきたが、一方それを流動化するためには比較的
多量の流動用ガスを。
These coarse and dense solid particles have been exclusively used because they have the following characteristics: fewer particles are scattered by the fluidizing gas, the heat capacity of the fluidized bed is large, and the fluidized bed is thermally stable. However, in order to fluidize it, a relatively large amount of fluidizing gas is required.

必要とし、それに伴って多大な送風動力と多量の高温ガ
スの排出に伴う大きな熱損失、さらには流動状態の不良
による運転操作の不安定性、装置の破損、粒子の摩耗な
どのトラブルを起し易いなどの問題点がある。
This requires a large amount of blowing power and a large amount of heat loss due to the discharge of a large amount of high-temperature gas, and is likely to cause problems such as unstable operation due to poor flow conditions, equipment damage, and particle wear. There are problems such as:

が     し   −μ 本発明は、上記の諸問題を解決し、より効率のよい加熱
と安定な操業とを可能とする微粉流動層を用いる流体の
加熱方法を提供することを目的とする。
An object of the present invention is to provide a fluid heating method using a fine powder fluidized bed that solves the above-mentioned problems and enables more efficient heating and stable operation.

口8発明の構成 1、   占          だ  の本発明に係
る微粉流動層を用いる流体の加熱方法は、固体粒子がガ
スによって流動化されている加熱された流動層内に伝熱
面を有する流体容器を設置してその流体を加熱する方法
において、固体粒子として重量平均径30〜120pm
、嵩密度0.3〜1.5g/(〜3の実質的に球形の粒
子を用い、流動用ガスの上昇速度を流動層の空塔基準で
2〜40cm/秒に保持することを特徴とする。
Arrangement 1 of the Invention The method of heating a fluid using a fine powder fluidized bed according to the present invention includes a fluid container having a heat transfer surface in a heated fluidized bed in which solid particles are fluidized by a gas. In the method of installing and heating the fluid, solid particles with a weight average diameter of 30 to 120 pm are used.
, using substantially spherical particles with a bulk density of 0.3 to 1.5 g/(~3), and maintaining the rising speed of the fluidizing gas at 2 to 40 cm/sec based on the empty column of the fluidized bed. do.

本発明において使用する流動層は、ガスによって流動化
される固体粒子として、重量平均径30〜120JLm
、嵩密度0.3〜1.5g/cm’の実質的に球形の粒
子を用いる点に特色がある。
The fluidized bed used in the present invention has a weight average diameter of 30 to 120 JLm as solid particles fluidized by gas.
, is characterized by the use of substantially spherical particles having a bulk density of 0.3 to 1.5 g/cm'.

このように微細な粒子は触媒をi動状態で使用する流動
接触反応においては用いられているが、加熱用の流動層
において用いた例はない。
Although such fine particles have been used in fluidized catalytic reactions in which catalysts are used in an ionic state, there is no example of their use in a fluidized bed for heating.

これは前者は触媒と反応用ガスとの接触を密にする必要
上止むをえず微細な触媒粒子を使用するのに対して、伝
熱目的のためには流動用ガスに伴われて飛散する粒子が
少なく、流動層の熱容量が大きく、熱的に安定している
粗大で密度の大きな固体粒子の方が好ましいということ
が常識となっていたからである。
This is because the former uses fine catalyst particles because it is necessary to maintain close contact between the catalyst and the reaction gas, whereas for heat transfer purposes, they are scattered along with the fluidizing gas. This is because it has been common knowledge that coarse and dense solid particles with fewer particles, a larger heat capacity of the fluidized bed, and thermal stability are preferable.

本発明においては、流動層を形成する固体粒子として、
1量平均径30S120終m、好ましくは40〜100
 ILm 、嵩密度0.3〜1.5g/cm3.好まし
くは0.4〜1.2g/am’の実質的に球形の粒子を
用いることにより、流動層内の発生気泡が小さく、流動
層の静圧変動も少なく、きわめて平滑均一な流動状態が
得られる。
In the present invention, as solid particles forming a fluidized bed,
1 quantity average diameter 30S120m, preferably 40-100m
ILm, bulk density 0.3-1.5 g/cm3. Preferably, by using substantially spherical particles of 0.4 to 1.2 g/am', bubbles generated in the fluidized bed are small, static pressure fluctuations in the fluidized bed are small, and an extremely smooth and uniform fluidized state can be obtained. It will be done.

また固体粒子が細かく軽いために、流動用ガスの上昇速
度を流動層の空塔基準で2〜40cm/秒、通常3〜3
0 c m 7秒としても良好な流動状態が得られる。
In addition, since the solid particles are fine and light, the rising speed of the fluidizing gas is 2 to 40 cm/sec, usually 3 to 3 cm/sec, based on the empty column of the fluidized bed.
Good fluidity can be obtained even at 0 cm for 7 seconds.

また固体粒子が細かいために、流動用ガスの上昇速度を
小さくしても流動層と流体容器の伝熱面との間の伝熱係
数が大きくなるので、流動層温度と流体容器表面との温
度差が従来の粗粒子流動層の場合より小さくなり、流体
容器表面の温度を均一に保持するのに優れている。
In addition, because the solid particles are fine, the heat transfer coefficient between the fluidized bed and the heat transfer surface of the fluid container increases even if the rising speed of the fluidizing gas is reduced, so the temperature between the fluidized bed temperature and the surface of the fluid container increases. The difference is smaller than in the case of a conventional coarse particle fluidized bed, and it is excellent in maintaining a uniform temperature on the surface of the fluid container.

ガスに伴われて飛散する粒子は、流動用ガスの線速度が
小さいために比較的少ないが、飛散した粒子はサイクロ
ンなどで回収して流動層へ戻すことより流動層を形成す
る固体粒子の損失を実質的にOにすることがてきる。
There are relatively few particles scattered with the gas because the linear velocity of the fluidizing gas is low, but the scattered particles are collected with a cyclone and returned to the fluidized bed, which reduces the loss of solid particles that form the fluidized bed. can be made substantially O.

固体粒子の重量平均径の上限値を120JLmとしたの
は、良好な流動状態が得られる上限値としてであり、そ
の値が100gm、704mなどと小さくなる程、流動
状態が漸次平滑、均一化される。また下限値を30Bm
としたのは、それ以下になると流動状態の平滑、均一性
が低下し、またガスに伴なわれて飛散する粒子量が増大
するからである。
The upper limit of the weight average diameter of the solid particles is set to 120 JLm because it is the upper limit at which a good fluid state can be obtained, and as the value becomes smaller, such as 100 gm or 704 m, the fluid state gradually becomes smoother and more uniform. Ru. Also, the lower limit value is 30Bm
This is because if the flow rate is lower than that, the smoothness and uniformity of the fluid state will deteriorate, and the amount of particles scattered along with the gas will increase.

固体粒子の嵩密度の上限値を1.5g/cm’としたの
も、良好な流動状態が得られる上限値としてであり、そ
の値がこれより小さいほど流動状態がより平滑、均一化
される。また下限値を0゜3 g / c m ’とし
たのは、それ以下でも流動状態は良好であるか、ガスに
伴なわれて飛散する粒子量が増大したり1粒子が脆弱に
なり流動中に摩耗粉化してしまい実用に耐えないからで
ある。
The upper limit of the bulk density of solid particles is set at 1.5 g/cm' because it is the upper limit for obtaining a good fluid state, and the smaller the value is, the smoother and more uniform the fluid state becomes. . In addition, the lower limit value was set at 0゜3 g/cm' because the fluidity state is good even if it is lower than that, or the amount of particles scattered by the gas increases, or one particle becomes brittle and the fluid is in a state of poor flow. This is because it becomes powdery due to wear and cannot be put to practical use.

これに対して従来の流動層を用いる流体の加熱方法で用
いられている平均粒径が0.2〜2mm程度、嵩密度が
1.3〜4 g / c m ’程度の、比較的粗大で
、密度の大きな砂や鉄粉などを流動化粒子として使用し
た場合は、流動層内の発生気泡か大きくなり、流動層の
静圧変動が大きく、不均一な流動状態を示す。
On the other hand, conventional fluid heating methods using fluidized beds use relatively coarse particles with an average particle size of about 0.2 to 2 mm and a bulk density of about 1.3 to 4 g/cm'. When sand or iron powder with a high density is used as fluidizing particles, the bubbles generated in the fluidized bed become large, the static pressure of the fluidized bed fluctuates greatly, and the fluidized state becomes non-uniform.

本発明て使用する固体粒子の粒子形状は、実質的に球形
であることにより流動状態が平滑化、均一化されるが、
さらにそれによって装置や粒子の摩耗が著しく減少でき
る利点がある。
The particle shape of the solid particles used in the present invention is substantially spherical, so that the fluid state is smoothed and made uniform.
Furthermore, this has the advantage that wear on the equipment and particles can be significantly reduced.

以上のような性状を有する固体粒子は、通常噴霧乾燥法
などによって容易に製造できる4本発明て使用する固体
粒子には、使用温度で安定であることが必要であり、そ
のようなものとしてはシリカ質、アルミナ質、シリカ−
アルミナ質などの無機質のものが工業的に生産され、流
動触媒やその担体として市販されている。これらの粒子
は本発明には好適である。
Solid particles having the above-mentioned properties can usually be easily produced by a spray drying method, etc. 4. The solid particles used in the present invention must be stable at the operating temperature, and as such, Siliceous, alumina, silica
Inorganic materials such as alumina are produced industrially and are commercially available as fluidized catalysts and their supports. These particles are suitable for the present invention.

このような固体粒子の流動化を十分に行うためには、流
動用ガスの上昇速度(線速度)を流動化開始速度の5〜
lO倍以上とすることが必要であり、空塔基準ガス速度
として2 c m 7秒以上、好ましくは3 c m 
7秒が必要である。
In order to sufficiently fluidize such solid particles, the rising speed (linear velocity) of the fluidizing gas must be set at 5 to 50% of the fluidization start speed.
It is necessary to make it 1O times or more, and the superficial reference gas velocity is 2 cm 7 seconds or more, preferably 3 cm
7 seconds are required.

また流動用ガスの上昇速度が過大になると、流動層から
排出されるガスの保有熱量が増大し、またガスに伴われ
て流動層から飛散する粒子量が著しく増大するので、通
常は40cm/秒(空塔基71’−)以下であることが
必要であり、30cm/秒以下であることはさらに好ま
しい。
Furthermore, if the rising speed of the fluidizing gas becomes too high, the amount of heat held by the gas discharged from the fluidized bed will increase, and the amount of particles scattered from the fluidized bed with the gas will also increase significantly, so it is normally 40 cm/sec. (vacant group 71'-) or less, and more preferably 30 cm/sec or less.

本発明を効果的に実施するためにはガスに伴われて飛散
する粒子を回収して流動層へ常時戻すことが必要である
。終末速度が流動用ガス速度以下の微細な粒子は、ガス
に伴われて流動層から飛散し、そのままでは流動層の粒
子充填量か減少し。
In order to effectively carry out the present invention, it is necessary to collect particles scattered with the gas and constantly return them to the fluidized bed. Fine particles whose terminal velocity is less than the fluidizing gas velocity will be scattered from the fluidized bed along with the gas, and if left as is, the amount of particles packed in the fluidized bed will decrease.

微細な粒子の減少によって流動状態が不均一となる。従
って流動化状態の安定維持のためには飛散する粒子を回
収して流動層へ常時戻す機構が必要になる。
The flow state becomes non-uniform due to the reduction of fine particles. Therefore, in order to maintain a stable fluidized state, a mechanism is required to collect the scattered particles and constantly return them to the fluidized bed.

ガスに伴われて飛散する粒子を回収して流動層へ常時戻
す手段は特に限定されないが、一般に固体粒子の捕捉に
用いられているサイクロンやバグフィルタ−を用いるの
が便利である。特にサイクロン−デツプレッグ系は本発
明を実施する上で好適である。
The means for collecting particles scattered with the gas and constantly returning them to the fluidized bed is not particularly limited, but it is convenient to use a cyclone or a bag filter, which are generally used to capture solid particles. In particular, a cyclone-despreg system is suitable for carrying out the present invention.

流動層を加熱する手段は特に限定されない0例えば流動
層の外壁面や、流動層内に挿入した内挿物の伝熱面を電
気や高温流体などで加熱する方法がある。流動層内の内
挿物は、固体粒子の流動化を著しく妨げないように配置
する。また高温の流動ガスを過大したり、流動層内で燃
料を燃焼させたりしてもよい。
The means for heating the fluidized bed is not particularly limited; for example, there is a method of heating the outer wall surface of the fluidized bed or the heat transfer surface of an insert inserted into the fluidized bed using electricity, high-temperature fluid, or the like. The interpolation within the fluidized bed is positioned such that it does not significantly impede the fluidization of the solid particles. Alternatively, the amount of high-temperature fluidized gas may be increased or the fuel may be combusted within the fluidized bed.

流動用ガスの種類も特に限定されないが、常温または予
熱された空気や燃焼ガスなどが適している。
The type of fluidizing gas is not particularly limited, but room temperature or preheated air, combustion gas, etc. are suitable.

伝熱面を有する流体容器は、その伝熱面が流動層内に位
置していればよい。
The fluid container having a heat transfer surface only needs to have the heat transfer surface located within the fluidized bed.

被加熱流体は流体容器内を連続的に流してもよく、流す
ことなく回分的に一定時間保持してから取り出してもよ
い。
The fluid to be heated may be allowed to flow continuously in the fluid container, or may be held in batches for a certain period of time without being allowed to flow, and then taken out.

また流体容器の形状は特に限定されるものではないが、
流体を連続的に取扱う場合には管状1回分的に取扱う場
合には槽状か望ましい、いずれの場合でも、固体粒子の
流動を著しく妨げないように均一に配置することが重要
である。特に加熱面と流体との温度差を少なくして流体
の過熱を防ぐためには、流体を高速度で管状路内を流す
ことが望ましい。
Furthermore, the shape of the fluid container is not particularly limited;
When handling the fluid continuously, it is preferable to use a tubular shape, and when handling the fluid in one batch, it is preferable to use a tank shape. In either case, it is important to uniformly arrange the solid particles so as not to significantly impede the flow of the solid particles. In particular, in order to reduce the temperature difference between the heating surface and the fluid and prevent overheating of the fluid, it is desirable to flow the fluid through the tubular passage at a high velocity.

第1図は本発明を実施するための装置の一例を示す図で
ある。
FIG. 1 is a diagram showing an example of an apparatus for implementing the present invention.

第1図においてlか流動層装置であり、流動用ガスが導
管4から流動層底部へ供給され、分散板3を通って流動
層2へと噴出される。流動層内には被加熱流体が通る導
管6があり、流体は6Aから流入して6Bから流出する
。流動層は電気ヒーター5で加熱され、しかも流WJ層
温度が一定になるように加熱量か自動制御されている。
1 is a fluidized bed apparatus, in which fluidizing gas is supplied from a conduit 4 to the bottom of the fluidized bed and is injected into the fluidized bed 2 through a distribution plate 3. Within the fluidized bed there is a conduit 6 through which the fluid to be heated passes, the fluid entering through 6A and exiting through 6B. The fluidized bed is heated by an electric heater 5, and the amount of heating is automatically controlled so that the temperature of the flowing WJ layer is constant.

流動層を離れた高温ガスはサイクロン8によって同伴す
る粒子を分離されて、管9から排出される。サイクロン
で捕集された粒子は導管(デツプレッグ)10を通って
流動層2へ連続的に戻される。
The hot gas leaving the fluidized bed is separated from entrained particles by a cyclone 8 and discharged through a pipe 9. The particles collected by the cyclone are continuously returned to the fluidized bed 2 through a conduit (despreg) 10.

以下実施例及び比較例により本発明の構成及び効果を具
体的に示す。
The structure and effects of the present invention will be specifically illustrated below using Examples and Comparative Examples.

1差j 第1図に示した構造の鋼管製の流動層装置を用いた。装
置の主なる仕様は以下の通りである。
1 difference j A fluidized bed apparatus made of steel pipes having the structure shown in FIG. 1 was used. The main specifications of the device are as follows.

流動層部内径: 8cm 流動層部高さ:1m 被加熱流体導管内径・4 m m 被加熱流体導管長さ:4m 電気ヒーター(公称)・2kw また使用した固体粒子の仕様は下記の通りである。Fluidized bed inner diameter: 8cm Fluidized bed height: 1m Heated fluid conduit inner diameter: 4 mm Heated fluid conduit length: 4m Electric heater (nominal)・2kw The specifications of the solid particles used are as follows.

基材ニジリカーアルミナ質流動触媒 重量平均径(50重量%)+561Lm嵩密度+0.8
5g/am” 上記流動層装置に、上記の固体粒子2.7kgを充填し
、常温で38ONl/hの空気を流して流動層を形成さ
せ、電気ヒーターで流動層を加熱し、流動層温度が約2
50 ’Cに達した所で、約200℃に予熱して液状に
なっている石油ピッチを2.5kg/hて被加熱導管内
に流した。
Base material rainbow liquor alumina fluid catalyst weight average diameter (50% by weight) + 561Lm bulk density + 0.8
5 g/am'' The above fluidized bed apparatus was filled with 2.7 kg of the above solid particles, 38 ONl/h of air was flowed at room temperature to form a fluidized bed, the fluidized bed was heated with an electric heater, and the temperature of the fluidized bed was increased. Approximately 2
When the temperature reached 50'C, 2.5 kg/h of petroleum pitch, which had been preheated to about 200°C and became liquid, was flowed into the heated conduit.

次いで流動層温度を380 ’Cに設定して自動制御し
た(空気線速度5 c m 7秒)、はぼ定常化された
時点で流動層温度は380±1’Cに維持され流出する
ピッチの温度は379±1℃とほぼ一定になった。
Next, the fluidized bed temperature was set to 380'C and automatically controlled (air linear velocity 5 cm, 7 seconds).When the fluidized bed temperature was almost stabilized, the fluidized bed temperature was maintained at 380±1'C and the temperature of the outflowing pitch was maintained at 380±1'C. The temperature became almost constant at 379±1°C.

この時の電気ヒーターの消費電力は、約0.8kwであ
った。
The power consumption of the electric heater at this time was about 0.8 kW.

L較1 下記仕様の固体粒子を用いた。L comparison 1 Solid particles having the following specifications were used.

基材:砂 重量平均径(50重量%):500gm嵩密度:1.4
g/cm’ 実施例で使用した流動層装置を使用し、上記の固体粒子
を4.4Kg (容量で実施例1と等量)を充填した。
Base material: sand Weight average diameter (50% by weight): 500gm Bulk density: 1.4
g/cm' Using the fluidized bed apparatus used in the example, 4.4 kg (equivalent in volume to Example 1) of the above solid particles was filled.

常温で380ON立/hの空気を流すことにより流動層
か形成出来たが、流動層の圧力変動か大きく、流動状態
は著しく不均一であった0次いで電気ヒーターで流動層
を加熱し、流動層温度か約250℃に達した所で約20
0℃に予熱して液状になっている石油ピッチを2.5k
g/hて被加熱導管内に流した。
A fluidized bed was formed by flowing air at 380 V/h at room temperature, but the pressure fluctuations in the fluidized bed were large and the fluidized state was extremely uneven.Next, the fluidized bed was heated with an electric heater, and the fluidized bed was Approximately 20℃ when the temperature reaches approximately 250℃
2.5k of liquid petroleum pitch preheated to 0℃
g/h into the heated conduit.

次いて流動層温度を380℃に設定して自動制御した(
空気線速度50cm/秒)、はぼ定常化された時点で流
動層温度は380±2°Cに維持され、流出するピッチ
の温度は378±2℃となった。
Next, the fluidized bed temperature was set to 380°C and automatically controlled (
The temperature of the fluidized bed was maintained at 380±2° C. when the air line velocity was 50 cm/sec) and the temperature became almost constant, and the temperature of the pitch flowing out was 378±2° C.

この時の電気ヒーターの消費電力は、約1.3kwてあ
った。
The power consumption of the electric heater at this time was approximately 1.3kw.

なお実施例及び比較例で使用した流動層装置は小型の実
験装置なので加熱所要熱量中に占める装置外壁からの熱
損失(実施例の場合も比較例の場合も同一)の比率が比
較的大きいが、大型の装置ては装置外壁からの熱損失の
比率が小さくなり、流動層から排出される流動用ガスに
伴なう熱損失の比率が著しく増加するので、本発明の方
法は熱経済性において従来法に比較して大幅に優れてい
る。
Note that the fluidized bed apparatus used in the Examples and Comparative Examples is a small experimental apparatus, so the proportion of heat loss from the outer wall of the apparatus (the same in both Examples and Comparative Examples) in the amount of heat required for heating is relatively large. In large-scale equipment, the ratio of heat loss from the outer wall of the equipment becomes small, and the ratio of heat loss due to fluidizing gas discharged from the fluidized bed increases significantly. Significantly superior to conventional methods.

また実施例は比較例に対し空気流量が10分の1であり
1粒子の嵩密度の差による流動層の圧力損失を考慮すれ
ば未発明における送風動力は従来法の10分の1以下と
なり、大型の装置では加熱所要熱量の減少と合せエネル
ギー経済性において従来法に比較して著しい向上か望め
る。
In addition, the air flow rate in the example is one-tenth that of the comparative example, and when considering the pressure loss of the fluidized bed due to the difference in bulk density of one particle, the blowing power in the uninvented case is less than one-tenth of the conventional method. In large-scale equipment, it is expected that the amount of heat required for heating will be reduced and the energy economy will be significantly improved compared to conventional methods.

ハ8発明の効果 本発明方法は従来法に対して、次のような特長を有する
C.8 Effects of the Invention The method of the present invention has the following advantages over conventional methods.

a、流動層の圧力変動か小さく、流動層内を高くしても
スラッギング(流動層がピストン状に上下N動すること
)を発生することがなく、十分な伝熱面か得られれ1M
転操作が容易である。
a. The pressure fluctuation in the fluidized bed is small, and even if the inside of the fluidized bed is raised, slagging (fluidized bed moves up and down like a piston) does not occur, and a sufficient heat transfer surface is obtained.
Easy to rotate.

b、流動層内の温度か均一であり、流動層とその中にR
Mされた流体容器の伝熱面との間の伝熱係数か大きく出
来るので、被加熱流体を従来法に比較してより一層均−
な温度で加熱することが出来る。
b, the temperature inside the fluidized bed is uniform, and the fluidized bed and R inside it.
Since the heat transfer coefficient between the heated fluid container and the heat transfer surface can be increased, the heated fluid can be heated more uniformly than in the conventional method.
It can be heated to a certain temperature.

C0装置の摩耗による故障や、粒子の損耗が著しく少な
い。
Breakdowns due to wear of the CO device and wear and tear of particles are significantly reduced.

d、小さいガス空塔速度て流動化が出来るので、送ガス
のための電力が少なくて済み、また高温な流動用ガスの
排出量が少ないことから、それに伴なう熱損失が減少し
、加熱のために必要な熱量が低減される。
d. Fluidization is possible with a small superficial gas velocity, so less electricity is required for gas supply, and the amount of high-temperature fluidizing gas discharged is small, reducing the associated heat loss and heating. The amount of heat required for this is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の一例を示す図で
ある。
FIG. 1 is a diagram showing an example of an apparatus for implementing the present invention.

Claims (1)

【特許請求の範囲】 1 固体粒子がガスによって流動化されている加熱され
た流動層内に伝熱面を有する流体容器を設置してその流
体を加熱する方法において、固体粒子として重量平均径
30〜120μm、嵩密度0.3〜1.5g/cm^3
の実質的に球形の粒子を用い、流動用ガスの上昇速度を
流動層の空塔基準で2〜40cm/秒に保持することを
特徴とする微粉流動層を用いる流体の加熱方法。 2 固体粒子がガスによって流動化されている加熱され
た流動層内に伝熱面を有する流体容器を設置してその流
体を加熱する方法において、固体粒子として重量平均径
30〜120μm、嵩密度0.3〜1.5g/cm^3
の実質的に球形の粒子を用い、流動用ガスの上昇速度を
流動層の空塔基準で2〜40cm/秒に保持し、ガスに
伴われて飛散する粒子を回収して流動層へ戻すことを特
徴とする微粉流動層を用いる流体の加熱方法。
[Claims] 1. A method of heating a fluid by installing a fluid container having a heat transfer surface in a heated fluidized bed in which solid particles are fluidized by a gas, wherein the solid particles have a weight average diameter of 30 ~120μm, bulk density 0.3~1.5g/cm^3
A method for heating a fluid using a fine powder fluidized bed, characterized in that substantially spherical particles are used, and the rising speed of the fluidizing gas is maintained at 2 to 40 cm/sec based on the empty column of the fluidized bed. 2 In a method of heating the fluid by installing a fluid container having a heat transfer surface in a heated fluidized bed in which solid particles are fluidized by gas, the solid particles have a weight average diameter of 30 to 120 μm and a bulk density of 0. .3~1.5g/cm^3
Using substantially spherical particles, the rising speed of the fluidizing gas is maintained at 2 to 40 cm/sec based on the empty column of the fluidized bed, and the particles scattered with the gas are collected and returned to the fluidized bed. A method for heating a fluid using a fine powder fluidized bed.
JP1076888A 1988-01-22 1988-01-22 Heating of fluid in fluidized bed of fine powder Pending JPH01189494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076888A JPH01189494A (en) 1988-01-22 1988-01-22 Heating of fluid in fluidized bed of fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076888A JPH01189494A (en) 1988-01-22 1988-01-22 Heating of fluid in fluidized bed of fine powder

Publications (1)

Publication Number Publication Date
JPH01189494A true JPH01189494A (en) 1989-07-28

Family

ID=11759507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076888A Pending JPH01189494A (en) 1988-01-22 1988-01-22 Heating of fluid in fluidized bed of fine powder

Country Status (1)

Country Link
JP (1) JPH01189494A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302504A (en) * 1989-05-16 1990-12-14 Ube Ind Ltd Fluidized-bed combustion equipment
JPH04137301A (en) * 1990-09-27 1992-05-12 Koito Mfg Co Ltd Head lamp for vehicle
JP5933065B1 (en) * 2015-03-27 2016-06-08 メタウォーター株式会社 Incineration apparatus and incineration method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302504A (en) * 1989-05-16 1990-12-14 Ube Ind Ltd Fluidized-bed combustion equipment
JPH04137301A (en) * 1990-09-27 1992-05-12 Koito Mfg Co Ltd Head lamp for vehicle
JP5933065B1 (en) * 2015-03-27 2016-06-08 メタウォーター株式会社 Incineration apparatus and incineration method

Similar Documents

Publication Publication Date Title
CN101676203B (en) Reactor for producing high purity granular silicon and method thereof
US2377657A (en) Catalytic hydrocarbon conversion system
JP2680976B2 (en) Method and apparatus for treating gases and particulate solids in a fluidized bed
US2819951A (en) Apparatus for the regeneration of catalyst
US4894081A (en) Spherulizing furnace
US2714126A (en) Method of effecting conversion of gaseous hydrocarbons
JPS6116499B2 (en)
JP5095082B2 (en) Method and equipment for transporting fine solids
US2472377A (en) Process for hydrocarbon synthesis
JP2006511326A5 (en)
JPH01189494A (en) Heating of fluid in fluidized bed of fine powder
EP0004966B1 (en) Exothermic polymerization in a vertical fluid bed reactor system containing cooling means therein.
JPH01168334A (en) Fluidized bed equipped with heated liner
JPH0233030A (en) Discharge controller for ventilating pipe
JP2689346B2 (en) Inner core heating method in fluidized bed
FI94170C (en) Fluidized bed boiler with internal circulation and method for controlling this
US2675294A (en) Method of effecting chemical conversions
US2468521A (en) Heat control in an exothermic reaction
US3092490A (en) Process and apparatus for the reduction of iron ore
US2977105A (en) Apparatus for cement manufacture
US2740750A (en) Method and apparatus for fluidized catalytic conversion
US4934876A (en) Aeration apparatus for discharge control of particulate matter
JPH06127924A (en) Production of polycrystalline silicon
US2902433A (en) Transfer line discharge nozzle
CN85107163A (en) Make the method for gas from carbonaceous fuel