JPH01188659A - Formation of thermally sprayed ceramic layer - Google Patents

Formation of thermally sprayed ceramic layer

Info

Publication number
JPH01188659A
JPH01188659A JP63012269A JP1226988A JPH01188659A JP H01188659 A JPH01188659 A JP H01188659A JP 63012269 A JP63012269 A JP 63012269A JP 1226988 A JP1226988 A JP 1226988A JP H01188659 A JPH01188659 A JP H01188659A
Authority
JP
Japan
Prior art keywords
layer
sprayed layer
ceramic
thermally sprayed
al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63012269A
Other languages
Japanese (ja)
Inventor
Takashi Tomota
隆司 友田
Noritaka Miyamoto
典孝 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63012269A priority Critical patent/JPH01188659A/en
Publication of JPH01188659A publication Critical patent/JPH01188659A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thermally sprayed ceramic layer capable of surely and sufficiently preventing peeling and falling by thermally spraying a ZrO2-type material containing Al2O3 and transforming Al2O3 in the thermally sprayed layer into alpha-Al2O3 by means of heating so as to expand the volume and cause cracking to the thermally sprayed layer. CONSTITUTION:A thermal spraying material in which 20-50wt.% of Al2O3 is mixed with ZrO2-type material is thermally sprayed on a base material or an undercoat layer, by which a thermally sprayed ceramic layer in which gamma-Al2O3 is dispersed in the ZrO2-type material is formed. Subsequently, by heating the surface of the above thermally sprayed layer up to 1200 deg.C or above, gamma-Al2O3 in the thermally sprayed layer is transformed into stable alpha-Al2O3 and, at this time, a volume expansion of about 3-9% is brought about. As the result, fine cracks are caused to the ZrO2-type material principally around the above gamma-Al2O3. By this method, the thermally sprayed ceramic layer in which peeling and falling are prevented and durability is improved to a greater extent than heterofore can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動車エンジン用部品あるいはターボチャー
ジャー用部品の如く、高温に暉される雰囲気で使用され
る部材に対して断熱、遮熱等のためにセラミック溶射層
を形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention uses ceramics for heat insulation, heat shielding, etc. for parts used in high-temperature atmospheres, such as parts for automobile engines or parts for turbochargers. The present invention relates to a method of forming a sprayed layer.

従来の技術 従来から、自動車エンジン用ピストンの如く、高温加熱
される部位を有する部材、特にアルミニウム合金を母材
とする部材においては、母材表面に熱伝導率が低くかつ
耐熱性が優れたセラミックを溶射してセラミック溶剤層
を形成することにより、断熱性や耐熱性を改善したセラ
ミック溶射部材が適用されている。
Conventional technology Traditionally, parts such as automobile engine pistons that have parts that are heated to high temperatures, especially parts whose base material is aluminum alloy, have been made with ceramics that have low thermal conductivity and excellent heat resistance on the surface of the base material. Ceramic thermal sprayed members with improved heat insulation and heat resistance are being used by thermally spraying to form a ceramic solvent layer.

このような従来のセラミック溶射部材について、自動車
エンジン用ピストンを例に採って以下さらに詳細に説明
する。
Such a conventional ceramic sprayed member will be described in more detail below using a piston for an automobile engine as an example.

近年、エンジンに使用されるピストンとしては、エンジ
ンにおける往復運動部の慣性力を低減させるための軽量
化を主眼として、アルミニウム合金により鋳造成形され
たピストンを使用することが多くなっている。しかしな
がらアルミニウム合金は熱伝導率が大きい材料であるか
ら、アルミニウム合金製ピストンを用いたエンジンでは
、燃焼室における燃料の燃焼によって発生した燃焼熱が
ピストンを介して燃焼至外へ伝達され、その分だけエン
ジンの熱効率を悪化させてエンジンの出力、燃費を低下
させる傾向があった。そこでアルミニラム合金製ピスト
ンを介して燃焼案外へ伝達される熱損失を低減するため
に、ピストンの頂面(ピストンヘッド)等に熱伝導率の
小さいセラミック材料を溶射して、断熱性を改善したセ
ラミック溶射ピストンの適用が試みられている(例えば
[CIJllIinS/TACOHAdvanded 
AdiabatiCEngin、 JR,Kamo e
t al、S^E Paper No、840428等
)。
In recent years, as pistons used in engines, pistons cast from aluminum alloy have been increasingly used, with a focus on weight reduction in order to reduce the inertia of reciprocating parts in the engine. However, since aluminum alloy is a material with high thermal conductivity, in engines using aluminum alloy pistons, the combustion heat generated by combustion of fuel in the combustion chamber is transferred to the outside of combustion via the piston, and the This tends to deteriorate the thermal efficiency of the engine, resulting in lower engine output and fuel efficiency. Therefore, in order to reduce the heat loss that is transferred to the combustion side through the aluminum ram alloy piston, a ceramic material with low thermal conductivity is sprayed on the top surface (piston head) of the piston, etc., and the ceramic material has improved heat insulation properties. Attempts have been made to apply thermal spray pistons (e.g. [CIJllIinS/TACOHA Advanced
AdiabatiCEngin, JR, Kamo e
tal, S^E Paper No. 840428, etc.).

しかしながら、このようにアルミニウム合金を母材とし
てセラミック溶射層を形成したセラミック溶射ピストン
においては、母材であるアルミニウム合金の熱膨張係数
とセラミック材料の熱膨張係数との間に大きな差があり
、そのためエンジンの作動に伴なう加熱・冷却を繰返し
ている間にアルミニウム合金製母材表面とセラミック溶
射層との熱膨張差に起因してその界面に亀裂が発生し、
遂には母材表面からセラミック溶射層が剥離・脱落して
しまうことがある。
However, in ceramic sprayed pistons in which a ceramic sprayed layer is formed using an aluminum alloy as a base material, there is a large difference between the coefficient of thermal expansion of the aluminum alloy that is the base material and the thermal expansion coefficient of the ceramic material. During repeated heating and cooling associated with engine operation, cracks occur at the interface due to the difference in thermal expansion between the surface of the aluminum alloy base material and the ceramic sprayed layer.
Eventually, the ceramic sprayed layer may peel off or fall off from the base material surface.

そこで最近では、セラミック溶射層に用いるセラミック
材料として、各種のセラミック材料のうちでも熱膨張係
数が最も金属に近いものの一つであるジルコニア(Zr
02)系の材料を選択づることが多くなっている。しか
しながらこのようにジルコニア系材料からなる溶射層を
形成したセラミック溶射部材に6いても、溶剤層の剥離
・脱落を確実に防止づ−ることは困難てあった。
Therefore, recently, zirconia (Zr
02) It is becoming more common to select the material of the system. However, even if a ceramic sprayed member is coated with a sprayed layer made of a zirconia material, it is difficult to reliably prevent the solvent layer from peeling off or falling off.

一方、従来からアルミニウム合金母材とセラミック溶射
層との熱膨張係数の外によるセラミック溶射層の剥離を
防止するための方法として、予め母材の表面に熱膨張係
数が母材とセラミックとの間の中間でしかもセラミック
との密着性が良好な金属、例えばNi−Cr−A1合金
、N1−Cr−AN−Y合金、N i −Go−Cr−
Af−Y合金などを薄く溶射して、ポンド層あるいは中
間層と称される下地溶射層を形成しておき、その下地溶
射層の上にセラミック溶射層を溶射する方法が知られて
いる(例えば前掲刊行物)が、このように下地溶射層を
形成した場合でも、熱膨張差に起因するセラミック溶射
層の剥離、脱落を防止するには未だ充分ではなかった。
On the other hand, as a conventional method to prevent the peeling of the ceramic sprayed layer due to the coefficient of thermal expansion between the aluminum alloy base material and the ceramic sprayed layer, the thermal expansion coefficient is set on the surface of the base material in advance between the base material and the ceramic sprayed layer. Metals that are intermediate between the above and have good adhesion to ceramics, such as Ni-Cr-A1 alloy, N1-Cr-AN-Y alloy, Ni-Go-Cr-
A method is known in which a base sprayed layer called a pond layer or an intermediate layer is formed by spraying a thin layer of Af-Y alloy, and a ceramic sprayed layer is sprayed on top of the base sprayed layer (for example, Even when the base sprayed layer was formed in this way, it was still not sufficient to prevent the ceramic sprayed layer from peeling or falling off due to the difference in thermal expansion.

そこでセラミック溶剤層内に微細なりラックを導入し、
その微細なりラックにより使用時の熱応力を緩和して、
溶射層の剥離、脱落を防止しようとづる方法が特開昭5
8−87273号において提案されている。づなわちこ
の提案の方法は、セラミックを溶射した後、その溶射層
が未だ高温のうちに6五1]用の不活性ガスを吹付けて
溶射層を急冷し、これにより溶射層内に微細なりラック
を弁士させ、その微細クラックにより熱応力を緩和させ
る方法である。また本出願人に係る特願昭61−118
59’llにd3いては、特に皮膜片の大きいセラミッ
ク溶射層においても全厚みにわたって微細なりラックを
導入して熱応力を緩和させる方法として、溶射後のセラ
ミック溶射層表面にレーザ等の高密度エネルギを照射し
て溶射層の最表面層のみを急速再溶融・再凝固させるこ
とによりその最表面層に微細なりランクを発生させ、し
かる後溶射層に冷熱サイクルを与えてクラックを溶射層
の全厚みにわたって成長させる方法が提案されている。
Therefore, we introduced fine racks into the ceramic solvent layer,
The fine rack reduces thermal stress during use,
A method to prevent the peeling and falling off of the sprayed layer was published in Japanese Patent Application Laid-Open No. 5
No. 8-87273. In other words, in this proposed method, after the ceramic is sprayed, while the sprayed layer is still at a high temperature, an inert gas (651) is blown onto the sprayed layer to rapidly cool it, thereby creating fine particles within the sprayed layer. This is a method in which the Nari rack is made into a benshi, and the thermal stress is alleviated by the microscopic cracks. In addition, the applicant's patent application 1986-118
In d3 of 59'll, high-density energy such as a laser is applied to the surface of the ceramic sprayed layer after thermal spraying, as a method of introducing fine racks over the entire thickness of the ceramic sprayed layer with particularly large coating pieces to alleviate thermal stress. is irradiated to rapidly remelt and resolidify only the outermost layer of the sprayed layer, producing fine cracks in the outermost layer, and then subjecting the sprayed layer to a cooling and heating cycle to eliminate cracks throughout the entire thickness of the sprayed layer. Methods have been proposed to grow the species over a period of time.

弁明が解決すべき問題点 前述の特開昭58−87273号の方法では、セラミッ
ク溶射層中に導入したamなりラックによって、熱膨張
差による熱応力がかなりの程度で緩和され、微細クラッ
クを導入しない場合と比較すればセラミック溶射層の剥
離・脱落が生じにくくなる。しかしながらこの方法では
溶射後に急冷させてクラックを生じさせるため、クラッ
ク弁士位置をコントロールすることができず、母材との
界面あるいは下地層との界面においてもクラックが生じ
てしまい、その界面のクラックによって逆にセラミック
溶射層の剥離が生じ易くなってしまうことがあり、した
がって確実かつ充分にセラミック溶射層の剥離・脱落を
防止して、その耐久性を満足できる程度まで向上させる
ことは困難であった。また上記方法の場合、クラック導
入のための急冷を不活性ガス吹付けによって行なうため
、セラミック溶射層の膜厚が厚い場合は急冷効果が不充
分となって割れが粗大となり、熱応力の緩和に余り有効
でなくなる問題もあった。
Problems to be solved by the defense In the method of JP-A-58-87273 mentioned above, the thermal stress due to the difference in thermal expansion is alleviated to a considerable extent by the am-shaped rack introduced into the ceramic sprayed layer, and micro-cracks are introduced. Compared to the case where no coating is used, the ceramic sprayed layer is less likely to peel or fall off. However, in this method, cracks are generated by rapid cooling after thermal spraying, so it is not possible to control the position of the crack, and cracks also occur at the interface with the base material or the base layer, and the cracks at the interface On the contrary, the ceramic sprayed layer may easily peel off, so it has been difficult to reliably and sufficiently prevent the ceramic sprayed layer from peeling or falling off and improve its durability to a satisfactory level. . In addition, in the case of the above method, the quenching to introduce cracks is performed by spraying inert gas, so if the ceramic sprayed layer is thick, the quenching effect is insufficient and the cracks become coarse, making it difficult to alleviate thermal stress. There were also problems that made it less effective.

一方特願昭61−1185’99号の方法の場合、セラ
ミック溶射層が厚い場合でもその全厚みにわたって比較
的微細なりラックを形成することができる利点はあるが
、溶射層に冷熱サイクルを加えてクラックの全厚みにわ
たり成長させる際に、前述の特開昭58−.87273
号の方法と同様にクラックの成長位置を制御することが
できず、母材や下地層との界面にクラックが生じてその
部分から溶射層の剥離が生じ易くなり、その結果前記同
様に満足できる程度まで耐久性を向上させることは困難
であった。
On the other hand, the method disclosed in Japanese Patent Application No. 1185'99/1985 has the advantage of being able to form relatively fine racks over the entire thickness of the ceramic sprayed layer even if it is thick; When growing the crack over its entire thickness, the above-mentioned JP-A-58-. 87273
Similar to the method in No. 1, it is not possible to control the growth position of cracks, and cracks occur at the interface with the base material and underlying layer, making it easy for the sprayed layer to peel off from that area.As a result, the results are as satisfactory as above. It was difficult to improve durability to this extent.

この発明は以上の事情を背景としてなされたもので、セ
ラミック溶剤層に生じる熱応力を緩和するべく溶射層内
に微細なりラックを導入するにあたって母材や下地層と
の界面にクラックを生ぜしめることなく、溶射層内部の
みに均一かつ微細なりラックを発生させ得るようにする
とともに、クラックの程度もコントロール可能とし、こ
れにより前述のような問題を招くことなく、セラミ乙り
溶射層の剥離・脱落を確実かつ充分に防止できるように
して耐久性を従来よりも格段に高めたセラミック溶射層
を形成する方法を提供することを目的とするものである
This invention was made against the background of the above-mentioned circumstances, and it is necessary to introduce cracks at the interface with the base material and base layer when introducing fine racks into the sprayed layer in order to alleviate the thermal stress generated in the ceramic solvent layer. This makes it possible to generate uniform and fine cracks only inside the sprayed layer, and also to control the degree of cracking, thereby preventing the peeling and falling off of the ceramic sprayed layer without causing the above-mentioned problems. It is an object of the present invention to provide a method for forming a ceramic sprayed layer that can reliably and sufficiently prevent the above-mentioned problems and has significantly improved durability compared to conventional methods.

問題点を解決づるための手段 この弁明のセラミック溶射層の形成方法は、ジルコニア
系材料にアルミナを20〜50重量%混合した材料を溶
剤材料とし、これを溶射した後、溶射層表面を加熱して
溶剤層中のアルミナをγ−A1203からα−7A20
3に変態させ、この変態によるアルミナの体積膨張によ
り溶剤層中にクラックを生ぜしめることを特徴とするも
のである。
Means to Solve the Problem The method of forming the ceramic sprayed layer in this defense uses a zirconia-based material mixed with 20 to 50% by weight of alumina as a solvent material, and after spraying this, the surface of the sprayed layer is heated. The alumina in the solvent layer was changed from γ-A1203 to α-7A20.
3, and the volumetric expansion of alumina caused by this transformation causes cracks in the solvent layer.

作   用 ジルコニア系材料に20〜50重量%のアルミナを混合
した溶射材料を用いてこれを母材上あるいは下地層上に
溶射すれば、ジルコニア系材料中にアルミナが分散した
セラミック溶射層が形成される。
Function: If a thermal spray material consisting of a zirconia material mixed with 20 to 50% by weight of alumina is sprayed onto a base material or an underlying layer, a ceramic spray layer with alumina dispersed in the zirconia material will be formed. Ru.

ここで、溶射前のアルミナがα−Al2O3にヤの他の
相のアルミナであっても、溶射層中のアルミナ、なりち
等射後の冷却凝固されたアルミナは、γ−Ai’203
となっているのが通常である。そこでこの発明の方法で
は、溶剤後に改めて溶射層表面を加熱して溶射層中のア
ルミナを γ−Al2O3にら安定なα−八へ203に変、態させ
る。なおγ−八へ203から安定なα−Aβ203に変
態する温度は1200℃程度であるから、1200℃あ
るいはそれ以上の温度に溶射層表面を加熱づれば、溶射
層中のアルミナをγからαに変態させることができる。
Here, even if the alumina before thermal spraying is alumina in another phase other than α-Al2O3, the alumina in the thermal spray layer and the alumina cooled and solidified after iso-spraying are γ-Al203.
This is usually the case. Therefore, in the method of the present invention, the surface of the sprayed layer is heated again after the solvent is used to transform the alumina in the sprayed layer from γ-Al2O3 to stable α-8203. Note that the temperature at which γ-8203 transforms into stable α-Aβ203 is about 1200°C, so if the surface of the sprayed layer is heated to 1200°C or higher, the alumina in the sprayed layer will transform from γ to α. can be done.

γ−Aβ203がα−7A1203に変態する際には、
3〜9%程度の体積膨張が生じる。したがって前述のよ
うに溶射層を加熱し1.て、溶射層中に分散したアルミ
をγ→α変態させることにより、分散したアルミナが体
積膨張して主としてそのアルミナの周囲のジルコニア系
材料に微細なりランクを生じさせる。このようにして生
成された微細なりラックは、使用時において熱膨張差に
よる熱応力を緩和させる機能を果たす。
When γ-Aβ203 metamorphoses into α-7A1203,
A volume expansion of about 3 to 9% occurs. Therefore, the sprayed layer is heated as described above.1. By subjecting the aluminum dispersed in the sprayed layer to γ→α transformation, the volume of the dispersed alumina expands, causing a fine rank to occur mainly in the zirconia-based material surrounding the alumina. The finely shaped rack thus produced functions to relieve thermal stress due to thermal expansion differences during use.

ここで、アルミナの変態膨張による微細なりラック4は
、アルミナの存在している部分の近傍に多く発生するか
ら、従来法の場合のように母材や下地層どの界面にクラ
ックが生じるおそれは少ない。
Here, since the fine racks 4 caused by the transformation and expansion of alumina are often generated near areas where alumina is present, there is less risk of cracks occurring at the interface between the base material and the base layer as in the case of the conventional method. .

また溶−層中におけるアルミナの分布を制御することに
よって、熱応力の緩和に対して適正な数の。
In addition, by controlling the distribution of alumina in the melt layer, an appropriate number of alumina can be obtained for alleviating thermal stress.

均一かつ微細なりラックを形成することができる。A uniform and fine rack can be formed.

なお溶射材料中に含まれるアルミナの量が20重量%未
満では、セラミック溶剤層中のアルミナの分散Φも少な
くなるから、後述する性能評価試験2の結果からも明ら
かなように、セラミック溶射層中に生成される微細クラ
ックの数が少なく、そのため充分に熱応力を緩和する効
果が得られない。
Note that if the amount of alumina contained in the thermal spray material is less than 20% by weight, the dispersion Φ of alumina in the ceramic solvent layer will also be reduced. The number of microscopic cracks generated is small, and therefore the effect of relieving thermal stress cannot be obtained sufficiently.

一方アルミナの量が50重量%を越えれば、セラミック
溶−層中のアルミナ量が多過ぎ、クラックの発生数が多
過ぎて溶剤層が脆くなり、かえって溶射層の剥離5、脱
落が生じ易くなる。したがってこの発明の目的を達成す
るために必要なアルミナの混合割合は20〜50重量%
の範囲内である。
On the other hand, if the amount of alumina exceeds 50% by weight, the amount of alumina in the ceramic melt layer will be too large, and the number of cracks will be too large, making the solvent layer brittle, making it more likely that the sprayed layer will peel off or fall off. . Therefore, the mixing ratio of alumina necessary to achieve the purpose of this invention is 20 to 50% by weight.
is within the range of

なおまた、この発明で用いるジルコニア系材料とは、単
なるZ、 r O2のみならず、安定化ジルコニアや部
分安定化ジルコニア、例えばZrO2・Y2O3、Zr
O2・CaO1ZrO2・MqOなども含むことは勿論
である。
Furthermore, the zirconia-based materials used in this invention include not only simple Z, rO2, but also stabilized zirconia and partially stabilized zirconia, such as ZrO2/Y2O3, ZrO2, etc.
Of course, it also includes O2, CaO1, ZrO2, MqO, etc.

実施例 1実施例11 ジルコニア系材料としてZrO2・ 8Y203を用い
、これにアルミナを30重量%混合してセラミック溶射
材料を準備した。一方、第1図に示すようにJIS  
AC8A合金からなる50x 50x 10IHIの平
板状の基材(母材)1の表面にショツトブラスト処理を
施し、プラズマ溶射ガンにより 100〜150°Cに
予熱した後、o、i重厚てN1−Cr−Aβ合金を下地
層2として溶射した。その上に、前述のセラミック溶射
材料を電流500A、電圧65V1粉末供給160g/
分で0.5市厚にプラズマ溶射して、ジルコニア系材料
31の中にアルミナ32が分散しているセラミック溶射
層3を形成した。
Example 1 Example 11 ZrO2.8Y203 was used as a zirconia-based material, and 30% by weight of alumina was mixed therein to prepare a ceramic thermal spray material. On the other hand, as shown in Figure 1, JIS
The surface of a 50 x 50 x 10 IHI flat base material (base material) 1 made of AC8A alloy was shot blasted and preheated to 100 to 150°C with a plasma spray gun. An Aβ alloy was thermally sprayed as the base layer 2. On top of that, the above-mentioned ceramic spraying material was applied at a current of 500A, a voltage of 65V, and a powder supply of 160g/
A ceramic sprayed layer 3 in which alumina 32 is dispersed in a zirconia-based material 31 was formed by plasma spraying to a thickness of 0.5 minutes.

この後、同じプラズマ溶射ガンを用いて、セラミック溶
剤層3の表面からセラミック溶@層3が1200°C以
上となるように急加熱した。その結果、第1図に示して
いるように、セラミック溶射層3中に分散しているアル
ミナ32の周囲のシルコニア系材料31に微細なりラッ
ク4が形成された。
Thereafter, using the same plasma spray gun, the ceramic solvent layer 3 was rapidly heated from the surface thereof to a temperature of 1200° C. or higher. As a result, as shown in FIG. 1, fine racks 4 were formed in the zirconia-based material 31 around the alumina 32 dispersed in the ceramic sprayed layer 3.

なお第1図にJ3いて符号5は気孔である。In addition, in FIG. 1, J3 and reference numeral 5 are pores.

[比較例11 アルミナを混合せずにZrO2・ 8Y20aのみをセ
ラミック溶射材料として用い、実施例1と同様な方法で
セラミック溶射層形成までを行なつlこ 。
[Comparative Example 11] Only ZrO2.8Y20a was used as the ceramic spray material without mixing alumina, and the process up to the formation of the ceramic spray layer was carried out in the same manner as in Example 1.

[比較例21 アルミナを混合せずにZrO2・ 8Y203のみをセ
ラミック溶射材料として用い、実施例1と同様にセラミ
ック溶射層を形成し、さらにセラミック溶射層に急熱・
急冷処理を施してクラックを導入した。
[Comparative Example 21 A ceramic sprayed layer was formed in the same manner as in Example 1 using only ZrO2.8Y203 as a ceramic spraying material without mixing alumina, and the ceramic sprayed layer was further heated and
Cracks were introduced by rapid cooling treatment.

[性能評価試験1] 実施例1および比較例1.2の各溶射層について、次の
ような熱サイクル試験を行なった。すなわち、アセチレ
ン−M素バーナーによりセラミック溶射層の中央部を6
0秒間加熱した後、50°Cに保持した水中に入れて急
冷し、60秒間保持する加熱−冷却サイクルを5000
サイクル繰返した。その結果、比較例1の溶射層では、
1100サイクルでセラミック溶剤層の剥離が生じ、比
較例2の溶射層では3000サイクルでセラミック溶射
層に剥離が生じたが、実施例1の溶射層ては5000サ
イクル終了まで何ら異常は認められず、優れた耐久性を
有することが判明した。
[Performance Evaluation Test 1] The following thermal cycle test was conducted on each of the thermal sprayed layers of Example 1 and Comparative Examples 1.2. That is, the central part of the ceramic sprayed layer was heated by an acetylene-M elementary burner.
After heating for 0 seconds, quenching in water maintained at 50°C and holding for 60 seconds, the heating-cooling cycle was repeated 5000 times.
The cycle was repeated. As a result, in the sprayed layer of Comparative Example 1,
The ceramic solvent layer peeled off after 1100 cycles, and the ceramic sprayed layer of Comparative Example 2 peeled off after 3000 cycles, but no abnormality was observed in the sprayed layer of Example 1 until the end of 5000 cycles. It was found to have excellent durability.

ここで、試験前後の溶射層の組織状況を調べたところ、
比較例1ては評価中に下地層2とセラミック溶射層3と
の界面付近に大きな割れが生じて、溶射層の剥離に至っ
ていることが判明した。このような界面の割れは、基材
1とセラミック溶射層3との熱膨張差によるものである
と考えられる。
Here, when we investigated the structure of the sprayed layer before and after the test, we found that
In Comparative Example 1, it was found that during evaluation, large cracks were generated near the interface between the base layer 2 and the ceramic sprayed layer 3, leading to peeling of the sprayed layer. It is thought that such cracks at the interface are caused by a difference in thermal expansion between the base material 1 and the ceramic sprayed layer 3.

また比較例2では、試験前のセラミック溶射層3中のい
たる所に微細クラックが生じており、下地層2とセラミ
ック溶射層3との界面近傍にも多数のクラックが生じて
いる部分があり、そして評価試験中にその界面近傍のク
ラックがつながって大きなりランクとなり、溶射層の剥
離に至ったことが判明した。これに対し実施例1の溶射
層では、アルミナが均一かつ細かく分散していてそのア
ルミナの周囲に限って微細クラックが存在し、そのため
評IalI試験中においても界面近傍にクラックが集中
することがないため、優れた耐久性が得られたものと考
えられる。
In addition, in Comparative Example 2, fine cracks were generated everywhere in the ceramic sprayed layer 3 before the test, and there were also parts where many cracks were generated near the interface between the base layer 2 and the ceramic sprayed layer 3. During the evaluation test, it was discovered that the cracks near the interface were connected and became large, leading to the peeling of the sprayed layer. On the other hand, in the sprayed layer of Example 1, alumina is uniformly and finely dispersed, and microcracks exist only around the alumina, so cracks do not concentrate near the interface even during the evaluation IalI test. Therefore, it is thought that excellent durability was obtained.

1実施例21 第1表の符号A〜Gに示すような種々の氾合削合てZ 
r 02 ・ 8Y203とアルミナとを混合したセラ
ミック溶射材料を用意し、実施例1と同様な方法でセラ
ミック溶剤層を形成し、さらに実施例1と同様にしてセ
ラミック溶射層を1200°Cg、土に急加熱して、微
細なりラックを導入した。
1 Example 21 Various combinations and cuts as shown in symbols A to G in Table 1
A ceramic spray material made of a mixture of r 02 8Y203 and alumina was prepared, a ceramic solvent layer was formed in the same manner as in Example 1, and the ceramic spray layer was applied to soil at 1200°Cg in the same manner as in Example 1. After rapid heating, a fine rack was introduced.

第   1   表 [性能評価試験1 符号A−Gの各セラミック溶射材料により形成された実
施例2の各溶射層について、前記性能評価試験1と同様
な加熱−冷五ロサイクル試験を行なった。
Table 1 [Performance Evaluation Test 1] A heating-cooling five-cycle test similar to the performance evaluation test 1 was conducted for each thermal sprayed layer of Example 2 formed of each of the ceramic thermal sprayed materials labeled A to G.

その結果、符号Aの溶射材料を用いた場合は3500サ
イクルて溶剤層に剥離が生じ、また符号F1Gの溶射材
料を用いた場合はそれぞれ4000サイクル、3.OO
Oサイクルて溶射層に剥離が生じたが、符号B−Eの本
冗明範囲内の溶射材料を用いた場合は、5000サイク
ルの試験終了まで何ら異常が生じなかった。
As a result, the solvent layer peeled off after 3,500 cycles when the thermal spray material with code A was used, and after 4,000 cycles and 3.5 cycles when the spray material with code F1G was used. OO
Peeling occurred in the sprayed layer after O cycles, but when a sprayed material within the specified range of symbols B-E was used, no abnormality occurred until the end of the test of 5000 cycles.

ここで、各溶射層について評価前後の組織状況を調べた
ところ、符号Aの溶射材料を用いた場合は、溶射前にお
けるセラミック溶射層中の微細クラックの数が少なく、
そのためアルミナを混合しなかった比較例1の場合と同
様に評価試験中にセラミック溶射層と下地層との界面付
近に大きな割れが生じて、セラミック溶射層の剥離に至
ったことがN認された。また符号F、Gの溶射材料を用
いた場合は、アルミナの量が多過きるため、初期のセラ
ミック溶射層中のクラック数も極めて多くなり、そのた
めセラミック溶射層が著しく脆くなって溶射層の早期の
剥離をjGいたことが確認された。これに対し、アルミ
ナの混合割合がこの弁明の範囲内(20〜50Φ吊%)
となっている符号B〜Fの溶射材料を用いた場合は、セ
ラミック溶剤層内に導入される微細クラックの数が適正
であり、加熱−冷六〇サイクルを繰返しても早期の剥離
を招かないことが確認された。
Here, when we investigated the structure status before and after evaluation for each sprayed layer, when the sprayed material with code A was used, the number of microcracks in the ceramic sprayed layer before spraying was small;
As a result, similar to the case of Comparative Example 1 in which no alumina was mixed, large cracks occurred near the interface between the ceramic sprayed layer and the base layer during the evaluation test, leading to peeling of the ceramic sprayed layer. . Furthermore, when thermal spraying materials with symbols F and G are used, the amount of alumina is too large, so the number of cracks in the initial ceramic sprayed layer is also extremely large, which makes the ceramic sprayed layer extremely brittle and causes the early formation of the thermal sprayed layer. It was confirmed that the peeling occurred. On the other hand, the mixing ratio of alumina is within the range of this excuse (20-50Φ suspension%)
When using thermal spray materials with codes B to F, the number of microcracks introduced into the ceramic solvent layer is appropriate, and early peeling does not occur even after 60 heating-cooling cycles. This was confirmed.

弁明の効果 この弁明のセラミック溶射層形成方法によれば、ジルコ
ニア系材料に対してアルミナを20〜50重量%混合し
た溶射材料を用いてジルコニア系材料の中にアルミナを
分散さぜたセラミック溶射層を得、かつそのセラミック
溶射層中のアルミナをγ−アルミナからα−アルミナに
変態させてその変態に伴なう体積膨張によりアルミナの
周囲付近に熱応力緩和のための微細クラックを生成させ
るから、従来法のように基材や下地層との界面にクラッ
クが生じてかえってセラミック溶射層の剥離が生じ易く
なってしまうことを防」てき、しかもアルミナの分散を
制御プることによって熱応力緩和に最適な数の均一かつ
微細なりラックを生成することができ、したがってこの
弁明の方法により形成されたセラミック溶射層は、熱サ
イクルが加わる使用条件下での熱応力を充分に緩和して
剥離・脱落を確実かつ充分に防止することができ、従来
よりもその耐久性が飛躍的に向上される。
Effects of Defense According to the ceramic sprayed layer forming method of this defense, a ceramic sprayed layer in which alumina is dispersed in a zirconia-based material is created using a sprayed material in which 20 to 50% by weight of alumina is mixed with a zirconia-based material. In addition, the alumina in the ceramic sprayed layer is transformed from γ-alumina to α-alumina, and the volumetric expansion accompanying the transformation generates fine cracks near the periphery of the alumina for thermal stress relaxation. This method prevents the occurrence of cracks at the interface with the base material and underlayer, which would make it easier for the ceramic sprayed layer to peel off, which is the case with conventional methods.Moreover, by controlling the dispersion of alumina, thermal stress can be alleviated. It is possible to produce an optimal number of uniform and fine cracks, and therefore the ceramic sprayed layer formed by the method described in this defense can sufficiently relieve thermal stress under the usage conditions where thermal cycles are applied, so that it does not peel or fall off. can be reliably and sufficiently prevented, and its durability is dramatically improved compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの弁明により形成されたセラミック溶射層の
一例を模式的に示す縦断面図である。 1・・・基材、 2・・・下地層、 3・・・セラミッ
ク溶剤層、 31・・・ジルコニア材料、32・・・ア
ルミナ、4・・・ramクラック。 出願人  トヨタ自動車株式会社 代理人  弁理士 斐 1)武久 (ばか1名) 第1図
FIG. 1 is a longitudinal sectional view schematically showing an example of a ceramic sprayed layer formed according to this explanation. DESCRIPTION OF SYMBOLS 1... Base material, 2... Base layer, 3... Ceramic solvent layer, 31... Zirconia material, 32... Alumina, 4... Ram crack. Applicant Toyota Motor Corporation Agent Patent Attorney Hi 1) Takehisa (one idiot) Figure 1

Claims (1)

【特許請求の範囲】[Claims] ジルコニア系材料にアルミナを20〜50重量%混合し
た材料を溶射材料とし、これを溶射した後、溶射層表面
を加熱して溶射層中のアルミナをγ−Al_2O_3か
らα−Al_2O_3に変態させ、この変態によるアル
ミナの体積膨張により溶射層中にクラックを生ぜしめる
ことを特徴とするセラミック溶射層の形成方法。
The thermal spraying material is a mixture of 20 to 50% by weight of alumina in a zirconia material, and after this is thermally sprayed, the surface of the thermally sprayed layer is heated to transform the alumina in the thermally sprayed layer from γ-Al_2O_3 to α-Al_2O_3. A method for forming a ceramic sprayed layer characterized by causing cracks in the sprayed layer due to volumetric expansion of alumina due to transformation.
JP63012269A 1988-01-22 1988-01-22 Formation of thermally sprayed ceramic layer Pending JPH01188659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63012269A JPH01188659A (en) 1988-01-22 1988-01-22 Formation of thermally sprayed ceramic layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012269A JPH01188659A (en) 1988-01-22 1988-01-22 Formation of thermally sprayed ceramic layer

Publications (1)

Publication Number Publication Date
JPH01188659A true JPH01188659A (en) 1989-07-27

Family

ID=11800650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012269A Pending JPH01188659A (en) 1988-01-22 1988-01-22 Formation of thermally sprayed ceramic layer

Country Status (1)

Country Link
JP (1) JPH01188659A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062101A (en) * 1992-06-15 1994-01-11 Kurosaki Refract Co Ltd Alumina-zircon thermal spraying material containing metal powder
JP2006291350A (en) * 2005-04-07 2006-10-26 Sulzer Metco Ag Material and method for thermal coating, surface layer, and compressor provided with surface layer made from the material
US7987510B2 (en) 2001-03-28 2011-07-26 Rovi Solutions Corporation Self-protecting digital content
US8571993B2 (en) 2003-07-07 2013-10-29 Irdeto Usa, Inc. Reprogrammable security for controlling piracy and enabling interactive content

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062101A (en) * 1992-06-15 1994-01-11 Kurosaki Refract Co Ltd Alumina-zircon thermal spraying material containing metal powder
US7987510B2 (en) 2001-03-28 2011-07-26 Rovi Solutions Corporation Self-protecting digital content
US7996913B2 (en) 2001-03-28 2011-08-09 Rovi Solutions Corporation Self-protecting digital content
US8571993B2 (en) 2003-07-07 2013-10-29 Irdeto Usa, Inc. Reprogrammable security for controlling piracy and enabling interactive content
JP2006291350A (en) * 2005-04-07 2006-10-26 Sulzer Metco Ag Material and method for thermal coating, surface layer, and compressor provided with surface layer made from the material

Similar Documents

Publication Publication Date Title
US5277936A (en) Oxide containing MCrAlY-type overlay coatings
US4457948A (en) Quench-cracked ceramic thermal barrier coatings
JPH0251978B2 (en)
US5759640A (en) Method for forming a thermal barrier coating system having enhanced spallation resistance
KR20040014223A (en) Thermal barrier coating utilizing a dispersion strengthened metallic bond coat
JP2012140703A (en) Method of forming thermal barrier coating structure
US5900102A (en) Method for repairing a thermal barrier coating
Saini et al. Thermal barrier coatings-applications, stability and longevity aspects
EP3219827A1 (en) Heat-resistant member provided with heat-shielding coating, and method for manufacturing same
CN108265259B (en) Protective coating for TiAl alloy and preparation method thereof
JPS648072B2 (en)
EP2113582B1 (en) Process for forming an improved durability thick ceramic coating
JP2826824B2 (en) Thermal insulation coating method and gas turbine combustor
CN109440046A (en) A kind of aero-engine and gas turbine blades thermal barrier coating and preparation method thereof
CN109628921A (en) The method for preparing CoCrAlY coating based on laser melting coating and pulsed electron beam
GB2100621A (en) Strain tolerant thermal barrier coatings
JP2008095191A (en) Method for forming thermal barrier coating
RU2264480C2 (en) Method of deposition of protective coatings on details made out of refractory alloys
JPH01188659A (en) Formation of thermally sprayed ceramic layer
Zhang et al. Thermal shock resistance of thermal barrier coatings modified by selective laser remelting and alloying techniques
US6083330A (en) Process for forming a coating on a substrate using a stepped heat treatment
JPH0527706B2 (en)
JPS61207566A (en) Formation of thermally sprayed ceramic film
RU2260071C1 (en) Method of application of heat-insulating erosion-resistant coat
JPH07116583B2 (en) Thermal cycle thermal spray coating