JPH01188612A - 溶銑樋式溶融還元製鉄方法 - Google Patents

溶銑樋式溶融還元製鉄方法

Info

Publication number
JPH01188612A
JPH01188612A JP1281988A JP1281988A JPH01188612A JP H01188612 A JPH01188612 A JP H01188612A JP 1281988 A JP1281988 A JP 1281988A JP 1281988 A JP1281988 A JP 1281988A JP H01188612 A JPH01188612 A JP H01188612A
Authority
JP
Japan
Prior art keywords
iron
hot metal
slag
carbonaceous material
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1281988A
Other languages
English (en)
Inventor
Mitsuhiro Fukuda
光弘 福田
Ryuichi Hori
隆一 堀
Yoshiyuki Matsui
良行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1281988A priority Critical patent/JPH01188612A/ja
Publication of JPH01188612A publication Critical patent/JPH01188612A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、銑鉄製造装置から溶銑樋を通して流出される
溶銑を熱源とし、且つ該溶銑中の炭素を還元剤として活
用し、更に炭材を添加することによって鉄鉱石、予備還
元鉄鉱石、スクラップ等の製鉄原料を溶融還元して製鉄
を行なう方法の改良に関するものである。
[従来の技術] 製鉄手段は、高炉法に代表される間接製鉄法と溶融還元
法に代表される直接製鉄法に大別され、現在は連続操業
が可能で大量生産に適した高炉法が主流となっている。
ところが高炉法は、厖大な建設費と維持管理費を要する
という問題に加えて、竪型移動床反応を利用する方式で
あるから、操業効率や操業安定性を高めるためには、還
元剤として作用するコークス及び鉄源たる鉄鉱石を適当
な大きさと圧潰強度を持フたものに調整しなければなら
ず、装入原料の調整に多大な手数と費用がかかる。
これに対し溶融還元製鉄法では高炉はど大ぎな設備が必
要とされず、また鉄鉱石等の製鉄原料を溶融状態で還元
する方法であるから、比較的低品位の石炭でも、また粉
状の鉄鉱石等でも支障なく使用することができ、更には
固体−気体間の還元反応を主体とする高炉法に比べて反
応速度および反応効率が高いといった利点を有している
ところから、最近各社で検討されている。
[発明か解決しようとする課題] 溶融還元製鉄法は、使用する炉の形式によって分類され
、代表的なものとしては、回転炉、転炉型鉄浴炉および
コークス充填型竪型炉を用いる3種の方法が挙げられる
が、これらの方法における共通の問題は、出湯・出滓の
連続化ができず生産性が低いということである。即ちこ
れらの方法はいずれもバッチ式で溶融還元を行ない、出
銑・出滓はたとえば1〜2時間周期で間欠的に行なわれ
るので、高炉を用いた連続法に比べると出銑・出滓作業
やそれらの後処理作業か面倒であるはかりでなく、後処
理炉はその都度冷却されるのて熱効率も低く、また生産
性を高めるにはある程度の量の溶銑および溶滓を炉内に
貯留しておかなければならないので、高炉設備はどでは
ないにしてもかなり大型の設備が必要となる。
木発明者らはこの様な状況のもとて、設備費および運転
経費のいずれの面からしても経済的であり、しかも連続
化が可能で生産性の高い製鉄法の開発を期して研究を行
なっているか、その成果の1つとして、高炉やキュポラ
或は溶融還元製鉄装置等の銑鉄製造装置(以下単に銑鉄
製造装置という)における溶銑樋を流れる溶銑を熱源と
し、且つ該溶銑中の炭素を還元剤として製鉄原料の溶融
還元を行なう方法を開発し、先に特許出願を済ませた(
特願昭62−186400号 未公開)。
即ちこの方法は、銑鉄製造装置における溶銑樋を流れる
溶銑中に製鉄原料を吹込み、溶銑中に含まれる炭素を主
たる還元剤として製鉄原料中の酸化鉄成分を連続的に溶
融還元する方法であり、従来の溶融還元製鉄法に比へる
と、 ■連続操業が可能で生産性が高い、 ■設備を著しく小規模化できる、 ■溶銑中に含まれる珪素やマンカンも還元剤として活用
されるので還元剤の消費量か少なく、且つ溶銑の保有熱
も有効に活用されるから熱効率が高い、 ■溶融還元により生成した溶鉄および副生ずる溶滓は下
流側て連続的に分離・排出されるのて、後処理効率か高
い、 といった多くの特徴を有している。
この溶融還元製鉄法において還元歩留りを高めようとす
れは、溶銑中に吹込まれる酸化鉄成分と溶銑中の炭素と
をいかに効率良く接触させるか、ということか重要な課
題となり、その為の手段としては、たとえは (a)吹込まれる製鉄原料の微粒化、 (b)攪拌・混合状態の強化、 (c)溶銑流内における原料滞留時間の延長、等が考え
られ、夫々ある程度の効果があることを確認している。
ところが運転経費や設備規模の適正化等を含めて総合的
に考えた場合、上記の改善法を採用したとしても還元歩
留りの向上には自ずと限界があり、一部の酸化鉄成分は
未還元のままてスラグ中へ穆行しスラグと共に排出され
て鉄分ロスとなる。
本発明はこの線な鉄分ロスを抑制し、製鉄原料の還元歩
留りを最大限に高めることのできる方法を確立しようと
するものである。
[課題を解決するための手段] 上記の課題を解決することのできた本発明の構成は、銑
鉄製造装置から溶銑樋を通して流出される溶銑に、製鉄
原料、炭材及び酸素を供給して該製鉄原料を溶融還元す
る製鉄方法であって、上記製鉄原料中の酸化鉄成分は、
主として溶銑中炭素によって溶銑流内で還元すると共に
、未還元状態でスラグ中に穆行した前記酸化鉄成分は、
主として添加炭材によりて還元するところに要旨を有す
るものである。
[作用及び実施例] 本発明の特徴は、前述の様な銑鉄製造装置の溶銑樋を通
して流出してくる溶銑を熱源として、また溶銑中の炭素
を還元剤として活用し、これに製鉄原料を吹込んで溶融
還元製鉄を行なうに当たり、吹込まれた酸化鉄成分が高
炭素濃度の溶銑内に分散している間に進行する高速度の
還元反応(FeO+溶銑中C=Fe+CO,反応速度;
1o−25〜1o −3,5モル・Feo/cm2・秒
)によって還元すると共に、未還元のまま生成スラグ中
へ移行してきた前記酸化鉄成分は別途添加される炭材に
よる中速度の還元反応(FeO+添加C=FeO+CO
,反応速度=約10−4.5モル・Fe07cm2 ・
秒)によって還元し、これら2段階の還元反応を組合せ
ることによって還元歩留りを大幅に高めることに成功し
たものである。
たとえば第1図は本発明の実施例を示す概略縦断面説明
図であり、図中1は溶銑樋の途中に設けられた製鉄処理
設備、2は該設備1の上方を覆い熱放散を防止するため
の蓋体、3は排滓樋、4は潜り堰、5は越流堰、6は製
鉄原料吹込み管、7は酸素吹込み管、8は炭材投入ホッ
パー、9は排ガスダクト、10は溶銑鍋、Mは溶銑、S
は溶滓(スラグ)、Cは炭材を夫々示している。
図示しない高炉等の銑鉄製造装置から排出される溶銑お
よび溶滓のうち比重の小さい溶滓は、図示する製鉄処理
設備1に至るまでの上流適所で分離除去される。そして
その下流側適所の溶銑樋にやや深めの滞留部を設けて図
示する様な製鉄処理設備1を形成する。即ち製鉄処理設
備1は放熱防止用として設けた蓋体2に、製鉄原料吹込
み管6、酸素吹込み管7、炭材投入ホッパー8および排
ガスダクト9が取付けられてなり、製鉄原料吹込み管6
からは鉄鉱石、予備還元鉱石、スクラップ等の鉄分含有
原料と生石灰等の副原料を適当な比率で溶銑Mの深部へ
吹込むと共に、炭材投入ホッパー8からは粉粒状の炭材
Cを投入し、同時に酸素吹込み管7から熱風(または空
気)を連続的に吹込む。そうすると、溶銑M内へ吹込ま
れた製鉄原料は溶銑Mの保有熱および炭材の燃焼熱によ
って溶融し、且つ製鉄原料中の酸化鉄成分は、溶銑M内
を浮上する間に該溶銑M中に多量含まれている旦との間
で生じるトランジトリ−反応により大部分が還元され、
また還元を完了しない状態で溶銑中を通過しスラグ層S
へ移行してきた酸化鉄成分は、スラグ層S内へ混入した
前記添加炭材Cおよび該炭材の燃焼により生成した一酸
化炭素の作用を受けて還元され、これら2段の還元工程
によって製鉄原料中の酸化鉄成分の還元歩留りは大幅に
高められることになる。生成した鉄分は溶銑となって溶
銑M中に取り込まれ、一方比重の小さいスラグ成分Sは
溶銑Mの表面に浮上した状態で順次流下し、排滓樋3か
ら分離・排$される。
この間に生成する排ガスは排ガス管路9から順次抜き出
される。
尚第1図では、炭材Cを炭材投入ホッパー8から溶銑M
上へ投入する例を示したが、炭材Cの供給法はもとより
この方法に限定される訳ではなく、たとえば■別途イン
ジェクションランスを用いて溶銑M中へ吹込み、溶銑M
中の旦濃度を更に高めると共に浮上した炭材Cをスラグ
層S内へ混入させる方法、■スラグ層S内へ吹込んで混
入させる方法、あるいは■製鉄原料と共に吹込み管6か
ら溶銑M内へ吹込む方法、等を採用することができる。
尚吹込み管7から吹込まれる空気(酸素)は、炭材Cと
の反応による燃焼熱により重要な熱源となるが、この他
、該吹込み管7を製鉄原料吹込み位置付近に突込んで空
気インジェクションを行なえば、製鉄原料の溶銑M内へ
の分散が促進されてトランジトリ−反応を更に効率良く
進めることができ、また該吹込み管7をスラグ層S内へ
突込んで空気インジェクションを行なえば、攪拌効果に
よってスラグ層S内における炭材Cと未還元の酸化鉄成
分の反応効率も高まり、鉄分の還元歩留りを一段と高め
ることができる。
第2図は、鉄鉱石(ヘマタイト鉱)を原料とし第1図の
方法に準じて溶融還元製鉄を行なった場合における、鉄
鉱石原単位(高炉溶銑1トン当たりの鉄鉱石添加量)と
還元歩留りの関係を示したものであり、図中[A]〜[
0]は夫々下記の手法を採用したときのデータを示して
いる。
[A]:製鉄原料を吹込み管6から吹込み、溶銑M中の
旦のみにより還元(炭材Cの別途投入なし)・・・比較
法 [B]:上記[Al法に加えて炭材Cを溶銑M上に投入
(散布)し、スラグ滞留時間を10分に設定して2段還
元を実施・・・本発明法[C]  ・スラグ滞留時間を
20分に延長したほかは上記[B] と同じ・・・本発
明法 [D]:上記[C]法において、炭材Cの混入されたス
ラグ層Sを攪拌して還元を促進・・・本発明法 第2図からも明らかである様に、溶銑中の旦のみを利用
する[A]法(−段違元法、比較法)ては、鉄鉱石と溶
銑Mとの混合状態か還元反応を左右するため、鉄鉱石原
単位が50 Kg/溶銑1トンを超えると還元歩留りは
1次直線的に低下し、tooxg/溶銑1トンに増量す
ると還元歩留りは35%(鉄分ロス65%)に低下する
。しかも溶銑流中を浮上するときのトランジトリ−反応
のみては還元が不十分であって、相当量の鉄酸化物が未
還元状態てスラグ中に混入し分離排出されるため、鉄鉱
石原単位を50Kg/溶銑1トンに抑えた場合でも、還
元歩留りは70%であって30%の鉄分ロスが見られる
これに対し溶銑中の且とスラグ中の添加炭材Cを併用す
る[B]〜い]法(2段違元法−本発明法)では、適度
のスラグ滞留時間が得られる様に処理条件を設定するこ
とによって還元歩留りな大幅に高めることができ、殊に
スラグ層Sを攪拌して添加炭材と未還元鉄酸化物の接触
効率を高めてやれば、鉄鉱石原単位を相当高めた場合で
も高レベルの還元歩留りを確保し得ることか分かる。
また次に示す第1表は、日産8000トンの高炉の溶銑
樋に第1図に示した根な製鉄処理設備を設け、上記第2
図の例に準して還元手法を色々変更すると共に鉄鉱石原
単位を種々変更し、実現可能な溶銑増産量を調べた結果
を示したものである。
但し炭材使用量は42Kg/分以上に設定して上置き法
もしくはスラグ層内への吹込み法を採用し、スラグ滞留
時間は10分もしくは20分に設定した。
第1表からも明らかである様に、インジェクション吹込
みだけで炭材添加を行なわない比較例[八]、[A’]
では、高炉出銑量に対して3.5%の増産率を得るのか
限度であり、たとえ鉄鉱石原単位を増大したとしても還
元歩留りが低下するだけで、増産率をそれ以上に高める
ことはできない。
これに対し炭材を併用する本発明実施例では、炭材上置
き法を採用しスラグ滞留時間を10分に設定した場合(
[B]法)でも増産率を4.5%(比較例に対して約3
割増)に高めることができ、スラグ滞留時間を20分に
設定すると([C]法)増産率は55%(比較例に対し
て約6割増)に向上する。また炭材をスラグ層内へ吹込
んで2段目の還元効率を高めた[D]法の場合の増産率
は7.0%となり、比較例に比べて2倍の値が得られて
いる。
[発明の効果] 本発明は以上の様に構成されているが、要は銑鉄製造装
置の溶銑樋に製鉄処理設備を設け、銑鉄製造装置の溶銑
、を熱源とし、且つ該溶銑中の炭素を還元剤として活用
する新しいタイプの溶融還元製鉄法において、銑鉄製造
装置の溶銑中に含まれる且とスラグ中の添加炭材を利用
した2段違元方式を採用することによって、次の様な効
果を得ることが可能となった。
■製鉄原料の還元歩留りが向上し、プロセスの効率化と
コストダウンが推進される。
■溶銑増産量の調整の自由度が向上し、製銑量に対する
柔軟な対応が可能となる。
【図面の簡単な説明】
第1図は本発明の実施例を示す概略縦断面説明図、第2
図は製鉄原料たる鉄鉱石の原単位と還元歩留りの関係を
示すグラフである。 1:製鉄処理設備  2:蓋体 3:排滓樋     4:潜り堰 5:越流堰     6:製鉄原料吹込み管7:酸素吹
込み管  8:炭材投入ホッパー9:排ガスダクト  
10:溶銑鍋 C:炭材      Sニスラグ(溶滓)M:溶銑

Claims (1)

    【特許請求の範囲】
  1. (1)銑鉄製造装置から溶銑樋を通して流出する溶銑に
    、製鉄原料、炭材及び酸素を供給して該製鉄原料を溶融
    還元する製鉄方法であって、 上記製鉄原料中の酸化鉄成分は、主として溶銑中炭素に
    よって溶銑流内で還元すると共に、未還元状態でスラグ
    中に移行した前記酸化鉄成分は、主として添加炭材によ
    って還元することを特徴とする溶銑樋式溶融還元製鉄方
    法。
JP1281988A 1988-01-22 1988-01-22 溶銑樋式溶融還元製鉄方法 Pending JPH01188612A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1281988A JPH01188612A (ja) 1988-01-22 1988-01-22 溶銑樋式溶融還元製鉄方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281988A JPH01188612A (ja) 1988-01-22 1988-01-22 溶銑樋式溶融還元製鉄方法

Publications (1)

Publication Number Publication Date
JPH01188612A true JPH01188612A (ja) 1989-07-27

Family

ID=11815996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281988A Pending JPH01188612A (ja) 1988-01-22 1988-01-22 溶銑樋式溶融還元製鉄方法

Country Status (1)

Country Link
JP (1) JPH01188612A (ja)

Similar Documents

Publication Publication Date Title
CA1223740A (en) Method for the production of iron
SK2952000A3 (en) Method of making iron and steel
WO2010072043A1 (zh) 熔炼炉和炼钢设备以及炼钢工艺
US4457777A (en) Steelmaking
CN108374067A (zh) 一种飞速还原直接炼钢的装置及方法
US6602321B2 (en) Direct smelting process
US5060913A (en) Integrated metallurgical reactor
EP2823073B1 (en) Iron reduction process and equipment
CN101665849B (zh) 一种铁矿石连续炼钢工艺
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
KR100769794B1 (ko) 고로에서 선철 또는 액상의 1차 강 제품을 생산하기 위한 방법 및 플랜트
US8298317B2 (en) Ironmaking and steelmaking
Roth et al. PRIMUS, a new process for recycling by-products and producing virgin iron
US3666440A (en) Method of recovering copper from slag
US3752663A (en) Continuous production of liquid steel using arc furnaces
US5746805A (en) Process for the continuous manufacture of steel
US5989307A (en) Method and apparatus for producing pig iron by smelting reduction and method of obtaining such a plant
JPH01188612A (ja) 溶銑樋式溶融還元製鉄方法
JPH03130314A (ja) 溶融還元製鉄法
US20240026476A1 (en) Method and apparatus for metals, alloys, mattes, or enriched and cleaned slags production from predominantly oxide feeds
JPH01195224A (ja) 溶銑樋式溶融還元製鉄操業法
KR940008446B1 (ko) 분철광석으로부터 선철을 제조하는 방법 및 장치
JPH01195223A (ja) 溶銑樋式溶融還元製鉄法
JPS59113131A (ja) フエロクロム製錬時の生成スラグの処理方法
KR940008448B1 (ko) 괴광과 분광을 동시 사용하는 선철 제조방법 및 장치