JPH01188507A - Production of block copolymer and polymerization initiator - Google Patents

Production of block copolymer and polymerization initiator

Info

Publication number
JPH01188507A
JPH01188507A JP1074888A JP1074888A JPH01188507A JP H01188507 A JPH01188507 A JP H01188507A JP 1074888 A JP1074888 A JP 1074888A JP 1074888 A JP1074888 A JP 1074888A JP H01188507 A JPH01188507 A JP H01188507A
Authority
JP
Japan
Prior art keywords
polymerization
block copolymer
parts
ketone peroxide
stage polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1074888A
Other languages
Japanese (ja)
Inventor
Takumi Yanaka
谷中 拓巳
Yasuo Makiyama
牧山 泰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kayaku Akzo Corp
Original Assignee
Kayaku Akzo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaku Akzo Corp filed Critical Kayaku Akzo Corp
Priority to JP1074888A priority Critical patent/JPH01188507A/en
Publication of JPH01188507A publication Critical patent/JPH01188507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain a block copolymer useful as a binder, surface-treating agent, etc., on an industrial scale at a low cost, by using a ketone peroxide having a specific structure as a radical polymerization initiator and carrying out the polymerization by a two-stage polymerization process. CONSTITUTION:The objective block copolymer is produced by using a polymerization initiator consisting of methyl isobutyl ketone peroxide containing >=70% of the organic peroxide of formula and carrying out the polymerization by two-stage polymerization process. The two-stage polymerization process preferably comprises the 1st stage polymerization of one or more monomers at a low temperature in the presence of a reducing agent acting exclusively to hydroperoxy group and inducing redox reaction (e.g., sodium bisulfite or L- ascorbic acid) and the successive 2nd stage polymerization comprising the addition of one or more monomers to the polymerization system maintained at a high temperature to induce the decomposition of the monomer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特定の構造を有するケトンパーオキサイドを
ラジカル重合開始剤として用いる2段階重合方式による
ブロック共重合体の改良された製造方法及び重合開始剤
に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides an improved method for producing a block copolymer by a two-step polymerization method using a ketone peroxide having a specific structure as a radical polymerization initiator, and a method for polymerization. Regarding initiators.

〔従来の技術〕[Conventional technology]

近年、高機能性を発揮できる高分子化合物が益々要求さ
れて来ており、そのため重合体の高分子量化のみならず
、グラフト共重合体やさらにはブロック共重合体の重要
性が一段と高まっている。重合体の高分子量化について
は、ラジカル重合開始剤として、多(2)官能性の有機
過酸化物を用いることにより、格段の進歩がみられ、あ
る程度までの分子量制御も可能となっていると言える。
In recent years, there has been an increasing demand for polymeric compounds that can exhibit high functionality, and for this reason, not only high molecular weight polymers, but also graft copolymers and block copolymers are becoming increasingly important. . Significant progress has been made in increasing the molecular weight of polymers by using poly(2)-functional organic peroxides as radical polymerization initiators, and it has become possible to control the molecular weight to a certain extent. I can say it.

グラフト共重合体の製造においても、水素引き抜き能力
の大きい有機過酸化物を経験的に工夫して用いることに
より工業的な目的が達せられていると言えよう。一方、
ブロック共重合体の製造に関しては、今日までに多数の
技術が発表されて来ている。
It can be said that even in the production of graft copolymers, industrial objectives have been achieved through the use of organic peroxides with a high hydrogen abstraction ability, which have been devised based on experience. on the other hand,
Regarding the production of block copolymers, many techniques have been published to date.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、ラジカル重合技術を除(他の手法は学術
的見地からは誠に興味深いものであるが、工業的に実施
するには難しい点が多過ぎるのが現状である。ラジカル
重合法については、最も一般的であるが、やはり工業化
という面からみるとまだまだ実用的価値は低いと言わざ
るを得ない。言うまでもなく、ブロック共重合体の応用
域は非常に広範囲にわたっており、言わゆるポリマーブ
レンドによる重合体物性の改質、塗料用樹脂の改良等多
方面での利用が期待されており、このブロック共重合体
の簡便な工業的製造技術の確立が急務となっているのが
現状である。
However, with the exception of radical polymerization technology (other methods are very interesting from an academic point of view, they currently have too many difficulties to be implemented industrially. However, it must be said that its practical value is still low from the perspective of industrialization.Needless to say, the application range of block copolymers is extremely wide, and the physical properties of polymers by so-called polymer blends are very limited. It is expected that this block copolymer will be used in a wide variety of fields, including the modification of block copolymers and the improvement of coating resins, and there is an urgent need to establish a simple industrial production technology for this block copolymer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、従来得られている重合体に比べて、高分子
量化されかつまたブロック共重合体の容易に得られる重
合技術につき、ラジカル重合開始剤としての有機過酸化
物の作用機構の立場から鋭意検討の結果、特定の分子構
造を有するケトンパーオキサイドが効果的にブロック共
重合体を与えることを見い出し本発明の完成に到った。
The present inventors have proposed a polymerization technique for easily obtaining a block copolymer with a higher molecular weight than conventionally obtained polymers, and the viewpoint of the mechanism of action of organic peroxides as radical polymerization initiators. As a result of extensive research, it was discovered that ketone peroxide having a specific molecular structure effectively provides a block copolymer, and the present invention was completed.

本発明は一般式(■)で示される特定の化合物を70%
以上含有するメチルイソブチルケトンパーオキサイドを
用い、2段階重合方式、即ち、まず第1段重合で、ノ・
イドロバ−オキシ基のみに作用してレドックス反応を起
こす還元剤の存在下、少なくとも1種以上の単量体を低
温度下に重合を行ない、引き続いて第2段重合として、
高温分解温度下に少なくとも1種以上の単量体を新たに
加えて重合させることによるブロック共重合体の改良さ
れた製造方法及び重合開始剤である。
The present invention contains 70% of the specific compound represented by the general formula (■).
Using the above-containing methyl isobutyl ketone peroxide, a two-stage polymerization method is used: first, in the first stage polymerization, no.
At least one monomer is polymerized at low temperature in the presence of a reducing agent that acts only on idrobaroxy groups to cause a redox reaction, and then as a second stage polymerization,
The present invention provides an improved method for producing a block copolymer and a polymerization initiator by newly adding and polymerizing at least one monomer at a high decomposition temperature.

CH3C)J13  CI(3C1,13I HC−CI(2−C−OC)−C−CH,−CH(1)
 。
CH3C)J13CI(3C1,13I HC-CI(2-C-OC)-C-CH,-CH(1)
.

CI(300HOOHCI(3 〔3型〕 CI(3CI4 HC−CIルーC−00H(II)、  HOOH(I
II)CI(300I−I 〔4型〕 ところで、メチルイソブチルケトンパーオキサイドは、
メチルエチルケトンパーオキサイド等と共に、従来より
広く不飽和ポリエステル樹脂の硬化剤として使用されて
来ており、一般式(1)で示される構造の化合物(通常
、3型と称する)、(II)で示される構造の化合物(
通常、4型と称する)、および(III)で示されろ過
酸化水素を主成分とする混合組成物として存在しており
、通常は3型が70%未満の含有組成物が多用されてい
る。本発明では、3型(1)が70%以上含まれるメチ
ルイソブチルケトンパーオキサイドをラジカル重合開始
剤として使用することにより、ブロック共重合体を有利
に製造できる点に特徴がある。これら3型、4.7fJ
liの含有比率の異なるメチルイノブチルケトンパーオ
キサイド組成物は通常の合成方法から得られるが、特に
3型を主成分とする本発明の組成物については、米国特
許第40524.65号明細書の実施例5および6だ記
載の方法に準ずれば容易に合成できる。
CI (300HOOHCI (3 [Type 3]) CI (3CI4 HC-CI C-00H (II), HOOH (I
II) CI (300I-I [Type 4]) By the way, methyl isobutyl ketone peroxide is
Along with methyl ethyl ketone peroxide, etc., it has been widely used as a curing agent for unsaturated polyester resins, and is a compound with a structure represented by the general formula (1) (usually referred to as type 3), and a compound represented by (II). Compounds with structure (
It is usually referred to as Type 4), and (III) and exists as a mixed composition containing filtered hydrogen oxide as a main component, and compositions containing less than 70% of Type 3 are commonly used. The present invention is characterized in that a block copolymer can be advantageously produced by using methyl isobutyl ketone peroxide containing 70% or more of type 3 (1) as a radical polymerization initiator. These 3 types, 4.7fJ
Methylinobutylketone peroxide compositions with different content ratios of li can be obtained by conventional synthesis methods, but in particular, the composition of the present invention containing type 3 as a main component can be obtained using the method described in U.S. Pat. No. 40,524.65. It can be easily synthesized according to the method described in Examples 5 and 6.

例えば70%の過酸化水素水38.9 g (0,8モ
ル)を、ベンゼン30m1、メチルインブチルケトン5
0g(0,5モル)およびp−トルエンスルホン酸(2
111g当量1モルケトン)に添加し、15分間混合し
、その後、冷却して20℃に温度を保つ。添加終了後約
20gの水を、30°C1減圧下共沸蒸留により反応混
合物から除去する。次に40mtの水を加え、混合物の
pHを、2N−水酸化す) IJウムの溶液により約5
5に調整する。キシレン31. gを有機層に添加し、
ベンゼンを減圧蒸留により除去する。その結果、総括性
酸素量(A○)が13.1%のメチルイソブチルケトン
パーオキサイド溶液80gを得る。この溶液は、約70
%が3塑成分を含んでいる(薄層クロマトグラフィー)
For example, 38.9 g (0.8 mol) of 70% hydrogen peroxide solution, 30 ml of benzene, 5 ml of methyl in butyl ketone,
0 g (0,5 mol) and p-toluenesulfonic acid (2
111 g (equivalent to 1 mole ketone) and mixed for 15 minutes, then cooled and maintained the temperature at 20°C. After the addition is complete, about 20 g of water are removed from the reaction mixture by azeotropic distillation under reduced pressure at 30°C. Then 40 mt of water is added and the pH of the mixture is adjusted to about 5 by a solution of 2N-hydroxide).
Adjust to 5. Xylene 31. g to the organic layer;
Benzene is removed by vacuum distillation. As a result, 80 g of a methyl isobutyl ketone peroxide solution having a total oxygen content (A○) of 13.1% is obtained. This solution is about 70
% contains 3 plastic components (thin layer chromatography)
.

得られた溶液は、そのままの形でも使用可能であるが、
さらに、15℃で水洗を伴うサルファイド水溶液による
処理を行い、キシレン19gで希釈した結果、AO含有
量95%で3塑成分を94%含むメチルイソブチルケト
ンパーオキサイド溶液90gが得られる。
The resulting solution can be used as is, but
Furthermore, as a result of treatment with an aqueous sulfide solution accompanied by water washing at 15° C. and dilution with 19 g of xylene, 90 g of a methyl isobutyl ketone peroxide solution containing 95% of AO content and 94% of 3 plastic components is obtained.

そして、さらに合成条件を選べばほとんど3型のみから
成るメチルイソブチルケトンパーオキサイド、即ち一般
式(1)の合成も可能である。本発明の有機過酸化物は
液状であり、通常は安全な活性酸素濃度まで希釈された
ものが市販されている。
Furthermore, if the synthesis conditions are further selected, it is also possible to synthesize methyl isobutyl ketone peroxide consisting of almost only three types, that is, general formula (1). The organic peroxide of the present invention is in liquid form, and is usually commercially available diluted to a safe active oxygen concentration.

本発明の特徴は、一般式(1)で示されるメチルイソブ
チルケトンパーオキサイドを用い、2段階重合方式を採
用し、ブロック共重合体を製造する方法にある。即ち、
第1段重合はレドックス系重合であり、一般式(1)の
2ケのハイドロパーオキシ基(−00H’)の分解は促
進するが、ジアルキル型パーオキシ基(−00−)は分
解し難い還元剤との組み合わせで重合を開始し、引き続
いて第2段重合においては、くっ、追加添加した新しい
単量体を重合開始させることによりブロック共重合体を
製造することである。従って、ブロック共重合体の生成
過程を示すと以下の如くなる。
A feature of the present invention is a method for producing a block copolymer using methyl isobutyl ketone peroxide represented by general formula (1) and employing a two-step polymerization method. That is,
The first stage polymerization is redox polymerization, which promotes the decomposition of the two hydroperoxy groups (-00H') in general formula (1), but reduces the dialkyl peroxy group (-00-), which is difficult to decompose. In the second stage polymerization, a block copolymer is produced by initiating polymerization in combination with a new monomer. Therefore, the production process of the block copolymer is as follows.

CH3CH3CH3CH3 HC−CI−(2−C−QC)−C−CH2−CI−1
−1−R(還元剤)−一△l       II   
    1CH300HOOHCH3 CH3CH3CH,、CH3 HC−C)J12−C−00−(、CHz −CH+ 
20H・・・・・・・・・・・(1)CI−(30・ 
0・  とル CH3CH3CI(3CH3 山 0比  冑  − HC−CH2−C00CCH2CH・・・・・・・・・
(2)1     1       1       
 lCH30−AAA−A 0−A−AA−A CH3
CH3CH3(FH3(FH3□ 」−記の生成過程では、まず(1)において還元剤Rが
優先的に2つのハイドロパーオキシ基と反応して重合開
始可能なラジカル源をつくり、(2)ではこれに基き単
量体Aが重合する。
CH3CH3CH3CH3 HC-CI-(2-C-QC)-C-CH2-CI-1
-1-R (reducing agent) -1△l II
1CH300HOOHCH3 CH3CH3CH,,CH3 HC-C)J12-C-00-(,CHz -CH+
20H・・・・・・・・・・・・(1) CI-(30・
0. toru CH3CH3CI (3CH3 mountain 0 ratio helmet - HC-CH2-C00CCH2CH・・・・・・・・・
(2) 1 1 1
lCH30-AAA-A 0-A-AA-A CH3
In the production process of CH3CH3(FH3(FH3□)), first in (1) the reducing agent R reacts preferentially with two hydroperoxy groups to create a radical source capable of initiating polymerization, and in (2) this Based on this, monomer A is polymerized.

即ち、第1段重合では主鎖中にジアルキル型パーオキシ
結合(−00−)を含むへの重合体が生成する。引き続
いて力U熱するとこの残存パーオキシ結合が開裂(3)
、ポリメリックラジカルが発生し、単量体Bの重合が始
まり(4)、その結果として、A−B型のブロック共重
合体が生成すると考えられる。
That is, in the first stage polymerization, a polymer containing a dialkyl type peroxy bond (-00-) in the main chain is produced. Subsequently, heating with force U cleaves this remaining peroxy bond (3)
, polymeric radicals are generated, polymerization of monomer B begins (4), and as a result, it is thought that an AB type block copolymer is produced.

第1段重合に用いることのできる還元剤はメチルイソブ
チルケトンパーオキサイド責I)の2つのハイドロパー
オキシ基を優先的に分解させることが望ましく、代表例
としては、L−アスコルビン酸、テキストロース、亜硫
酸水素ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリ
ウム、ナトリウムホルムアルデヒドスルホキシレート等
があげられる。不飽和ポリエステル樹脂の硬化促進剤と
して常用されているジメチルアニリンの如き第3段アミ
ン類や、ナフテン酸コバルトの如き有機金属化合物は、
ハイドロパーオキシ基のみならず、ジアルキル型パーオ
キシ結合(−00−)も同等に分解するので好ましくな
い。還元剤は少ななくとも1種以上で、2種以上の併用
系使用も可能である。
It is desirable that the reducing agent that can be used in the first stage polymerization preferentially decomposes the two hydroperoxy groups of methyl isobutyl ketone peroxide (I), and typical examples include L-ascorbic acid, textulose, Examples include sodium bisulfite, sodium sulfite, sodium thiosulfate, and sodium formaldehyde sulfoxylate. Third-stage amines such as dimethylaniline and organometallic compounds such as cobalt naphthenate, which are commonly used as curing accelerators for unsaturated polyester resins, are
This is not preferred because not only the hydroperoxy group but also the dialkyl type peroxy bond (-00-) is equally decomposed. At least one type of reducing agent is used, and two or more types can be used in combination.

本発明の重合方法は、主として乳化重合、)懸濁重合方
法が望ましい。もちろん溶液または塊状重合方法も可能
であり、これらの組み合わせ系も行えるが、第1段重合
に好適な還元剤は水溶性なので、水系での重合処決の採
用が望ましく、実際的である。
The polymerization method of the present invention is preferably emulsion polymerization or suspension polymerization. Of course, solution or bulk polymerization methods are also possible, and combinations thereof can also be carried out, but since the reducing agent suitable for the first stage polymerization is water-soluble, it is desirable and practical to employ an aqueous polymerization process.

使用できる単量体はラジカル重合可能なビニル型、ビニ
リデン型化合物に代表される。塩化ビニリデン、塩化ビ
ニル、酢酸ビニル、アクリル酸ブチル等のアクリル酸エ
ステル類、メタクリル酸メチル等のメタクリル酸エステ
ル類、アクリル酸、メタクリル酸、エチレン、プロピレ
ン、アクリロニトリル、メタクリロニトリル、スチレン
、スチレンの核置換誘導体類、α−メチルスチレン、ビ
ニルトルエン、ビニルピロリドン、フタジエン、ジビニ
ルベンゼン等が例示できるがこれらのみに限定されるも
のではない。もちろん、第1段重合とこれに引き続いて
の第2段重合に用いることのできる単量体はそれぞれ単
独使用のみならず、共重合可能な2種以上の単量体混合
物であっても差しつかえない。
Monomers that can be used are typified by radically polymerizable vinyl and vinylidene compounds. Vinylidene chloride, vinyl chloride, vinyl acetate, acrylic esters such as butyl acrylate, methacrylic esters such as methyl methacrylate, acrylic acid, methacrylic acid, ethylene, propylene, acrylonitrile, methacrylonitrile, styrene, styrene core Examples include substituted derivatives, α-methylstyrene, vinyltoluene, vinylpyrrolidone, phthadiene, divinylbenzene, etc., but are not limited to these. Of course, the monomers that can be used in the first-stage polymerization and the subsequent second-stage polymerization are not only used alone, but also a mixture of two or more monomers that can be copolymerized. do not have.

本発明の重合方式について以下乳化重合を例にとり説明
する。先ず、第1段重合においては、予め脱イオン水、
乳化剤、もし必要ならば活性化剤を投入して、窒素置換
しておいた反応容器に、選定された単量体(例えば塩化
ビニル)と一般式(1)で示される特定の有機過酸化物
0.05〜5部の混合物を添加し、系の温度を0〜65
℃、好ましくは30〜60℃に保ち、還元剤水溶液を添
加する。
The polymerization method of the present invention will be explained below by taking emulsion polymerization as an example. First, in the first stage polymerization, deionized water,
A selected monomer (e.g., vinyl chloride) and a specific organic peroxide represented by the general formula (1) are added to a reaction vessel which has been purged with nitrogen and contains an emulsifier and an activator if necessary. Add 0.05-5 parts of the mixture and bring the temperature of the system to 0-65
C., preferably 30 to 60.degree. C., and add an aqueous reducing agent solution.

単量体の重合が終ってから、系の温度を上げて70〜1
30℃、好ましくは70〜120℃に保ち、ブロック化
しようとする新しい単量体を添加して重合させる。なお
単量体の添加は一括添加、分割添加、連続添加でも行え
る。第2段目は、1段目の重合体の主鎖中に結合して残
っているパーオキシ結合(−00−)の熱分解により生
じるポリメリックラジカルが重合を開始し、ブロック共
重合体を生成する。このようにして得られたブロック共
重合体ラテックスは適当な方法にて処理し、粉末状にし
た。必要に応じてさらに精製し、分析または測定用試料
とした。
After the monomer polymerization is completed, the temperature of the system is raised to 70-1
The temperature is maintained at 30°C, preferably 70-120°C, and new monomers to be blocked are added and polymerized. The monomer can be added all at once, in portions, or continuously. In the second stage, polymeric radicals generated by thermal decomposition of peroxy bonds (-00-) bonded and remaining in the main chain of the first stage polymer start polymerization to produce a block copolymer. . The block copolymer latex thus obtained was processed by an appropriate method to form a powder. It was further purified as necessary and used as a sample for analysis or measurement.

〔発明の効果〕〔Effect of the invention〕

本発明の特定の有機過酸化物は通常液状であり、取扱い
は容易である。この有機過酸化物を用いることにより、
工業的に容易に所望のブロック共重合体の製造が可能と
なり、得られるブロック共重合体は、バインダー、表面
処理剤、コーティング剤等の巾広い分野での応用・利用
が期待できる。
The specific organic peroxide of the present invention is usually liquid and easy to handle. By using this organic peroxide,
It becomes possible to easily produce a desired block copolymer industrially, and the obtained block copolymer can be expected to be applied and used in a wide range of fields such as binders, surface treatment agents, and coating agents.

〔実施例〕 り下実施例、比較例により本発明の詳細な説明するが、
部、%はいずれも重量部、重量%を意味する。
[Example] The present invention will be explained in detail with reference to Examples and Comparative Examples below.
Both parts and % mean parts by weight and % by weight.

実施例1 撹拌装置、温度計および還流冷却器を備えたフラスコに
脱イオン水4000部、乳化剤としテトテシルベンゼン
スルホン酸ナトリウム4部を加えて窒素置換を行った後
、その中に一般式(1)で示される化合物90%含有の
メチルイソプチルケトンパーオキサイドを8部および単
量体としてメタクリル酸メチル1000部を投入、撹拌
し、系の温度を40〜50℃に保持した。
Example 1 4000 parts of deionized water and 4 parts of sodium tetratecylbenzenesulfonate as an emulsifier were added to a flask equipped with a stirrer, a thermometer, and a reflux condenser, and the mixture was purged with nitrogen. ) and 1000 parts of methyl methacrylate as a monomer were added and stirred, and the temperature of the system was maintained at 40 to 50°C.

この中にナトリウムホルムアルデヒドスルホキシレート
4部を水75部に溶解させた水溶液を添加、150分反
応させた。重合終了後、スチレン1000部を加え、重
合系の温度を85〜90℃に上げ180分反応させた。
An aqueous solution prepared by dissolving 4 parts of sodium formaldehyde sulfoxylate in 75 parts of water was added to this, and the mixture was reacted for 150 minutes. After the polymerization was completed, 1000 parts of styrene was added, the temperature of the polymerization system was raised to 85 to 90°C, and the reaction was carried out for 180 minutes.

反応終了後均一なラテックス状の生成物が得らた。この
ラテックスは塩化カルシウム水溶液で塩析、洗浄、濾過
、そして減圧乾燥した。
After the reaction was completed, a homogeneous latex-like product was obtained. This latex was salted out with an aqueous calcium chloride solution, washed, filtered, and dried under reduced pressure.

実施例2゜ 実施例1に用いたと同じフラスコに脱イオン水2000
部を加えて、さらにピロリン酸ナトリウム0.5部、亜
硫酸水素ナトリウム3部を加え十分に窒素置換を行った
後、系の温度を45〜50℃に保ち、このフラスコ内へ
、メタクリル酸メチル500部、一般式(1)で示され
る化合物90%含有のメチルイソブチルケトンパーオキ
サイド5部、ドテシルベンゼンスルホン酸ナー14= トリウム2.5部の混合物を100分間連続的に添加し
、さらに100分そのまま保ち、重合を完結させた。次
にスチレン500部を添加、系の温度を85〜90℃ま
で上げて170分間反応させた。得られたラテックス状
の生成物は、塩化カルシウム水溶液で塩析、洗浄、濾過
後、減圧乾燥した。
Example 2゜Into the same flask used in Example 1, add 2000 ml of deionized water.
After adding 0.5 parts of sodium pyrophosphate and 3 parts of sodium bisulfite and thoroughly purging with nitrogen, the temperature of the system was maintained at 45 to 50°C, and 500 parts of methyl methacrylate was added to the flask. 1 part, 5 parts of methyl isobutyl ketone peroxide containing 90% of the compound represented by general formula (1), and 2.5 parts of thorium dodecylbenzenesulfonate were continuously added for 100 minutes, and then for an additional 100 minutes. It was kept as it was to complete the polymerization. Next, 500 parts of styrene was added, the temperature of the system was raised to 85 to 90°C, and the reaction was carried out for 170 minutes. The obtained latex-like product was salted out with an aqueous calcium chloride solution, washed, filtered, and then dried under reduced pressure.

実施例3 第1段重合にスチレンを用い、重合温度を50〜55℃
、第2段重合を80〜85℃でメタクリル酸メチルを用
いた以外は実施例2に準じて重合を行ないラテックス状
の生成物を得た。
Example 3 Styrene was used in the first stage polymerization, and the polymerization temperature was 50 to 55°C.
A latex-like product was obtained by carrying out polymerization according to Example 2, except that methyl methacrylate was used in the second stage polymerization at 80 to 85°C.

実施例4゜ 反応容器に2000部の脱イオン水を加え、十分に窒素
置換後、ビロリン酸す) IJウム1部、ナトリウムホ
ルムアルデヒドスルホキシレート3部を加え、45〜5
0℃に保ち、予めメタクリル酸メチル500部、一般式
(1)で示される化合物90%含有のメチルイソブチル
ケトンパーオキサイド5部、ジオクチルスルホコノ・り
酸ナトリウム5部を溶解混合した溶液を110分間連続
滴下し、さらに80分間45〜50℃に保った。また単
量体の添加と同時にチオ硫酸ナトリウム1部を100部
の水に溶解した水溶液を110分間連続滴下した。重合
終了後、スチレン500部を投入、系の温度を85〜9
0℃に170分間保ち反応を終了した。ラテックス状の
生成物を得た。
Example 4 Add 2,000 parts of deionized water to a reaction vessel, and after thoroughly purging with nitrogen, add 1 part of IJium and 3 parts of sodium formaldehyde sulfoxylate,
A solution prepared by dissolving and mixing 500 parts of methyl methacrylate, 5 parts of methyl isobutyl ketone peroxide containing 90% of the compound represented by general formula (1), and 5 parts of sodium dioctylsulfoconophosphate was kept at 0°C for 110 minutes. It was continuously added dropwise and kept at 45-50°C for an additional 80 minutes. Simultaneously with the addition of the monomer, an aqueous solution prepared by dissolving 1 part of sodium thiosulfate in 100 parts of water was continuously added dropwise for 110 minutes. After polymerization, 500 parts of styrene was added and the temperature of the system was increased to 85-9.
The reaction was completed by keeping at 0°C for 170 minutes. A latex-like product was obtained.

実施例1〜4につき得られた重合体をそれぞれシクロヘ
キサン/アセトニトリル/ベンゼンを使用するソックス
レー抽出法によりブロック共重合体とそれぞれの単独重
合体とに分別したところ、スチレンのブロック効率はい
ずれも80〜95%の範囲にあり、効率よくメタクリル
酸メチルとスチレンのブロック共重合体を生成している
ことがわかった。
The polymers obtained in Examples 1 to 4 were separated into a block copolymer and each homopolymer by the Soxhlet extraction method using cyclohexane/acetonitrile/benzene, and the blocking efficiency of styrene was 80-80. It was found that the block copolymer of methyl methacrylate and styrene was efficiently produced.

実施例5゜ 反応容器に2000部の脱イオン水を入れ、十分に窒素
置換後、ピロリン酸ナトリウム1部、L−アスコルビン
酸1部、デキストローズ3部を加え、この中にメタクリ
ル酸メチル300部、メタクリル酸ブチル200部、ド
テシルベンゼンスルホン酸ナトリウム6部、さらには一
般式(1)で示される化合物70%含有のメチルイソブ
チルケトンパーオキサイド6部の溶解混合溶液を180
分間45〜55℃の温度下に連続的に滴下し反応させた
。次に、アクリル酸ブチル200部とアクリロニトリル
20部の混合物を加えて80〜85℃に温度を上げ、1
50分間反応させた。ラテックス状のブロック共重合体
が得られた。
Example 5 Put 2,000 parts of deionized water into a reaction vessel, and after thoroughly purging with nitrogen, add 1 part of sodium pyrophosphate, 1 part of L-ascorbic acid, and 3 parts of dextrose, and add 300 parts of methyl methacrylate to this. A mixed solution of 200 parts of butyl methacrylate, 6 parts of sodium dotecylbenzenesulfonate, and 6 parts of methyl isobutyl ketone peroxide containing 70% of the compound represented by general formula (1) was added to 180 g.
The reaction mixture was continuously added dropwise at a temperature of 45 to 55°C for minutes. Next, a mixture of 200 parts of butyl acrylate and 20 parts of acrylonitrile was added and the temperature was raised to 80-85°C.
The reaction was allowed to proceed for 50 minutes. A latex-like block copolymer was obtained.

比較例1゜ 実施例2において、一般式(11で示されるメチルイソ
ブチルケトンパーオキサイドの代りに3型(])/4型
(II)の存在比率が50150の組成混合物を用いた
り外は同じ処法にてブロック共重合体の製造を試みた。
Comparative Example 1゜In Example 2, a composition mixture with an abundance ratio of type 3 (])/type 4 (II) of 50150 was used instead of methyl isobutyl ketone peroxide represented by general formula (11), and the other steps were the same. We attempted to produce a block copolymer using the method.

ラテックス状の生成物が得られたが、スチレンのブロッ
ク効率は19%と非常に低かった。
A latex-like product was obtained, but the styrene blocking efficiency was very low at 19%.

比較例2゜ 実施例2において、メチルイソブチルケトンパーオキサ
イドの代りに、過硫酸アンモニウムを用いた以外は同じ
処法にてブロック共重合体の製造を試みた。しかし、第
2段重合が進まず失敗した。
Comparative Example 2 An attempt was made to produce a block copolymer using the same process as in Example 2, except that ammonium persulfate was used instead of methyl isobutyl ketone peroxide. However, the second stage polymerization did not proceed and failed.

比較例3 実施例2において、メチルイソブチルケトンパーオキサ
イドの代りに、キュメンノーイドロバ−オキサイドを用
いた以外は同じ処法にてブロック共重合体の製造を試み
たが、スチレンの重合が進まず失敗した。
Comparative Example 3 An attempt was made to produce a block copolymer using the same process as in Example 2, except that cumenohydrobor oxide was used instead of methyl isobutyl ketone peroxide, but styrene polymerization did not proceed. We're screwed.

特許出願人 化薬ヌーリー株式会社Patent applicant: Kayaku Nouri Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)重合開始剤として一般式(1)で示される化合物
を70%以上含有するメチルイソブチルケトンパーオキ
サイドを用い、2段階重合方式を採用することを特徴と
するブロック共重合体の製造方法。 ▲数式、化学式、表等があります▼(1)
(1) A method for producing a block copolymer, which comprises using methyl isobutyl ketone peroxide containing 70% or more of the compound represented by general formula (1) as a polymerization initiator, and employing a two-step polymerization method. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(1)
(2)一般式(1)で示される化合物を70%以上含有
するメチルイソブチルケトンパーオキサイドからなるこ
とを特徴とするブロック共重合体用重合開始剤。 ▲数式、化学式、表等があります▼(1)
(2) A polymerization initiator for block copolymers, characterized by comprising methyl isobutyl ketone peroxide containing 70% or more of the compound represented by general formula (1). ▲There are mathematical formulas, chemical formulas, tables, etc.▼(1)
JP1074888A 1988-01-22 1988-01-22 Production of block copolymer and polymerization initiator Pending JPH01188507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1074888A JPH01188507A (en) 1988-01-22 1988-01-22 Production of block copolymer and polymerization initiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1074888A JPH01188507A (en) 1988-01-22 1988-01-22 Production of block copolymer and polymerization initiator

Publications (1)

Publication Number Publication Date
JPH01188507A true JPH01188507A (en) 1989-07-27

Family

ID=11758932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1074888A Pending JPH01188507A (en) 1988-01-22 1988-01-22 Production of block copolymer and polymerization initiator

Country Status (1)

Country Link
JP (1) JPH01188507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129212A (en) * 1988-11-09 1990-05-17 Kanegafuchi Chem Ind Co Ltd Vinyl chloride block copolymer and preparation thereof
CN1311012C (en) * 2002-03-06 2007-04-18 乐金电子(天津)电器有限公司 Surface treatment agent of acrylonitrile-butadiene-phenylethylene shaping object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129212A (en) * 1988-11-09 1990-05-17 Kanegafuchi Chem Ind Co Ltd Vinyl chloride block copolymer and preparation thereof
CN1311012C (en) * 2002-03-06 2007-04-18 乐金电子(天津)电器有限公司 Surface treatment agent of acrylonitrile-butadiene-phenylethylene shaping object

Similar Documents

Publication Publication Date Title
JP3549902B2 (en) Graft copolymer and method for producing the same
US2911398A (en) Polymer hydroperoxides
US4200593A (en) Process for the preparation of copolymers containing low monomer content
KR101093477B1 (en) Dosing of peroxide to a suspension process wherein styrene is polymerized
JP3296580B2 (en) Method for producing ultra high molecular weight polymer emulsion
US3716524A (en) T-butyl alcohol/water cosolvent emulsion copolymerization of a monomeric system comprising methyl methacrylate and bicyclic methacrylate
JPH01188507A (en) Production of block copolymer and polymerization initiator
JPH06184211A (en) Improvement in production of powdery superabsorbent by reverse suspension polymerization of acrylic monomer
JPS6357642A (en) Production of dimethylsiloxane block copolymer
EP0862586B1 (en) A process for preparing a branched polymer from a vinyl aromatic monomer
JPH038647B2 (en)
JPS5952646B2 (en) Manufacturing method of block copolymer
JP4056184B2 (en) Method for producing ultra high molecular weight polymer
JP3193422B2 (en) Method for producing polymer having epoxy group terminal
JPS6357644A (en) Production of dimethylsiloxane block copolymer
JPH0433924A (en) Polymeric peroxide polymerization initiator and production of block copolymer
JPS5947685B2 (en) Method for producing vinyl chloride copolymer
JP4174223B2 (en) Method for producing copolymer
US3252951A (en) Polymerization of acrylonitrile polymers in the presence of condensed phosphorus acids
JPS6123212B2 (en)
KR100231260B1 (en) Process for preparing styrenic resin
JP3314396B2 (en) Diacyl-type polymeric peroxide and its use
JP2000086710A (en) Production of acrylic copolymer
KR100530380B1 (en) Linear Nitroxide-derived stable free radical containing sulfone amide and its use in living free radical polymerization of vinyl monomer
JPS6392628A (en) Production of dimethylsiloxane graft polymer