JPH01188439A - Production of optical fiber preform - Google Patents
Production of optical fiber preformInfo
- Publication number
- JPH01188439A JPH01188439A JP954988A JP954988A JPH01188439A JP H01188439 A JPH01188439 A JP H01188439A JP 954988 A JP954988 A JP 954988A JP 954988 A JP954988 A JP 954988A JP H01188439 A JPH01188439 A JP H01188439A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- quartz
- base material
- gas
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000013307 optical fiber Substances 0.000 title claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000010453 quartz Substances 0.000 claims abstract description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 19
- 238000005245 sintering Methods 0.000 claims abstract description 12
- 239000004071 soot Substances 0.000 claims abstract description 12
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 6
- 150000002367 halogens Chemical class 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 18
- 230000018044 dehydration Effects 0.000 claims description 9
- 238000006297 dehydration reaction Methods 0.000 claims description 9
- 150000002366 halogen compounds Chemical class 0.000 claims description 5
- 238000011282 treatment Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 abstract description 37
- 238000010438 heat treatment Methods 0.000 abstract description 15
- 229910004014 SiF4 Inorganic materials 0.000 abstract description 6
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 abstract description 6
- 239000011261 inert gas Substances 0.000 abstract description 5
- 230000006378 damage Effects 0.000 abstract description 3
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 239000002585 base Substances 0.000 description 38
- 235000012239 silicon dioxide Nutrition 0.000 description 23
- 239000011521 glass Substances 0.000 description 19
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 13
- 239000011737 fluorine Substances 0.000 description 13
- 229910052731 fluorine Inorganic materials 0.000 description 13
- 239000000835 fiber Substances 0.000 description 11
- 208000005156 Dehydration Diseases 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 6
- 238000011109 contamination Methods 0.000 description 5
- 150000002222 fluorine compounds Chemical class 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910015845 BBr3 Inorganic materials 0.000 description 1
- -1 Bob Chemical compound 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000011276 addition treatment Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
- C03B37/0146—Furnaces therefor, e.g. muffle tubes, furnace linings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はガラス母材に対する不純物元素の混入を防止で
き、かつ高品質な元ファイバ用母材を安定に製造する方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for stably producing a high-quality base material for a base fiber that can prevent contamination of impurity elements into a glass base material.
光ファイバ用母材を大量生産する一般的な方法として’
/AD法が知られている。このl/AD法は回転する出
発部材、例えばガラス板あるいはガラス神の上に酸水素
炎中で生成したガラス微粒子を堆積させて円柱状の多孔
質母材をつぐ夛、この多孔質母材を焼結して透明な光フ
ァイバ用母材を製造する方法である。この方法において
多孔質母材を焼結し透明化するには母材をHaもしくは
Arガス雰囲気で+500C’以上に加熱する必要があ
る。この加熱炉としては通常カーボン炉が用いられてい
る。かかる加熱炉における焼結に際して特に留意しなけ
ればならない点はCu +Faなどの遷移元素の混入並
びに水分の混入の防止である。遷移元素が+ ppb以
上混入すると、光ファイバの損失波長特性が全波長にわ
たシ著しく損われ、また水分が0.1 ppm以上混入
すると長波長域におけるその特注が損なわれるからであ
る。そこで通常上記多孔質母材を脱水することが行なわ
れ、この脱水処理として該多孔質母材を塩素系ガスやフ
ッ素系ガスを添加した不活性ガス雰囲気中で高温加熱す
る方法が知られている。なかでもフッ素系ガスを用いる
方法は多孔質母材の脱水を行うのみならずフッ素を添加
させる効果をも有している。多孔質母材中にフッ素を添
加すると光ファイバの必須要素である屈折率分布の調整
ができる利点がある。尚この点に関しては特公昭55−
15682号公報、特開昭55−67555号公報に詳
しく説明されている。As a general method for mass producing base materials for optical fibers'
/AD method is known. This l/AD method involves depositing glass fine particles produced in an oxyhydrogen flame on a rotating starting member, such as a glass plate or a glass plate, and then forming a cylindrical porous base material. This is a method of manufacturing a transparent optical fiber base material by sintering. In this method, in order to sinter the porous base material and make it transparent, it is necessary to heat the base material to +500 C' or higher in an Ha or Ar gas atmosphere. A carbon furnace is usually used as this heating furnace. During sintering in such a heating furnace, special attention must be paid to the prevention of contamination of transition elements such as Cu + Fa and contamination of moisture. This is because if more than + ppb of transition elements are mixed, the loss wavelength characteristics of the optical fiber will be significantly impaired over all wavelengths, and if more than 0.1 ppm of water is mixed, the customization in the long wavelength range will be impaired. Therefore, the porous base material is usually dehydrated, and a known method is to heat the porous base material at a high temperature in an inert gas atmosphere containing chlorine-based gas or fluorine-based gas. . Among these, the method using fluorine gas not only dehydrates the porous base material but also has the effect of adding fluorine. Adding fluorine to the porous base material has the advantage that the refractive index distribution, which is an essential element of optical fibers, can be adjusted. Regarding this point, the Special Publick Act of 1973-
It is explained in detail in Japanese Patent Application Laid-open No. 15682 and Japanese Patent Application Laid-open No. 55-67555.
父上記フッ素ガスを用いた処理は通常、焼結と同時にも
しくは前工程として、カーボン炉内で行なわれる。カー
ボン炉にはカーボン発熱体が母材の加熱処理中に発生す
る水分や酸素で消耗するのを防ぐため、カーボン発熱体
と焼結雰囲気とを隔離する炉心管が配置されておp1従
来アルミナ製のものが使用されていた。しかし、アルミ
ナ製の炉心管を用いるとアルミナの中に含まれるアルカ
リ成分等が高温で周囲に飛散し、これが−多孔質母材表
面に付着し、これによ)ファイバ母材が汚染されたり失
透を生じたシ(クリストバライト層を形成)するという
問題があった。そこで炉心管として石英ガラス製のもの
が実用化されている。The above-mentioned treatment with fluorine gas is usually carried out in a carbon furnace simultaneously with sintering or as a preliminary step. In order to prevent the carbon heating element from being consumed by moisture and oxygen generated during the heat treatment of the base material, the carbon furnace is equipped with a furnace tube that isolates the carbon heating element from the sintering atmosphere. was used. However, when an alumina core tube is used, alkaline components contained in the alumina are scattered around at high temperatures and adhere to the surface of the porous base material, resulting in contamination or loss of the fiber base material. There was a problem that transparent crystals formed (forming a cristobalite layer). Therefore, quartz glass core tubes have been put into practical use.
石英ガラスの炉心管の使用は、アルミナ炉心管の使用に
比し、下記の利点を有する。The use of quartz glass furnace tubes has the following advantages over the use of alumina furnace tubes.
■ 加工精度の高くとれるので気密性が良く、スート母
材の脱水がitぼ完全に行われる。■ High precision machining ensures good airtightness and almost complete dehydration of the soot base material.
■ アルミナに比し高純度であj)、Fa、フルカリ等
の不純物を殆んど含有していない。■It has higher purity than alumina and contains almost no impurities such as Fa and fluoride.
■ これを用いて得られたガラス母材は、アルカリによ
る表面失透を起さない。■ The glass base material obtained using this does not cause surface devitrification due to alkali.
■ 熱的な破損(サーマルショックによる破功がない。■ Thermal damage (no failure due to thermal shock).
■ フッ素化合物ガスを用いた場合に、All?3など
の不純物ガスの発生がない。但し、81F4ガスの発生
はあるが、ガラス母材への不純物としての悪影響は及ぼ
さない。■ When using fluorine compound gas, All? There is no generation of impurity gases such as 3. However, although 81F4 gas is generated, it does not have an adverse effect as an impurity on the glass base material.
なお、石英炉心管の使用については、特公昭5B−58
299号、同5B−42156号、特開昭60−860
49各号公報に詳しく説明されている。Regarding the use of quartz furnace tube,
No. 299, No. 5B-42156, JP-A-60-860
It is explained in detail in each publication No. 49.
しかしながら、上記のような利点を有する一方で、石英
管は高熱で変形し易いという欠点を持つていた。ちなみ
に、温度+500C程度と常温の間の昇降@を毎日く9
かえすと、1週間程度の経過で変形が大きくなる。また
、SF6や0F40弗素系ガスを用いた場合、石英がエ
ツチングされ、ひどい場合にはピンホールを生じること
さえあり九が、これは外気の混入や雰囲気ガスが戸外へ
漏出する原因ともなシ裏造工程上悪影響を招く結果にな
る。However, while having the above-mentioned advantages, quartz tubes also have the disadvantage of being easily deformed by high heat. By the way, the temperature goes up and down between +500C and room temperature every day9.
If you return it, the deformation will become larger after about a week. Furthermore, when SF6 or 0F40 fluorine gas is used, the quartz may be etched, and in severe cases, pinholes may even be formed.However, this may also cause outside air to enter or atmospheric gas to leak outside. This will result in a negative impact on the manufacturing process.
本発明の目的は、上述のような従来法による光ファイバ
用母材の脱水・焼結及びフッ素添加処理における問題点
を解決し、炉心管が高寿命で使える元ファイバ用母材の
製造方法を提供するにある。The purpose of the present invention is to solve the problems in the dehydration, sintering, and fluorine addition treatment of optical fiber base materials by conventional methods as described above, and to develop a method for manufacturing base materials for fibers that can be used for long lifespans of furnace tubes. It is on offer.
本発明者等は上記の問題点を解決する手段について鋭意
研究の結果、少量のカーボンを添加した石英炉心管を使
用することで、該炉心管を高温使用し得ることが可能と
なるとの結論に至シ、本発明に到達した。更には、フッ
素化合物ガスを使用する場合にはSiF4ガスを選択す
れば、炉心管の長寿命化によシ有効であることも見出し
た。As a result of intensive research into means for solving the above-mentioned problems, the inventors of the present invention have concluded that by using a quartz furnace core tube to which a small amount of carbon is added, it is possible to use the furnace core tube at high temperatures. Finally, we have arrived at the present invention. Furthermore, it has been found that when using a fluorine compound gas, selecting SiF4 gas is effective in extending the life of the reactor core tube.
すなわち本発明は石英系スート母材を、少量のカーボン
を含有する石英炉心管内において、ハロゲン又はハロゲ
ン化合物ガスを添加された雰囲気下で加熱して、脱水・
焼結及び屈折率調整処理のうち少なくとも1つを行うこ
と金特徴とする光ファイバ用母材の製造方法である。That is, the present invention heats a quartz-based soot base material in a quartz furnace tube containing a small amount of carbon in an atmosphere containing halogen or halogen compound gas to dehydrate and dehydrate it.
This method of manufacturing an optical fiber preform is characterized in that at least one of sintering and refractive index adjustment treatment is performed.
本発明の特に好ましい実施態様としては、ノ翫・ゲン又
は・・・ゲン化合物ガ寺12又はS・24である上記方
法が挙げられる。Particularly preferred embodiments of the present invention include the above-mentioned method in which the compound Gade 12 or S 24 is used.
本明細書においては、石英系スート母材とは石英を主成
分とするガラススート母材を言い、これは例えば火炎加
水分解反応によりガラス原料ガス及び添加剤ガス等を不
活性ガス等をキャリヤーとして火炎中に導入し、生成し
たガラス微粒子を堆積せしめる、あるいは、いわゆるゾ
ルゲル法すなわちアルコラードの加水分解によシ得る、
方法によ)作製でき、これらの技術は公知のものである
。In this specification, the quartz-based soot base material refers to a glass soot base material containing quartz as a main component, which is produced by, for example, using a flame hydrolysis reaction to collect glass raw material gas and additive gas using an inert gas or the like as a carrier. It can be introduced into a flame and the generated glass particles can be deposited, or it can be carried out by the so-called sol-gel method, that is, hydrolysis of Alcolade.
method), and these techniques are known.
本発明においては、該石英系スート母材を脱水・焼結、
屈折率調整の少なくとも言つを、ハロゲン又はハロゲン
化合物ガスが添加された雰囲気中にて加熱下に行う。In the present invention, the quartz-based soot base material is dehydrated, sintered,
At least part of the refractive index adjustment is performed under heating in an atmosphere to which a halogen or halogen compound gas is added.
脱水の場合には、C12,5OC12、CCl4 な
どの塩素又は塩素化合物ガスをHe ガス等不活性ガ
スにて希釈した雰囲気にて行う。また、塩素又は塩素化
合物ガスに代えて、CF4、CC1!2F2、a21F
6、SF6、SiF4等の弗素化合物ガスを用いること
も好ましく、この場合には脱水と同時に焼結を行うこと
も勿論良い。脱水を目的とする場合には上記ハロゲン又
はハロゲン化合物ガスの使用量は雰囲気ガス中1容量%
程度で一般には充分である。In the case of dehydration, it is carried out in an atmosphere in which chlorine or chlorine compound gas such as C12,5OC12, CCl4 is diluted with an inert gas such as He gas. Also, instead of chlorine or chlorine compound gas, CF4, CC1!2F2, a21F
It is also preferable to use a fluorine compound gas such as 6, SF6, SiF4, etc. In this case, it is of course possible to perform sintering at the same time as dehydration. When the purpose is dehydration, the amount of the above halogen or halogen compound gas used is 1% by volume in the atmospheric gas.
This is generally sufficient.
一方、屈折率調整を行う場合、例えば弗素を添加する場
合は、添加剤原料ガスとして、OF4、SF6.02F
6、SiF4等を用いればよく、これ等のガスの濃度、
処理温度を決定することで、屈折率を調整することがで
きる。例えば屈折率を低下させるための弗素の添加は、
雰囲気ガスとして弗素化合物ガス濃度2〜20容量Xの
ものを用いることで、Δn (比屈折率差) −1−0
,5〜−065%の範囲に調整することができる。また
ホウ素を添加するにはBob、、 BBr3等を、弗素
とホウ素の両方を添加するにはBP、を用いればよい。On the other hand, when adjusting the refractive index, for example when adding fluorine, OF4, SF6.02F are used as the additive source gas.
6. SiF4 etc. may be used, and the concentration of these gases,
By determining the processing temperature, the refractive index can be adjusted. For example, the addition of fluorine to lower the refractive index
By using a fluorine compound gas with a concentration of 2 to 20 volumes as the atmospheric gas, Δn (relative refractive index difference) -1-0
, 5 to -065%. Further, to add boron, Bob, BBr3, etc. may be used, and to add both fluorine and boron, BP may be used.
屈折率調整が脱水処理又は焼結を兼ねるものであっても
よいし、さらに屈折率調整、脱水・焼結を同時に行って
もよい。また雰囲気がノ\ロゲン系ガスの1以上を混合
し次ものであってもよい。Refractive index adjustment may also be performed by dehydration treatment or sintering, or refractive index adjustment, dehydration, and sintering may be performed simultaneously. Further, the atmosphere may be a mixture of one or more of the following gases:
上記の脱水、屈折率調整、焼結のいずれの処理も、その
温度はl100C以上で、石英系スート母材が透明化す
る温度以下の範囲が好ましい。In any of the above-mentioned dehydration, refractive index adjustment, and sintering treatments, the temperature is preferably 1100C or higher and lower than the temperature at which the quartz-based soot base material becomes transparent.
そして、石英系スート母材の上記した条件による加熱処
理を行う炉心管として、0.1〜5重食%程度の少量の
カーボンを添加した石英管を用いることで、高品質の石
英系ガラス母材を炉心管の損傷も少なく、製造できるの
である。By using a quartz tube to which a small amount of carbon (approximately 0.1 to 5 percent) is added as the furnace core tube for heat treatment of the quartz-based soot base material under the above-mentioned conditions, a high-quality quartz-based glass base material can be produced. This means that the material can be manufactured with less damage to the furnace core tube.
以下に本発明の基礎となった実験及び概念について説明
する。ここで断っておくが、以下に述べる概念は、本発
明に有効な実験による知見を得て、初めて説明できたも
のであって、予め容易に類推できるものではなかつ友。The experiments and concepts that formed the basis of the present invention will be explained below. It should be noted here that the concepts described below could only be explained after obtaining experimental knowledge useful for the present invention, and cannot be easily deduced in advance.
実験1
カーボン添加量を表1のように変え九石英ガラスを試作
し、これらを5鶴φ、200酊jのガラス棒に加工し友
。カーボン添加量が5xのものは加熱による加工が難し
く、またこの加工時に一部が失透した。得られた各ガラ
ス棒を+50(Icの炉内に吊)下げて24時間保持し
、ガラス棒の引きのび量を測った結果を表言にまとめ℃
示す。Experiment 1 We made trial quartz glass by changing the amount of carbon added as shown in Table 1, and processed them into glass rods with a diameter of 5 cranes and a diameter of 200 mm. When the amount of carbon added was 5x, processing by heating was difficult, and a portion of the material devitrified during this processing. Each glass rod obtained was hung at +50°C (suspended in a furnace at Ic) and held for 24 hours, and the amount of elongation of the glass rod was measured and the results were summarized in a table at °C.
show.
表 1
実験2
厚さ5flの1重量Xのカーボン添加石英片を、19F
6ガス中に置いて、温度+500Cにて加熱し友とζろ
、約6時間の加熱でその厚さは30以下となった。Table 1 Experiment 2 A carbon-added quartz piece of 1 weight X with a thickness of 5 fl was heated to 19F.
It was placed in 6 gas, heated at +500C, and heated for about 6 hours, and the thickness became 30 or less.
実験3
実験2と同じ石英片を、13)F4ガス中にて1500
Cで加熱したところ6時間加熱してもその厚さに殆んど
変化はなかった。Experiment 3 The same quartz piece as in Experiment 2 was heated to 1500°C in 13) F4 gas.
When heated at C, there was almost no change in the thickness even after 6 hours of heating.
以上の実験1ないし5よ〕次のことが明らかになった。From the above experiments 1 to 5, the following was revealed.
1)石英にカーボンを0.1〜3重量X添加した材料は
純粋な石英に比べ極めて高温に耐え得る。1) A material in which 0.1 to 3 weight X of carbon is added to quartz can withstand extremely high temperatures compared to pure quartz.
I)フッ素化合物ガスの使用においては、5zF4ガス
を選択すれば上記I)に示した炉心管をエツチングしな
い。I) When using a fluorine compound gas, if 5zF4 gas is selected, the core tube shown in I) above will not be etched.
この結果に基き本発明者らは、炉心管の中でスート母材
をtsooc以上の高温で加熱処理する場合等において
は、少量のカーボンを添加した石英炉心管を使用し、ま
たフッ素系ガスを使用する際fi 5IF4 を用い
ることが好ましいと結論し九次第である。Based on this result, the inventors decided to use a quartz core tube with a small amount of carbon added, and to use a fluorine-based gas when heat-treating the soot base material in the furnace core tube at temperatures higher than tsooc. It depends on the conclusion that it is preferable to use fi5IF4.
上記の事実は以下の如く説明できる。The above fact can be explained as follows.
カーボンの添加による石英管の耐熱温度の向上は、ガラ
ス中にカーボンの結合ができ粘性が大になったことによ
ると考えられる。The improvement in the heat resistance of quartz tubes due to the addition of carbon is thought to be due to the bonding of carbon in the glass, which increases its viscosity.
ま念81 F aが好結果を与えるのは、石英(Sin
2)炉心管や多孔質母材と8F6とは下記(11式%式
%
ただしS:固体、g:気体
の如く反応し、炉心管をエツチングするに対し、SxF
は下記(21式に示すように、SiO2との間に生成
物気体を生じない、
5io2(s) + sty4(g)−M−生成物気体
なし ・・・(2)すなわち炉心管をエツチングしない
のである。Manen 81 F a gives good results with quartz (Sin).
2) The relationship between the reactor core tube and porous base material and 8F6 is as follows (11 formula % formula % where S: solid, g: gas) and reacts like a reactor core tube, whereas SxF
(As shown in Equation 21, no product gas is generated between SiO2, 5io2(s) + sty4(g)-M-No product gas... (2) In other words, the core tube is not etched. It is.
以−下実施例を示して具体的に説明する。 The present invention will be specifically explained below with reference to examples.
第1図は、本発明の1実施態様である、元ファイバ用ガ
ラス母材の製造装置を示す概略構造図である。第1図中
1はスート母材、2j/i支持棒、3は炉心管、4は発
熱体、5は炉本体、6は不活性ガスの導入口、7は雰囲
気ガス(例えば5iCI!4,5xF4.He等)の導
入口である。FIG. 1 is a schematic structural diagram showing an apparatus for manufacturing a glass preform for an original fiber, which is one embodiment of the present invention. In Fig. 1, 1 is the soot base material, 2j/i support rod, 3 is the furnace tube, 4 is the heating element, 5 is the furnace body, 6 is the inert gas inlet, 7 is the atmospheric gas (for example, 5iCI!4, 5xF4.He, etc.).
次の実施例及び比較例は第1図の装置を用いて行った。The following Examples and Comparative Examples were carried out using the apparatus shown in FIG.
実施例1
発熱体4により、カーボンをI!ft%添加した石英炉
心管3を+600Cに加熱し、該管3内にS工F4を5
0cc/分及びH・を51!/分の割合で流し、その中
にスート母材lを下降速度2關/分で挿入した。得られ
た透明ガラス母材を引き続きファイバに紡糸したところ
、ファイバの残留水分は0.1 ppmであシOu ’
p Feに由来する吸収は全くみられなかった。ガラス
母材中には、約1重量%のフッ素が添加されていた。こ
の条件で1ケ月連続使用しても引伸びは殆んどなかった
。Example 1 The heating element 4 turns carbon into I! ft% doped quartz furnace tube 3 is heated to +600C, and 5% of S engineering F4 is added into the tube 3.
0cc/min and H・51! The soot base material 1 was inserted into the flow at a rate of 2/min. When the obtained transparent glass preform was subsequently spun into a fiber, the residual moisture in the fiber was 0.1 ppm.
Absorption derived from p Fe was not observed at all. Approximately 1% by weight of fluorine was added to the glass base material. There was almost no stretching even after continuous use for one month under these conditions.
実施例2
実施例1で用いたと同じの多孔質母材を予め0/2’i
用いて1200Cで脱水し、その後は実施例1と同じ条
件で処理したところ、0.O5ppm以下という極めて
低水分量のファイバが得られた。水分量以外の結果は実
施例1の場合と同じでありt。Example 2 The same porous base material used in Example 1 was 0/2'i
When dehydrated at 1200C and then treated under the same conditions as in Example 1, 0. A fiber with an extremely low moisture content of less than 5 ppm O was obtained. The results other than the water content were the same as in Example 1.
比較例
炉心管として純石英管を用いた他は、実施例1と同じ条
件でファイバを製造し念ところ、得られ之ファイバ中の
残留水分は0.1 ppmであったが、炉心管の引伸び
が起こル、20回の使用で該炉心管は破損した。Comparative Example A fiber was manufactured under the same conditions as in Example 1, except that a pure quartz tube was used as the furnace core tube, and the residual moisture in the obtained fiber was 0.1 ppm. Elongation occurred and the core tube broke after 20 uses.
以上の説明は、vAD法による場合を例示し念が、勿論
これに限定されるものではなく、その他外付は法等で得
た多孔質母材にはすべて本発明の方法を適用して効果が
ある。The above explanation exemplifies the case using the vAD method, but is of course not limited to this, and the method of the present invention can be applied to all other porous base materials obtained by the external method etc. There is.
又、炉構造も1例を挙げたにすぎず、多孔質母材を移動
せずにすむ均質加熱炉によっても、本実施例と同様の優
れた結果が得られる。Further, the furnace structure is just one example, and excellent results similar to those of this example can be obtained even with a homogeneous heating furnace that does not require moving the porous base material.
本発明はガラス母材に対する不純物元素の混入を防止で
き、炉心管の寿命を従来より延長でき、特にフッ素を添
加する場合はSiF4 を用いることで炉心管のエツ
チングを防止でき、経済性が向上し、かつ高純度のガラ
ス物品音帯ることができるという効果を奏し、元ファイ
バ用母材の製造に適用して有利である。The present invention can prevent contamination of impurity elements into the glass base material, and can extend the life of the furnace tube compared to the conventional method. In particular, when adding fluorine, using SiF4 can prevent etching of the furnace tube, improving economic efficiency. It also has the effect of producing high-purity glass articles, and is advantageous when applied to the production of base materials for original fibers.
第1図は本発明L:D元ファイバ用母材の製造方法の実
施態様を説明する図である。FIG. 1 is a diagram illustrating an embodiment of the method for manufacturing a base material for L:D original fibers according to the present invention.
Claims (3)
石英炉心管内において、ハロゲン又はハロゲン化合物ガ
スを添加された雰囲気下で加熱して、脱水・焼結及び屈
折率調整処理のうち少なくとも1つを行うことを特徴と
する光ファイバ用母材の製造方法。(1) A quartz-based soot base material is heated in a quartz furnace tube containing a small amount of carbon in an atmosphere to which halogen or halogen compound gas is added, and at least one of dehydration, sintering, and refractive index adjustment treatment is performed. 1. A method for manufacturing an optical fiber base material, the method comprising:
の範囲の第(1)項に記載される光ファイバ用母材の製
造方法。(2) The method for manufacturing an optical fiber preform according to claim (1), wherein the halogen compound gas is SiF_4.
第(1)項に記載される光ファイバ用母材の製造方法。(3) The method for manufacturing an optical fiber preform according to claim (1), wherein the halogen gas is Cl_2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP954988A JPH01188439A (en) | 1988-01-21 | 1988-01-21 | Production of optical fiber preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP954988A JPH01188439A (en) | 1988-01-21 | 1988-01-21 | Production of optical fiber preform |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01188439A true JPH01188439A (en) | 1989-07-27 |
Family
ID=11723357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP954988A Pending JPH01188439A (en) | 1988-01-21 | 1988-01-21 | Production of optical fiber preform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01188439A (en) |
-
1988
- 1988-01-21 JP JP954988A patent/JPH01188439A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1047849A (en) | Method of making optical waveguides | |
JP5394734B2 (en) | Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage | |
US4979971A (en) | Method for producing glass preform for optical fiber | |
US5221309A (en) | Method for producing glass preform for optical fiber | |
JPS61247633A (en) | Production of glass base material for optical fiber | |
DK158940B (en) | PROCEDURE FOR MANUFACTURING FRAME FOR OPTICAL FIBERS | |
KR20050031110A (en) | Low loss optical fiber and method for making same | |
JPH0138063B2 (en) | ||
US4295869A (en) | Process for producing optical transmission fiber | |
US4165152A (en) | Process for producing optical transmission fiber | |
KR890001123B1 (en) | Method for crystalization of glass preform | |
JP4903045B2 (en) | High purity silicon dioxide produced by pyrolysis | |
KR890001124B1 (en) | Method for producing glass preform | |
JPH01188439A (en) | Production of optical fiber preform | |
JP2722573B2 (en) | Manufacturing method of high purity quartz glass | |
JPS6081038A (en) | Manufacture of optical glass fiber containing tio2 | |
JPS62153130A (en) | Production of parent material for optical fiber glass | |
JP2620275B2 (en) | Glass manufacturing method | |
JPH0436100B2 (en) | ||
JPS5816161B2 (en) | Optical transmission line and its manufacturing method | |
JPH0660029B2 (en) | Method for manufacturing base material for optical fiber | |
JPH01145346A (en) | Production of optical fiber preform | |
JPS60239339A (en) | Preparation of parent material for optical fiber | |
JPH0776092B2 (en) | Glass manufacturing method | |
JPS6183639A (en) | Production of quartz pipe of high purity |