JPH01188419A - Production of powdery starting material for high temperature superconducting ceramic - Google Patents

Production of powdery starting material for high temperature superconducting ceramic

Info

Publication number
JPH01188419A
JPH01188419A JP63010579A JP1057988A JPH01188419A JP H01188419 A JPH01188419 A JP H01188419A JP 63010579 A JP63010579 A JP 63010579A JP 1057988 A JP1057988 A JP 1057988A JP H01188419 A JPH01188419 A JP H01188419A
Authority
JP
Japan
Prior art keywords
earth element
salt
amt
alkaline earth
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63010579A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Hiroshi Miura
洋 三浦
Kosuke Ito
伊藤 幸助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63010579A priority Critical patent/JPH01188419A/en
Publication of JPH01188419A publication Critical patent/JPH01188419A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a powdery starting material capable of providing a rare earth element - alkaline earth element - Cu type high temp. oxide superconductor having high density and high critical current density by precalcining a coprecipitate obtd. by using a specified precipitant. CONSTITUTION:A precipitate is formed by allowing a mixed soln. contg. a rare earth element salt. an alkaline earth element salt, and a Cu salt to contact with a mixed soln. of an ammonium salt and an amine compd. The precipitate is separated by filtration after washing with water or without washing with water, and dried and precalcined. Suitable salts of the above described elements are chlorides, nitrates, etc. Suitable ammonium salts are carbonates, bicarbonates, etc. Suitable amt. thereof to be used is equimolar amt. to the amt. of alkaline earth element salt. Suitable amine compds. are primary, secondary, and tertiary amine compd., but, particulary, secondary amine compds. (R2NH; wherein R is 1-4C alkyl) are preferred. Suitable amt. thereof to be used is >=1.5 times for the amt. of the Cu salt.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、易焼結性稀土類元素−アルカリ土類元素−銅
酸化物系高温超電導セラミックスの原料粉末の製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing raw material powder for easily sinterable rare earth element-alkaline earth element-copper oxide based high temperature superconducting ceramics.

(従来技術及びその問題点) 稀土類元素−アルカリ土類元素−銅酸化物系セラミック
スのうち、酸素欠陥型層状ペロプスカイト構造を有する
ものは、90に以上の高い臨界温度を持つ超電導物質で
あることが知られるようになり、多方面への応用が期待
されている。
(Prior art and its problems) Among rare earth element-alkaline earth element-copper oxide ceramics, those having an oxygen-deficient layered perovskite structure are superconducting materials with a high critical temperature of 90 or higher. This has become well known and is expected to be applied in many fields.

これらの稀土類元素−アルカリ土類元素−銅酸化物系高
温超電導セラミックスは、液体窒素のような安価な冷媒
で冷却することによっても超電導状態になるため、液体
ヘリウム中でしか超電導状態を示さないNb−Ti系超
電導合金などの代わりに、超電導マグネットなどに使え
れば、経済的に大きなメリットがある。
These rare earth element-alkaline earth element-copper oxide-based high-temperature superconducting ceramics become superconducting even when cooled with an inexpensive coolant such as liquid nitrogen, so they only exhibit superconducting state in liquid helium. If it can be used in superconducting magnets instead of Nb-Ti superconducting alloys, there will be great economic advantages.

しかし、これまで作られてきた超電導セラミックスは臨
界電流密度が数十A / ciと低く、従来−数的に使
われてきたNb−Ti系超電導合金の1/200〜1/
400に過ぎないという欠点があった。
However, the critical current density of the superconducting ceramics that have been produced so far is as low as several tens of A/ci, which is 1/200 to 1/2 of the conventionally used Nb-Ti superconducting alloys.
The drawback was that it was only 400.

また、常電導〜超電導の転移の温度幅が広く急峻さに欠
けているという点も問題であった。
Another problem was that the temperature range of the transition from normal conductivity to superconductivity was wide and lacked steepness.

これらの問題点の一つの原因として、超電導セラミック
スが多孔質で密度が低いことが指摘されている。
It has been pointed out that one of the causes of these problems is that superconducting ceramics are porous and have a low density.

これまで稀土類元素−アルカリ土類元素−銅酸化物系高
温超電導セラミックスは乾式あるいは湿式で混合するこ
とによって調製した原料粉末を、加圧・焼結して作られ
てきた。
Hitherto, rare earth element-alkaline earth element-copper oxide-based high-temperature superconducting ceramics have been made by pressurizing and sintering raw material powders prepared by dry or wet mixing.

乾式混合法は、超電導セラミックスの構成成分の酸化物
あるいは炭酸塩の粉末、例えばY2O1、BaC0z、
CuOの粉末を出発原料として、ボールミル、播潰機あ
るいは乳棒・乳鉢などで粉砕、混合した後に焼結して、
超電導セラミックスの原料粉末を調製する方法である。
In the dry mixing method, powders of oxides or carbonates of the constituent components of superconducting ceramics, such as Y2O1, BaC0z,
Using CuO powder as a starting material, it is ground and mixed using a ball mill, crusher, pestle, mortar, etc., and then sintered.
This is a method for preparing raw material powder for superconducting ceramics.

一方、湿式混合法は、乾式混合法と同様の出発原料に、
出発原料と反応せずかつこれを実質的に溶解しない溶媒
を加えて、機械的に混合する方法である。
On the other hand, the wet mixing method uses the same starting materials as the dry mixing method.
This is a method in which a solvent that does not react with the starting materials and does not substantially dissolve them is added and mixed mechanically.

上記両温合法は技術的に容易で安全性の高い方法である
が、得られた原料粉末は、粒径が1〜5μm以上と大き
く、粒径分布も均一ではなく、さらに成分のばらつきも
大きい。
Both of the above heating methods are technically easy and highly safe methods, but the obtained raw material powder has a large particle size of 1 to 5 μm or more, the particle size distribution is not uniform, and there is also a large variation in components. .

従って、この原料粉末を焼結して作られた高温超電導セ
ラミックスは密度が小さく、臨界電流密度も低いという
問題がある。
Therefore, high-temperature superconducting ceramics made by sintering this raw material powder have a problem of low density and low critical current density.

また多段湿式法においては、超電導セラミックスの各構
成成分の溶液から多段で成分を沈澱させるが、繁雑な工
程を要する等の欠点がある。
Furthermore, in the multi-stage wet method, components are precipitated from a solution of each component of superconducting ceramics in multiple stages, but there are drawbacks such as requiring complicated steps.

(問題点解決のための技術的手段) 本発明は、従来の混合法及び湿式法の欠点を解決した、
易焼結性の超電導セラミックス原料粉末の製法である。
(Technical means for solving the problems) The present invention solves the drawbacks of the conventional mixing method and wet method.
This is a method for producing easily sinterable superconducting ceramic raw material powder.

本発明は、稀土類元素塩、アルカリ土類元素塩及び銅塩
の混合溶液と、アンモニウム塩及びアミンの混合溶液を
接触させて形成した沈澱物を、水洗または水洗せずにろ
過分離、乾燥し、次いで仮焼成することを特徴とする稀
土類元素−アルカリ土類元素−銅酸化物系超電導セラミ
ックスの原料粉末の製法である。
In the present invention, a precipitate formed by contacting a mixed solution of a rare earth element salt, an alkaline earth element salt, and a copper salt with a mixed solution of an ammonium salt and an amine is filtered, separated, and dried with or without washing with water. This is a method for producing a raw material powder for rare earth element-alkaline earth element-copper oxide based superconducting ceramics, which is characterized in that it is then calcined.

本発明において稀土類元素−アルカリ土類元素−銅酸化
物系超電導セラミックスは、次の一般式AXBYCu、
0t−zで表される。式中AはSc。
In the present invention, the rare earth element-alkaline earth element-copper oxide based superconducting ceramic has the following general formula AXBYCu,
It is represented by 0tz. In the formula, A is Sc.

Y及び周期律表のランタン系列元素から選択される少な
くとも一種類の稀土類元素を示し、ランタン系列元素の
具体例としてはLa5Nd、、Sm。
It represents at least one kind of rare earth element selected from Y and the lanthanum series elements of the periodic table, and specific examples of the lanthanum series elements include La5Nd, Sm.

Eu、Gd及びErが挙げられる。式中Bは周期律表の
IIA族から選択される少なくとも一種類のアルカリ土
類元素を示し、その具体例としてはCa、Ba及びSr
が挙げられる0式中Xは0.8より大きく、1.2より
小さく、Yは1.6より大きく、2.4より小さく、Z
は0より大きく、0.5より小さい数値である。また、
本発明における高温超電導セラミックスは、銅の一部を
最大50モル%まで他の金属、例えばVSZr。
Examples include Eu, Gd and Er. In the formula, B represents at least one alkaline earth element selected from Group IIA of the periodic table, and specific examples include Ca, Ba, and Sr.
In the formula 0, X is larger than 0.8 and smaller than 1.2, Y is larger than 1.6 and smaller than 2.4, and Z
is a numerical value greater than 0 and smaller than 0.5. Also,
The high temperature superconducting ceramic in the present invention contains a portion of copper and up to 50 mol% of other metals, such as VSZr.

Nb、、Mo、Hf、Ta、W、PbあるいはBiで置
換されたものも含んでいる。
It also includes those substituted with Nb, Mo, Hf, Ta, W, Pb, or Bi.

本発明の稀土類元素塩、アルカリ土類元素塩及び銅塩と
しては、塩酸塩、硝酸塩等を用いることができる。
As the rare earth element salt, alkaline earth element salt, and copper salt of the present invention, hydrochloride, nitrate, etc. can be used.

アンモニウム塩としては、炭酸塩、重炭酸塩等を用いる
ことができる。その使用量は、上記アルカリ土類元素塩
と当モル以上であれば良い。
As the ammonium salt, carbonate, bicarbonate, etc. can be used. The amount used may be at least the equivalent molar amount of the alkaline earth element salt.

アミン類としては、第1、第2あるいは第3級アミン化
合物を用いることができるが、特に第2級アミン化合物
(R,NH; Rは炭素数1〜4のアルキル基)が好ま
しい。その使用量は、上記銅塩に対して1.5モル倍以
上であれば良い。
As the amines, primary, secondary or tertiary amine compounds can be used, but secondary amine compounds (R, NH; R is an alkyl group having 1 to 4 carbon atoms) are particularly preferred. The amount used should be at least 1.5 times the amount of the above copper salt by mole.

上記冬場の溶媒としては、それらを溶かすものであれば
特に制限はないが、例えば水、水−アルコール、アルコ
ール等を使用できる。
The winter solvent is not particularly limited as long as it dissolves them, and for example, water, water-alcohol, alcohol, etc. can be used.

本発明において沈澱物は、例えば稀土類元素塩、アルカ
リ土類元素塩及び銅塩の混合溶液を攪拌しながら、それ
にアンモニウム塩及びアミンの混合溶液を添加すること
によって形成できる。上記の条件下で沈澱物を形成後、
さらにアミン類を稀土類元素塩、アルカリ土類元素塩及
び銅塩の全モル数に対して当モル以上加えると銅化合物
の沈澱物の形成率が向上する。
In the present invention, the precipitate can be formed, for example, by adding a mixed solution of an ammonium salt and an amine to a mixed solution of a rare earth element salt, an alkaline earth element salt, and a copper salt while stirring the mixed solution. After forming a precipitate under the above conditions,
Furthermore, when amines are added in an amount equivalent to or more than the total number of moles of the rare earth element salt, alkaline earth element salt, and copper salt, the rate of formation of a copper compound precipitate is improved.

形成した沈澱物をそのまま濾過分離、乾燥できるが、沈
澱物を水洗した後に濾過分離、乾燥しても良い。
The formed precipitate can be directly separated by filtration and dried, but the precipitate may be washed with water, then separated by filtration and dried.

乾燥後に粉末を仮焼結する。仮焼結の温度は400〜9
30℃が好ましい。仮焼結温度が400°Cよりも低い
時は、混合粉末の脱水及び熱分解が充分に進行しないた
め好ましくない。又、仮焼結温度が930°Cよりも高
い時は、混合粉末の粒子が粗大化するため好ましくない
After drying, the powder is pre-sintered. Temperature of pre-sintering is 400~9
30°C is preferred. When the pre-sintering temperature is lower than 400°C, dehydration and thermal decomposition of the mixed powder do not proceed sufficiently, which is not preferable. Moreover, when the preliminary sintering temperature is higher than 930°C, the particles of the mixed powder become coarse, which is not preferable.

本発明の方法で得られた超電導セラミックスの原料粉末
を高圧で成形し700〜950°Cで焼結することによ
り、超電導セラミックスとすることができる。
Superconducting ceramics can be obtained by molding the raw material powder of superconducting ceramics obtained by the method of the present invention under high pressure and sintering at 700 to 950°C.

(本発明の効果) 本発明の方法により得られた、稀土類元素−アルカリ土
類元素−銅酸化物系超電導セラミックスの原料粉末は、
各構成元素化合物が共沈法するため組成が均一で、かつ
粒子径がサブミクロン級の微粒子であり、良好な焼結性
を持っている。この粉末を焼結して得られた超電導セラ
ミックスは、密度 5.3g/cm以上の緻密なセラミ
ックスであり、電流密度も従来のものに比べて大きくな
っている。
(Effects of the present invention) The raw material powder for rare earth element-alkaline earth element-copper oxide based superconducting ceramics obtained by the method of the present invention is as follows:
Since each constituent element compound is co-precipitated, the composition is uniform, the particle size is submicron-level fine particles, and it has good sinterability. The superconducting ceramic obtained by sintering this powder is a dense ceramic with a density of 5.3 g/cm or more, and the current density is also higher than that of conventional ceramics.

(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.

実施例1 炭酸アンモニウム0.04モルの水溶液250戚に、ジ
エチルアミン0.04モルの水溶液30Odを混合し、
炭酸アンモニウム・ジエチルアミン水溶液を調製した。
Example 1 30 Od of an aqueous solution of 0.04 mol of diethylamine was mixed with 250 Od of an aqueous solution of 0.04 mol of ammonium carbonate,
An aqueous ammonium carbonate/diethylamine solution was prepared.

次に上記炭酸アンモニウム・ジエチルアミン水溶液を攪
拌しながら、硝酸イツトリウム0.02モル、硝酸バリ
ウム0.04モル、硝酸銅0.06モルを均一に溶解し
た水溶液450mを添加し、共沈澱物を得た。
Next, while stirring the ammonium carbonate/diethylamine aqueous solution, 450 ml of an aqueous solution in which 0.02 mol of yttrium nitrate, 0.04 mol of barium nitrate, and 0.06 mol of copper nitrate were uniformly dissolved was added to obtain a coprecipitate. .

さらに共沈澱物の水溶液を攪拌しながら、ジエチルアミ
ン0.34モルの水溶液300 mlを添加し、約1時
間攪拌後、−晩装置し沈澱反応を完結させた。
Further, while stirring the aqueous solution of the coprecipitate, 300 ml of an aqueous solution of 0.34 mol of diethylamine was added, and after stirring for about 1 hour, the mixture was left in the apparatus overnight to complete the precipitation reaction.

共沈澱物を濾、過分離、乾燥後、粉砕し750°Cで2
時間仮焼結し、it/dプレス成形後、900°Cで5
時間焼結し、超電導セラミックス焼結体を得た。
The coprecipitate was filtered, filtered, dried, ground, and heated at 750°C for 2 hours.
After pre-sintering and IT/D press molding, 5 hours at 900°C.
A superconducting ceramic sintered body was obtained by sintering for a period of time.

この超電導セラミックスの密度は5.54 g/dであ
り、臨界温度°(T c )は95に、臨界電流密度は
350 A/dであった。
The density of this superconducting ceramic was 5.54 g/d, the critical temperature ° (T c ) was 95, and the critical current density was 350 A/d.

実施例2 共沈澱物の濾過分離、乾燥において、二〇共沈澱物を蒸
留水で水洗し、濾過分離、乾燥をした以外は、実施例1
と同様に行った。
Example 2 Example 1 except that in the filtration separation and drying of the coprecipitate, the coprecipitate was washed with distilled water, filtered, separated, and dried.
I did the same thing.

この超電導セラミックスの密度は5.63 g/dであ
り、臨界温度(T c )は96に、臨界電流密度は3
70A/cJであった。
The density of this superconducting ceramic is 5.63 g/d, the critical temperature (T c ) is 96, and the critical current density is 3.
It was 70A/cJ.

実施例3 硝酸イツトリウムの代わりに、硝酸エルビウムを使用し
た以外は実施例2と同様に行った。
Example 3 The same procedure as Example 2 was carried out except that erbium nitrate was used instead of yttrium nitrate.

この超電導セラミックスの密度は5.52g/cdであ
り、臨界温度(T c )は98に、臨界電流密度は3
72 A/dであった。
The density of this superconducting ceramic is 5.52 g/cd, the critical temperature (T c ) is 98, and the critical current density is 3.
It was 72 A/d.

実施例4 硝酸イツトリウムの代わりに、硝酸サマリウムを使用し
た以外は実施例2と同様に行った。
Example 4 The same procedure as Example 2 was carried out except that samarium nitrate was used instead of yttrium nitrate.

この超電導セラミックスの密度は5.60 g/ctA
であり、臨界温度(T c )は97に、臨界電流密度
は365 A/dであった。
The density of this superconducting ceramic is 5.60 g/ctA
The critical temperature (T c ) was 97, and the critical current density was 365 A/d.

比較例1 酸化イツトリウム0.5モル、炭酸バリウム2.0モル
、酸化銅3モルの粉末を、播潰機を用いて乾式混合した
。この粉末を空気中で820°C12時間焼成した。こ
の粉末をIt/dプレス成形後、900°Cで6時間焼
結し、セラミックス焼結体を得た。
Comparative Example 1 Powders containing 0.5 mol of yttrium oxide, 2.0 mol of barium carbonate, and 3 mol of copper oxide were dry mixed using a crusher. This powder was calcined in air at 820°C for 12 hours. This powder was subjected to It/d press molding and sintered at 900°C for 6 hours to obtain a ceramic sintered body.

このセラミックスの密度は5.25g/CTAであり、
臨界温度(Tc)は91に、臨界電流密度は270A/
cdであった。
The density of this ceramic is 5.25g/CTA,
Critical temperature (Tc) is 91, critical current density is 270A/
It was a CD.

Claims (1)

【特許請求の範囲】[Claims] 稀土類元素塩、アルカリ土類元素塩及び銅塩の混合溶液
と、アンモニウム塩及びアミンの混合溶液を接触させて
形成した沈澱物を、水洗または水洗せずにろ過分離、乾
燥し、次いで仮焼成することを特徴とする稀土類元素−
アルカリ土類元素−銅酸化物系超電導セラミックスの原
料粉末の製法。
A precipitate formed by contacting a mixed solution of a rare earth element salt, an alkaline earth element salt, and a copper salt with a mixed solution of an ammonium salt and an amine is separated by filtration with or without water washing, dried, and then calcined. A rare earth element characterized by
A method for producing raw material powder for alkaline earth element-copper oxide superconducting ceramics.
JP63010579A 1988-01-22 1988-01-22 Production of powdery starting material for high temperature superconducting ceramic Pending JPH01188419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63010579A JPH01188419A (en) 1988-01-22 1988-01-22 Production of powdery starting material for high temperature superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63010579A JPH01188419A (en) 1988-01-22 1988-01-22 Production of powdery starting material for high temperature superconducting ceramic

Publications (1)

Publication Number Publication Date
JPH01188419A true JPH01188419A (en) 1989-07-27

Family

ID=11754155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63010579A Pending JPH01188419A (en) 1988-01-22 1988-01-22 Production of powdery starting material for high temperature superconducting ceramic

Country Status (1)

Country Link
JP (1) JPH01188419A (en)

Similar Documents

Publication Publication Date Title
US4804649A (en) Alkaline oxalate precipitation process for forming metal oxide ceramic superconductors
JPH0791055B2 (en) Manufacturing method of complex metal oxide
JPH01179721A (en) Production of raw material powder for high temperature superconducting ceramic
AU617357B2 (en) Process for preparing superconducting materials and materials thereby obtained
JPH01188419A (en) Production of powdery starting material for high temperature superconducting ceramic
JPH0791054B2 (en) Manufacturing method of complex metal oxide
EP0366721A4 (en) Improved process for making 90 k superconductors
JPH01242420A (en) Production of raw powder for high-temperature superconducting ceramic
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPH01141866A (en) Production of ceramic sintered body superconducting at high temperature
JPS63307156A (en) Method for synthesizing superconducting ceramics
JPH01126223A (en) Preparation of raw powder for high-temperature superconductive ceramic
JPH01145364A (en) Production of high-temperature superconducting ceramics
JPH0222104A (en) Production of raw material powder for producing high-temperature superconducting form
JPS63277515A (en) Production of superconductive material
JPH01133936A (en) Production of raw material powder for easily sinterable high temperature superconducting ceramic
JPH01133970A (en) Production of superconducting ceramics at high temperature
JPH0222128A (en) Production of raw material powder for high-temperature superconductor
JPH01317125A (en) Preparation of raw material powder of high-temperature superconducting ceramic
JPH01252568A (en) Production of high-temperature superconducting ceramic sintered form
JPH01224222A (en) Preparation of raw material powder of high temperature superconducting ceramic
JPH01224225A (en) Production of raw material powder of high temperature superconducting ceramic
JP3444930B2 (en) Manufacturing method of oxide superconductor
JPH01100019A (en) Preparation of high-temperature superconducting ceramic raw powder for sintering
JPH01224258A (en) Production of high-temperature superconducting ceramics