JPH01188406A - Production of hydrogen from kerosene fraction - Google Patents

Production of hydrogen from kerosene fraction

Info

Publication number
JPH01188406A
JPH01188406A JP63012244A JP1224488A JPH01188406A JP H01188406 A JPH01188406 A JP H01188406A JP 63012244 A JP63012244 A JP 63012244A JP 1224488 A JP1224488 A JP 1224488A JP H01188406 A JPH01188406 A JP H01188406A
Authority
JP
Japan
Prior art keywords
kerosene
hydrogen
catalyst
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63012244A
Other languages
Japanese (ja)
Other versions
JPH07115843B2 (en
Inventor
Tokuo Fujimune
藤宗 篤雄
Soichi Nomura
宗市 野村
Akira Kobuchi
彰 小渕
Hideharu Kato
秀晴 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KATSUSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KATSUSEIKA CENTER
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KATSUSEIKA CENTER, Petroleum Energy Center PEC, Nippon Oil Corp filed Critical SEKIYU SANGYO KATSUSEIKA CENTER
Priority to JP63012244A priority Critical patent/JPH07115843B2/en
Priority to US07/300,414 priority patent/US5130115A/en
Publication of JPH01188406A publication Critical patent/JPH01188406A/en
Publication of JPH07115843B2 publication Critical patent/JPH07115843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To produce hydrogen stably for a long time and economically by carrying out reforming of kerosene in the presence of a steam reforming catalyst after removing S from the feed kerosene and adding water thereto. CONSTITUTION:Kerosene contg. <=0.2ppm by wt. S is obtd. from a kerosene fraction A having <=150ppm. by wt. S content mixed with gaseous H2 after pressurizing to a reaction pressure with a pump B, by feeding the mixture to a hydrodesulfurization reactor D after heating through a heat exchanger C, where the mixture is allowed to contact with a hydro refining catalyst E and an H2S absorbing agent F under <=50kg/cm<2>.G at 270-400 deg.C, 0.5-7 LHSV, 0.02-1.0Nm<3> H2/kg kerosene, then passing the product through a desulfurizing tower H after adjusting the temp. to 180-300 deg.C through a heat exchanger G. After mixing the obtd. kerosene with water L supplied from a pump M, the obtd. mixture is fed to a reformer I, where it is allowed to contact with an Ni adsorber at 150-350 deg.C under <=50kg/cm<2>.G and 0.1-10 LHSV. Then, the product is introduced into a reactor J through a heat exchanger C, and allowed to contact with a steam reforming catalyst to reduce the content of CO, and separated from condensate in a knockout drum K.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水素化脱硫触媒、硫化水素吸着剤およびNi系
収着剤を用いて灯油中に含まれる硫黄分を除去せしめた
のち、水を加えて水蒸気改質触媒−1−で改質反応を行
わせて水素を製造する方法に関する。
[Detailed description of the invention] Industrial field of application The present invention removes sulfur contained in kerosene using a hydrodesulfurization catalyst, a hydrogen sulfide adsorbent, and a Ni-based sorbent, and then adds water to the kerosene. This invention relates to a method for producing hydrogen by carrying out a reforming reaction using a steam reforming catalyst-1-.

従来の技術及び 発明が解決しようとする問題点 水素には原料用、精製用、燃料用など多くの用途があり
、水の電気分解、炭化水素またはアルコールの水蒸気改
質、部分酸化、分解、脱水素などの方法によって製造さ
れている。水の電気分解によって得られる水素は高価で
あるが純度の高いものが得られるため物理実験、化学実
験など特殊な用途に用いられる。水素を原料や精製用と
して工業的に用いる場合には安価で入手し易い原料を水
蒸気改質または部分酸化して水素を製造する例が多く、
その中でも石炭や重質残渣油から部分酸化によって水素
を製造する数例を除いてはほとんど軽質の炭化水素また
はアルコールから水蒸気改質によって水素を製造する場
合が多い。軽質の炭化水素またはアルコールとしては、
メタン、エタン、プロペン、ブタンの各単体または混合
物またはそれらを含何するガス、軽質ナフサ、重質ナフ
サ、およびメタノールが工業的な実績を有している。
Problems to be solved by conventional technology and invention Hydrogen has many uses such as raw material, refining, and fuel, including water electrolysis, steam reforming of hydrocarbons or alcohol, partial oxidation, decomposition, and dehydration. It is manufactured using methods such as Hydrogen obtained by electrolysis of water is expensive, but because it is highly pure, it is used for special purposes such as physical and chemical experiments. When hydrogen is used industrially as a raw material or for purification, hydrogen is often produced by steam reforming or partial oxidation of inexpensive and easily available raw materials.
Among these, hydrogen is mostly produced from light hydrocarbons or alcohols by steam reforming, with the exception of a few cases in which hydrogen is produced by partial oxidation from coal or heavy residual oil. As a light hydrocarbon or alcohol,
Methane, ethane, propene, and butane alone or in mixtures, or gases containing them, light naphtha, heavy naphtha, and methanol have been used industrially.

灯油留分はその沸点、引火点などの性状から取扱いが容
易で、貯蔵、流通上の問題も少なく、安価な原料である
にも拘らず水素製造用の原料としての実績がない。その
最大の理由は硫黄化合物に対して鋭敏な改質触媒が許容
し得る濃度以下(硫黄分0.2ppm以下)にまで灯油
留分中の硫黄分を経済的な方法で除去することができな
かったためである。
Kerosene fractions are easy to handle due to their boiling point, flash point, and other properties, have few problems in storage and distribution, and are inexpensive raw materials, but they have no proven track record as raw materials for hydrogen production. The biggest reason for this is that it is not possible to economically remove the sulfur content in the kerosene fraction to a concentration below that which the reforming catalyst, which is sensitive to sulfur compounds, can tolerate (sulfur content of 0.2 ppm or less). This is because of this.

そこで本発明者らは硫黄分150 ppm以下の灯油留
分を、水素化脱硫触媒、硫化水素吸着剤、Nl系収着剤
と接触させることにより硫黄分を改質触媒が許容し得る
濃度以下にまで除去したのち、水蒸気改質し、水素を製
造する方法について鋭意検討した結果本発明に達したも
のである。
Therefore, the present inventors brought a kerosene fraction with a sulfur content of 150 ppm or less into contact with a hydrodesulfurization catalyst, a hydrogen sulfide adsorbent, and an Nl-based sorbent to reduce the sulfur content to a level that can be tolerated by the reforming catalyst. The present invention was developed as a result of extensive research into a method for producing hydrogen by steam reforming the hydrogen.

従来、石浦類中の硫黄化合物を除去する方法として水素
含有ガス存在下でコバルト−モリブデン、ニッケルーモ
リブデン、あるいはニッケルータングステンなどの触媒
を用いて高温、高圧下で処理する水素化脱硫法が知られ
ている。しかしながらこの方法によって灯油留分中の硫
黄分を長時間にわたって0.2ppm以下とするには1
00kg/cm2・6以上の高圧と0.1h−’以下の
LHSVを必要とし、経済的な脱硫方法ではないことが
わかった。
Conventionally, as a method for removing sulfur compounds from Ishiura compounds, the hydrodesulfurization method is known, in which treatment is carried out at high temperature and pressure using a catalyst such as cobalt-molybdenum, nickel-molybdenum, or nickel-tungsten in the presence of hydrogen-containing gas. It is being However, in order to keep the sulfur content in the kerosene fraction below 0.2 ppm for a long time using this method,
It was found that this method is not an economical desulfurization method because it requires a high pressure of 00 kg/cm2.6 or more and an LHSV of 0.1 h-' or less.

次に酸化亜鉛、酸化銅、酸化マンガンおよび酸化鉄など
硫黄化合物を吸着することが知られているが、これら金
属酸化物単独で灯油留分中の硫黄分を0.2ppa+以
下にまで吸着除去することは到底不可能であることを実
験によって確認した。
Next, it is known that sulfur compounds such as zinc oxide, copper oxide, manganese oxide, and iron oxide are adsorbed, and these metal oxides alone can adsorb and remove the sulfur content in the kerosene fraction to 0.2 ppa+ or less. We have confirmed through experiments that this is completely impossible.

次にNi系収着剤がナフサリフォーミングプロセスでナ
フサ留分中の微量の硫黄分を吸着除去することは公知で
あるが、灯油留分に適用された例はなく、本発明者らは
、特願昭61−175322号の中で限定された条件下
で灯油留分中の硫黄分を吸着除去できることを明らかに
した。しかしながら長時間にわたって灯油中の硫黄分を
0. 2ppm以下とするには大量のNi系収着剤が必
要となり必ずしも経済的ではないこ、とがわかった。
Next, although it is known that Ni-based sorbents adsorb and remove trace amounts of sulfur in naphtha fractions during the naphtha forming process, there is no example of this being applied to kerosene fractions, and the present inventors In Japanese Patent Application No. 61-175322, it was revealed that the sulfur content in kerosene fractions could be adsorbed and removed under limited conditions. However, over a long period of time, the sulfur content in kerosene was reduced to 0. It has been found that reducing the content to 2 ppm or less requires a large amount of Ni-based sorbent, which is not necessarily economical.

そこで本発明者らは、水素化脱硫触媒、硫化水素吸着剤
、およびNi系収着剤を組合せることにより灯油留分中
の硫黄分を所定量以下まで除去せしめ灯油から水素を経
済的に製造する方法について検討した結果本発明に至っ
た。
Therefore, the present inventors removed the sulfur content in the kerosene fraction to a predetermined amount or less by combining a hydrodesulfurization catalyst, a hydrogen sulfide adsorbent, and a Ni-based sorbent, thereby economically producing hydrogen from kerosene. As a result of studies on methods to do this, the present invention was arrived at.

問題点を解決するための手段 本発明で原料として用いられる灯油留分は硫黄分150
ppa+、引火点40℃以上、95%留出温度270℃
以下の性状を存するものがのぞましく、市販品として容
易に入手される。
Means for Solving the Problems The kerosene fraction used as a raw material in the present invention has a sulfur content of 150
ppa+, flash point 40℃ or higher, 95% distillation temperature 270℃
Those having the following properties are desirable and easily available as commercial products.

本発明はこの灯油をまず水素化脱硫触媒と接触させる。In the present invention, this kerosene is first brought into contact with a hydrodesulfurization catalyst.

脱硫触媒は活性金属としてコバルト−モリブデン、ニッ
ケルーモリブデン1、ニッケルーコバルト−モリブデン
およびニッケルータングステンを含むものがよく、アル
ミナあるいはアルミナを主成分とする酸化物担体に担持
される。コバルトおよびまたはニッケルは酸化物として
2〜7vt%担持され、モリブデンまたはタングステン
は酸化物として8〜25vt%担持されたものがよい。
The desulfurization catalyst preferably contains cobalt-molybdenum, nickel-molybdenum, nickel-cobalt-molybdenum, and nickel-tungsten as active metals, and is supported on alumina or an oxide support mainly composed of alumina. Cobalt and/or nickel is preferably supported in an amount of 2 to 7 vt% as an oxide, and molybdenum or tungsten is preferably supported in an amount of 8 to 25 vt% as an oxide.

形状としては直径が0.7〜51111%長さ10mm
以下の押出成型品または打錠品から選択できる。直径方
向の断面は円形、三つ葉形、四つ葉形などいずれでもよ
い。この脱硫触媒を所定量脱硫反応器に充填し、予め水
素ガスによる還元と硫化剤による予備硫化を行う。還元
と予備硫化は前もって別の容器で行なってから脱硫反応
器に充填してもよい。触媒の前処理が終ると灯油と水素
含をガスを所定の条件下で反応器に導入することができ
る。
As for the shape, the diameter is 0.7~51111% and the length is 10mm.
You can choose from the following extrusion molded products or tablet products. The diametrical cross section may be circular, trefoil, quatrefoil, etc. A predetermined amount of this desulfurization catalyst is charged into a desulfurization reactor, and reduction with hydrogen gas and preliminary sulfurization with a sulfurizing agent are performed in advance. The reduction and presulfurization may be carried out in advance in separate containers and then charged into the desulfurization reactor. Once the catalyst has been pretreated, kerosene and hydrogen-containing gas can be introduced into the reactor under predetermined conditions.

水素含有ガスは外部から供給することもできるが、本発
明によって製造される水素の一部を再循環して用いるの
が便利である。水蒸気改質器を出た改質ガスは通常熱力
学的平衡状態のH2、C02、C01H201CH4、
微量のCa  かり成り、水素の用途に応じて水素以外
の成分を除去したりそのまま残したりする。したがって
再循環される水素含有ガスは実質的に水素を30%以上
含有していればよい。
Although the hydrogen-containing gas can be supplied externally, it is convenient to recycle a portion of the hydrogen produced according to the invention. The reformed gas leaving the steam reformer is usually in thermodynamic equilibrium with H2, C02, C01H201CH4,
It consists of a trace amount of Ca, and components other than hydrogen are removed or left as is, depending on the use of hydrogen. Therefore, the hydrogen-containing gas to be recycled only needs to contain substantially 30% or more of hydrogen.

灯油と水素含有ガスは脱硫反応器を下向きまたは上向き
に通過するが、反応圧力は50kg/cm2・G以下、
とくに高圧ガス取締法の適用を受けないで簡便に水素を
製造する場合には10kg/cm2・G未満の圧力が望
ましい。反応温度は250〜400℃の範囲であればよ
く、LHSVは0.2〜7h−1でよい。水素/灯油の
比は、純水素として0802〜1.0Nm3/kg灯油
の範囲内がよい。
Kerosene and hydrogen-containing gas pass through the desulfurization reactor either downward or upward, but the reaction pressure is below 50 kg/cm2・G.
In particular, when hydrogen is simply produced without being subject to the High Pressure Gas Control Law, a pressure of less than 10 kg/cm2·G is desirable. The reaction temperature may be in the range of 250 to 400°C, and the LHSV may be in the range of 0.2 to 7 h-1. The hydrogen/kerosene ratio is preferably within the range of 0802 to 1.0 Nm3/kg kerosene as pure hydrogen.

次に、脱硫反応によって生成する硫化水素は硫化水素吸
収剤で除去する必要がある。硫化水素吸収剤としては塩
基性を示すか性ソフタ、か性カリ、水酸化マグネシウム
、水酸化カルシウム、モノエタノールアミン、ジェタノ
ールアミン、イソプロピルアミン、ZnoSCub%F
e205−Cr2  0  !  、  Zn0−Cu
bs   Zn0−M  6 0  l  s   Z
n0−F、l:203などがあるが本発明のように灯油
中の硫黄分が150 ppm以下の場合にはZnOのよ
うな固体の吸収剤が簡便性、経済性の点から望ましい。
Next, hydrogen sulfide generated by the desulfurization reaction must be removed with a hydrogen sulfide absorbent. As a hydrogen sulfide absorbent, caustic softa showing basicity, caustic potash, magnesium hydroxide, calcium hydroxide, monoethanolamine, jetanolamine, isopropylamine, ZnoSCub%F
e205-Cr20! , Zn0-Cu
bs Zn0-M 6 0 l s Z
There are n0-F, l:203, etc., but when the sulfur content in the kerosene is 150 ppm or less as in the present invention, a solid absorbent such as ZnO is preferable from the viewpoint of convenience and economy.

硫化水素吸収剤は、脱硫触媒とは別の容器に充填しても
よいし、脱硫触媒の直後に同一容器内に充填してもよい
。別容器に充填した場合は、反応条件は脱硫条件と同じ
にする。
The hydrogen sulfide absorbent may be filled in a separate container from the desulfurization catalyst, or may be filled in the same container immediately after the desulfurization catalyst. If packed in a separate container, the reaction conditions should be the same as the desulfurization conditions.

硫化水素吸収剤を通過した灯油はNi系収着剤と接触さ
せるが、水素含有ガス中に含まれるCO2とCOの濃度
によって接触の方法を変えることが重要である。すなわ
ちCO2とCOの合計が2VOW%以下の場合は灯油と
水素含有ガスをそのままNi系収着剤と接触させる。C
O2とCOの合計が2 v0.f:%を越える場合は灯
油と水素含有ガスを必要に応じて冷却して気液分離し、
液相の灯油のみをNi系収着剤と上向きまたは下向きに
接触させたのち、水素含をガスと合流させる。これはC
oがNi系収着剤上でH2と反応し、発熱を伴なってメ
タンとなり2 vow:%を越えると温度上昇を起こし
て危険だからである。CO2は脱硫触媒上またはNi系
収着剤上でCOとなるため同様な考慮が必要である。
The kerosene that has passed through the hydrogen sulfide absorbent is brought into contact with the Ni-based sorbent, but it is important to change the method of contact depending on the concentration of CO2 and CO contained in the hydrogen-containing gas. That is, when the total of CO2 and CO is 2VOW% or less, kerosene and hydrogen-containing gas are directly brought into contact with the Ni-based sorbent. C
The sum of O2 and CO is 2 v0. f: If it exceeds %, cool the kerosene and hydrogen-containing gas as necessary to separate the gas and liquid.
After only liquid phase kerosene is brought into contact with the Ni-based sorbent in an upward or downward direction, the hydrogen-containing kerosene is combined with the gas. This is C
This is because o reacts with H2 on the Ni-based sorbent, producing methane with heat generation, and if it exceeds 2 vo:%, the temperature will rise, which is dangerous. Similar consideration is required since CO2 becomes CO on the desulfurization catalyst or the Ni-based sorbent.

本発明で用いるNi系収着剤はNiを40〜70νt%
含有するものがよく、銅、クロム、ジルコニウム、マグ
ネシウムその他の金属成分を少量含んでいても使用する
ことができる。担体としては、シリカ、アルミナ、シリ
カ−アルミナ、チタニア、ジルコニア、酸化亜鉛、白土
、粘土類、珪藻土およびその他の耐火性無機酸化物を用
いることができる。収着剤の形状は打錠成形品、押出成
型品あるいは球状品のいずれでもよく、大きさは0.7
〜5本のものがよい。これらの収着剤は発火の危険性を
避けるため金属ニッケルの一部を酸化処理したり、炭酸
ガスを吸着させたりして表面を安定化処理しても良いし
、しなくてもよい。使用に先立っては150〜400℃
の範囲で水素還元をしてもよいし、不活性ガスで吸着し
た炭酸ガスを除去してもよい。
The Ni-based sorbent used in the present invention contains 40 to 70 νt% of Ni.
It can be used even if it contains small amounts of copper, chromium, zirconium, magnesium and other metal components. As the carrier, silica, alumina, silica-alumina, titania, zirconia, zinc oxide, clay, clays, diatomaceous earth and other refractory inorganic oxides can be used. The shape of the sorbent may be a tablet molded product, an extrusion molded product, or a spherical product, and the size is 0.7
~5 pieces is good. In order to avoid the risk of ignition, these sorbents may or may not have their surfaces stabilized by oxidizing a portion of the metal nickel or adsorbing carbon dioxide gas. 150-400℃ prior to use
Hydrogen reduction may be carried out within the range of 100 to 100%, or adsorbed carbon dioxide gas may be removed with an inert gas.

灯油は水素含有ガスを同伴する場合もしない場合も圧力
50kg/cシーG以下、温度150〜350℃、LH
SV0.1〜10h−’(7)条件下テNi系収着剤と
接触させる。
For kerosene, whether accompanied by hydrogen-containing gas or not, the pressure is 50 kg/c or less, the temperature is 150 to 350 degrees Celsius, and the LH
It is brought into contact with a Ni-based sorbent under conditions of SV0.1 to 10h-' (7).

このような方法および条件で処理された灯油は硫黄分が
0 、 2 wtpps以下に低減され、次の段階の水
蒸気改質の原料として十分適したものである。
The sulfur content of the kerosene treated in such a manner and under such conditions is reduced to 0.2 wtpps or less, and is fully suitable as a raw material for the next stage of steam reforming.

本発明の方法で得られた灯油は水素含有ガスとともに水
蒸気改質に必要な水蒸気を加えられたのち水蒸気改質装
置に送られ、改質触媒と接触させる。改質触媒は活性金
属としてニッケルを5〜50w1%、好ましくは10〜
35νt%含んでいるものがよく、他にルテニウムなど
を含んでもよい。
The kerosene obtained by the method of the present invention is mixed with hydrogen-containing gas and steam necessary for steam reforming, and then sent to a steam reformer and brought into contact with a reforming catalyst. The reforming catalyst contains 5 to 50w1% of nickel as an active metal, preferably 10 to 50w1%.
It is preferable that the content is 35vt%, and it may also contain ruthenium or the like.

担体と、してはアルミナが好ましいが、マグネシア、シ
リカ、カルシア、マグネシア−アルミナスピネルをそれ
ぞれQi独に、あるいは混合して用いてもよい。また炭
素析出防止などの目的でアルカリ金属、アルカリ土類金
属、希土類金属の酸化物を助触媒として10%以下加え
た触媒も用いられる。
As the carrier, alumina is preferred, but magnesia, silica, calcia, and magnesia-alumina spinel may be used alone or in combination. Also used is a catalyst containing 10% or less of an oxide of an alkali metal, alkaline earth metal, or rare earth metal as a cocatalyst for the purpose of preventing carbon precipitation.

灯油のように炭素数の多い炭化水素の改質では第1触媒
層に助触媒を含む触媒を充填し、第2触媒層に助触媒を
含まない触媒を充填するのが好ましい。反応温度は触媒
床入口で400〜600℃、出口で600〜900℃、
圧力は1〜30kg/cJ・G1スチーム/炭素モル比
3.5〜6.5、水素/灯油0.05〜0.7Nm’ 
/kg%LHSVO12〜4の条件で灯油を改質するの
が好ましい。
In reforming hydrocarbons with a large number of carbon atoms such as kerosene, it is preferable to fill the first catalyst layer with a catalyst containing a co-catalyst and fill the second catalyst layer with a catalyst that does not contain a co-catalyst. The reaction temperature is 400-600°C at the catalyst bed inlet, 600-900°C at the outlet,
Pressure is 1 to 30 kg/cJ, G1 steam/carbon molar ratio 3.5 to 6.5, hydrogen/kerosene 0.05 to 0.7 Nm'
It is preferable to reform kerosene under the conditions of /kg%LHSVO12-4.

改質されたガスには主成分である水素の他にC02、C
05CH4、H20が含まれており、水素の用途に応じ
て精製工程を組合せるのがよい。
In addition to hydrogen, which is the main component, the reformed gas also contains CO2, C
It contains 05CH4 and H20, and it is best to combine purification steps depending on the use of hydrogen.

COを除去する場合にはFe2O3Cr203などの高
温変成触媒と300〜500℃で、CuO−ZnOなど
の低温変成触媒と150〜2.50℃で、シリーズにま
たはどちらか一方と改質されたガスを接触させてCOを
所定量以下に減じる。
When removing CO, the gas is reformed in series with a high-temperature shift catalyst such as Fe2O3Cr203 at 300 to 500°C and with a low-temperature shift catalyst such as CuO-ZnO at 150 to 2.50°C. contact to reduce CO to a predetermined amount or less.

COを1 voi%以下に減じる場合にはさらにNi触
媒を充填したメタネーターで処理される。
In order to reduce CO to 1 voi% or less, treatment is further carried out using a methanator filled with a Ni catalyst.

COの他にCO2を除去する必要のある場合はKOHな
どの塩基性物質を用いて精製するのが好ましい。精製の
終った水素含有ガスはそれぞれの用途に供されるが一部
は水素化脱硫塔の入口に再循環されるのが好ましい。
If it is necessary to remove CO2 in addition to CO, it is preferable to purify using a basic substance such as KOH. The purified hydrogen-containing gas is used for each purpose, but it is preferable that a portion of it be recycled to the inlet of the hydrodesulfurization tower.

次に本発明が効果的に実施されるプロセスフローの図の
例を示し説明する。
Next, an example of a process flow diagram in which the present invention is effectively implemented will be shown and explained.

まず第1図は、水素化精製に用いられる水素含有ガスに
含まれるCO2とCOの合計濃度が2v。
First, in Figure 1, the total concentration of CO2 and CO contained in the hydrogen-containing gas used for hydrorefining is 2V.

ヱ%以下の例である。まず原料タンク(A)中に市販の
1号灯油を入れ、それをポンプ(B)で反応圧力まで昇
圧し、そこに同伴する水素含有ガスを混合し、気液混合
状態で熱交換器(C)に入り反応に必要な温度まで改質
反応生成物との間の熱交換により加熱される。次いで水
素化脱硫の反応器(D)に入り、まず圧力50kg/c
m2・G以下、温度250〜400℃、LHSV0.5
〜717)範囲で水素化精製触媒(E)を通過中に灯油
中の硫黄化合物の大部分は水素化分解され、硫化水素主
体の軽質化合物に変換される。これらの硫黄化合物は同
一反応器内に水素化精製触媒より下流に充填された酸化
亜鉛の脱硫層(F)を通過中に大部分が吸着除去される
。酸化亜鉛層(F)を通り反応管を出た灯油と水素含有
ガスは熱交換器(G)で180〜300℃に調温された
脱硫塔゛(H)でニッケル含有触媒と接触させて残存す
る硫黄化合物を収石し除去して硫黄分0 、 2 wt
ppa+以下の灯油を得る このようにして得られた硫黄分0 、 2 vtppm
以下の灯油はさらに水タンク(L)からポンプ(M)を
通して必要量の水(スチーム)を添加した後改質反応器
(I)に入り、水蒸気改質触媒と接触して分解されガス
化される。この改質ガスは熱交換器(C)で冷却された
後シフト反応触媒の充填された反応器(J)を通過し、
−酸化炭素の含有量を減じ、水素含有量を増加された後
冷却されノックアウトドラム(K)でコンデンスが分離
される。
This is an example of less than ヱ%. First, commercially available No. 1 kerosene is put into the raw material tank (A), and the pressure is increased to the reaction pressure using the pump (B). The accompanying hydrogen-containing gas is mixed therein, and the gas-liquid mixture is transferred to the heat exchanger (C ) and is heated by heat exchange with the reformed reaction product to the temperature required for the reaction. Next, it enters the hydrodesulfurization reactor (D), and first the pressure is 50 kg/c.
m2・G or less, temperature 250-400℃, LHSV0.5
717), most of the sulfur compounds in the kerosene are hydrocracked while passing through the hydrorefining catalyst (E) and converted into light compounds mainly composed of hydrogen sulfide. Most of these sulfur compounds are adsorbed and removed while passing through a zinc oxide desulfurization layer (F) packed downstream of the hydrorefining catalyst in the same reactor. The kerosene and hydrogen-containing gas that have passed through the zinc oxide layer (F) and exited the reaction tube are brought into contact with a nickel-containing catalyst in a desulfurization tower (H) whose temperature is controlled at 180 to 300°C by a heat exchanger (G), where they remain. The sulfur compounds are collected and removed to reduce the sulfur content to 0.2 wt.
Kerosene with a sulfur content of 0.2 vtppm thus obtained
After adding the required amount of water (steam) from the water tank (L) through the pump (M), the following kerosene enters the reforming reactor (I), where it comes into contact with a steam reforming catalyst, is decomposed and gasified. Ru. This reformed gas is cooled in a heat exchanger (C) and then passes through a reactor (J) filled with a shift reaction catalyst.
- After reducing the carbon oxide content and increasing the hydrogen content, it is cooled and the condensate is separated in a knockout drum (K).

次いで第2図は、水素含有ガスに含まれるCO2とCO
の合計濃度が2vof%を越える場合のプロセスフロー
の概略図である。まず原料タンク(A)中に市販の1号
灯油を入れ、それをポンプ(B)で反応圧力まで昇圧し
、そこに同伴する水素含有ガスを混合し、気液混合状態
で熱交換器(C)に入り、反応に必要な温度まで改質反
応生成物との間の熱交換により加熱される。次いで水素
化脱硫の反応器(D)に入り、まず圧力50kg/Cシ
ーG以下、温度250〜400℃、LHSVO15〜7
の範囲で水素化精製触媒(E)を通過中に1号灯油中の
硫黄化合物の大部分は水素化分解され、硫化水素主体の
軽質化合物に変換される。
Next, Figure 2 shows the CO2 and CO contained in the hydrogen-containing gas.
FIG. 2 is a schematic diagram of a process flow when the total concentration exceeds 2 vof%. First, commercially available No. 1 kerosene is put into the raw material tank (A), and the pressure is increased to the reaction pressure using the pump (B). The accompanying hydrogen-containing gas is mixed therein, and the gas-liquid mixture is transferred to the heat exchanger (C ) and is heated by heat exchange with the reforming reaction product to the temperature required for the reaction. Next, it enters the hydrodesulfurization reactor (D), and first, the pressure is 50 kg/C sea G or less, the temperature is 250 to 400 degrees Celsius, and the LHSVO is 15 to 7.
Most of the sulfur compounds in No. 1 kerosene are hydrocracked while passing through the hydrorefining catalyst (E) in the range of 100 to 1000 ml, and are converted into light compounds mainly composed of hydrogen sulfide.

これらの硫黄化合物は同一反応器内に水素化精製触媒よ
り下流に充填された酸化亜鉛の脱硫層(F)を通過中に
吸着除去される。酸化亜鉛層(F)を通り、反応管を出
た灯油は気液分離器(N)で冷却され、水素含有ガスと
灯油とに気液分離され、さらに熱交換器(G)で180
〜300℃に加熱された液相の留分のみを脱硫塔(H)
でニッケル含有触媒と接触させて残存する硫黄化合物を
収着除去して硫黄分0.2ppI11以下の灯油を得る
These sulfur compounds are adsorbed and removed while passing through a zinc oxide desulfurization layer (F) packed downstream of the hydrotreating catalyst in the same reactor. The kerosene that has passed through the zinc oxide layer (F) and exited the reaction tube is cooled in a gas-liquid separator (N), separated into hydrogen-containing gas and kerosene, and then further separated into 180% gas and kerosene in a heat exchanger (G).
Only the liquid phase fraction heated to ~300℃ is sent to the desulfurization tower (H)
The remaining sulfur compounds are sorbed and removed by contacting with a nickel-containing catalyst to obtain kerosene with a sulfur content of 0.2 ppI11 or less.

このようにして得られた硫黄分0.2ppm以下の灯油
は先に(N)で分離された水素含有ガスと合流し、さら
に水タンク(L)からポンプ(M)を通して必要量の水
(スチーム)を添加した後改質反応器(1)に入り、水
蒸気改質触媒と接触して分解され、ガス化される。この
改質ガスは熱交換器(C)で冷却された後、シフト反応
触媒の充填された反応器(J)を通過し、−酸化炭素の
含有量を減じ、水素含有量を増加された後冷却されノッ
クアウトドラム(K)でコンデンスが分離される。
The thus obtained kerosene with a sulfur content of 0.2 ppm or less is combined with the hydrogen-containing gas that was previously separated in (N), and then passed from the water tank (L) to the pump (M) to produce the required amount of water (steam). ) is added to the reforming reactor (1), where it comes into contact with a steam reforming catalyst to be decomposed and gasified. After this reformed gas is cooled in a heat exchanger (C), it passes through a reactor (J) filled with a shift reaction catalyst to reduce the carbon oxide content and increase the hydrogen content. It is cooled and the condensate is separated in a knockout drum (K).

実施例 次に本発明の方法について実施例を用いて具体的に説明
する。
EXAMPLES Next, the method of the present invention will be specifically explained using examples.

実施例1 まず、第1図のフローにしたがって次のような処理を行
った。市販の1号灯油[硫黄分26 vtpp−1比重
0.796 (15/4℃)、沸点範囲164〜262
℃、芳香族分17.0voj!%、煙点28mm]を原
料として、市販のコバルト(Co Oとして2.5vt
%)−モリブデン(Moatとして12,5vt%)ア
ルミナ水素化脱硫触媒4〇−およびその直後に硫化水素
吸収剤としてZn040m!2が同一容器内に充填され
ている水素化精製装置により反応圧力10kg/cm2
−G、温度380℃、LH8V5、水素/油化0.5N
mlH2/kg(H295vo名%以上、CO2+C0
,2vo名%。
Example 1 First, the following processing was performed according to the flow shown in FIG. Commercially available No. 1 kerosene [sulfur content 26 vtpp-1 specific gravity 0.796 (15/4°C), boiling point range 164-262
℃, aromatic content 17.0 voj! %, smoke point 28 mm] as raw material, commercially available cobalt (2.5vt as CoO
%) - Molybdenum (12,5vt% as Moat) alumina hydrodesulfurization catalyst 40- and immediately afterwards Zn040m as hydrogen sulfide absorbent! The reaction pressure is 10 kg/cm2 by the hydrorefining equipment in which 2 is filled in the same container.
-G, temperature 380℃, LH8V5, hydrogen/oil conversion 0.5N
mlH2/kg (H295vo name% or more, CO2+C0
, 2vo name%.

以下)の条件で水素化処理した。処理油には約2〜3p
pIIlの硫黄が残存していた。この精製油を280℃
に冷却し、ニッケル含有ff165vt%のニッケルー
珪藻土触媒を硫黄の収着剤として充填した収着塔に導入
し、反応圧力9kg/cd−G、温度200℃、LHS
VIの条件で処理した。収着塔には内径20 mmφの
ステンレス管を用い、これに収着剤を200−充填して
用いた。精製油の硫黄分は0 、 2 vtppffl
以下に減少した。
The hydrogenation treatment was carried out under the following conditions. Approximately 2-3p for processed oil
Sulfur of pIIl remained. This refined oil is heated to 280℃
The reaction pressure was 9 kg/cd-G, the temperature was 200°C, and the LHS was cooled to 200°C.
It was treated under the conditions of VI. A stainless steel tube with an inner diameter of 20 mm was used as the sorption tower, and the tube was filled with 200 mm of sorbent. The sulfur content of refined oil is 0, 2 vtppffl
It decreased to below.

続いてこの精製油を内径15mmの改質塔に導入し、N
iOを34 wt%、Atz Oiを12wt%、Mg
Oを54 wt%からなる水蒸気改質触媒を用いて反応
圧力9 kg / c−・G、温度反応管入口500℃
、出口850℃、水素/灯油−0,5NmiH2/kg
SLH8V1.5、H20/C,3,5モル1モルの条
件で処理した。反応開始後、5000時間経過した後で
も反応管の温度分布にほとんど変化がなく、出口ガス組
成はほとんど熱力学的平衡値に近く、硫黄分を0 、 
2 vtpp11以下に低減すれば、灯油でも十分スチ
ームにより改質されて水素が製造されうろことが明らか
になった。
Next, this refined oil was introduced into a reforming tower with an inner diameter of 15 mm, and N
34 wt% iO, 12 wt% Atz Oi, Mg
Using a steam reforming catalyst consisting of 54 wt% O, the reaction pressure was 9 kg/c-G, and the temperature at the reaction tube inlet was 500°C.
, outlet 850℃, hydrogen/kerosene - 0.5NmiH2/kg
The treatment was carried out under the conditions of SLH8V1.5, H20/C, 3.5 mol and 1 mol. Even after 5,000 hours had passed since the start of the reaction, there was almost no change in the temperature distribution in the reaction tube, and the outlet gas composition was close to the thermodynamic equilibrium value, with the sulfur content being 0,
It has become clear that even kerosene can be sufficiently reformed by steam to produce hydrogen if it is reduced to 2 vtpp11 or less.

実施例2 市販の1号灯油(硫黄分38 wtppa+ )を原料
として、第1図に示したプロセスフローの装置を用いて
処理した。まず原料灯油をニッケルーモリブデン系触媒
と硫化水素吸収剤ZnOを同一容器内に充填した反応塔
に導入し、反応圧力9. kg / c−・G1温度3
00℃、LHSV0.5、水素/油化0.06Nm3 
H2/kg (H2,74vo℃%、CO+CO2,2
5,3vo1%)の条件で処理した。
Example 2 Commercially available No. 1 kerosene (sulfur content: 38 wtppa+) was used as a raw material and treated using an apparatus having the process flow shown in FIG. First, raw kerosene is introduced into a reaction tower filled with a nickel-molybdenum catalyst and a hydrogen sulfide absorbent ZnO in the same container, and the reaction pressure is 9. kg/c-・G1 temperature 3
00℃, LHSV0.5, hydrogen/oil conversion 0.06Nm3
H2/kg (H2,74vo℃%, CO+CO2,2
5.3vo1%).

生成物を冷却し気液分離した後、液化した水素化精製油
硫黄公約3〜6 ppmを実施例1のニッケル含有量6
5νt%のニッケルー珪藻土触媒を硫黄の収着剤として
充填した硫黄収着塔に導入し、反応圧力8.5kg/c
m2・G1温度280℃、LHSV0.5で処理した。
After cooling the product and separating the gas and liquid, the liquefied hydrotreated oil with a sulfur content of about 3 to 6 ppm was added to the nickel content of Example 1 with a sulfur content of 6 ppm.
It was introduced into a sulfur sorption tower filled with 5 νt% of nickel-diatomaceous earth catalyst as a sulfur sorbent, and the reaction pressure was 8.5 kg/c.
Processing was performed at m2/G1 temperature of 280°C and LHSV of 0.5.

精製油の硫黄分は0.2νtppm以下であった。次い
で先に分離したガス成分と合流した後、NiOを22v
t%、Al2O5を26vt%、MgOを1lvt%、
CaOを13vt%、SiOを16wt%およびに20
を7wt%からなる水蒸気改質触媒を充填した改質反応
塔に導入した。
The sulfur content of the refined oil was 0.2 νtppm or less. Next, after combining with the previously separated gas components, NiO was heated at 22v.
t%, Al2O5 26vt%, MgO 1lvt%,
CaO 13vt%, SiO 16wt% and 20%
was introduced into a reforming reaction tower filled with a steam reforming catalyst containing 7 wt%.

改質条件は実施例1と同じ条件である。反応開始後50
00時間経過した後でも、反応管の最高温度がわずかに
反応管出口側に移動した程度で出口ガス組成はその温度
における熱力学的平衡値に近く、硫黄分を0 、 2 
wtppm以下に低減させれば灯油からでも問題な(水
素が製造されることが明らかである。
The reforming conditions are the same as in Example 1. 50 minutes after the start of the reaction
Even after 00 hours have passed, the maximum temperature of the reaction tube has moved slightly toward the outlet of the reaction tube, and the outlet gas composition is close to the thermodynamic equilibrium value at that temperature, with the sulfur content being 0 or 2.
It is clear that problematic hydrogen can be produced even from kerosene if it is reduced to below wtppm.

比較例1 実施例2で用いた市販の1号灯油を原料として、市販の
コバルト(Co Oとして2.5νt%)−モリブデン
(MeO2として12.5νt%)アルミナ触媒と硫化
水素吸収剤ZnOを同一容器内に充填した反応塔に、反
応圧力20kg/cシ・G1温度360℃、LHSV0
.5、水素/油化0.3モル1モル(H2,74voi
%、CO+CO2,25,3v0.g%)の条件で処理
した。生成物はそのまま改質反応器に導入されたが、生
成物を採取し、灯油の硫黄分を測定したところ、通油初
期から1000時間までは0. 02wLppmであっ
たが、その後徐々に増加し、2000時間後に1 wt
ppfl1以上となり、処理可能時間が著しく短かった
。水素化精製物を順次改質反応器に導入し実施例1と同
一の触媒を用い同一条件で水蒸気改質反応を行った。そ
の結果、反応初期は順調に水素ガス分が得られたが反応
後200時間位してから、反応管の吸熱部が徐々に反応
管出口方向に移行しそれに伴い最高温度を示す部分も下
方に移行し、500時間後で出口ガス中に未反応炭化水
素が検出された。
Comparative Example 1 The commercially available No. 1 kerosene used in Example 2 was used as a raw material, and the same commercially available cobalt (2.5 νt% as CoO)-molybdenum (12.5 νt% as MeO2) alumina catalyst and hydrogen sulfide absorbent ZnO were used. A reaction tower packed in a container was set at a reaction pressure of 20 kg/c, a G1 temperature of 360°C, and a LHSV of 0.
.. 5. Hydrogen/oil conversion 0.3 mol 1 mol (H2,74voi
%, CO+CO2,25,3v0. g%). The product was directly introduced into the reforming reactor, but when the product was sampled and the sulfur content of the kerosene was measured, it was found to be 0.0 from the beginning of the oil flow up to 1000 hours. 02wLppm, but after that it gradually increased to 1wLppm after 2000 hours.
ppfl1 or more, and the processing time was extremely short. The hydrotreated products were sequentially introduced into a reforming reactor, and a steam reforming reaction was carried out under the same conditions as in Example 1 using the same catalyst. As a result, hydrogen gas was obtained smoothly at the beginning of the reaction, but after about 200 hours after the reaction, the endothermic part of the reaction tube gradually moved toward the outlet of the reaction tube, and the part showing the highest temperature also moved downward. After 500 hours, unreacted hydrocarbons were detected in the outlet gas.

原料灯油中の硫黄分が0 、 5 wtppmを越すと
ニッケル系の水蒸気改質触媒の寿命が著しく短いことが
明らかである。
It is clear that when the sulfur content in the raw kerosene exceeds 0.5 wtppm, the life of the nickel-based steam reforming catalyst is significantly shortened.

比較例2 市販の1号灯油(硫黄分63νtppm )を原料とし
て、実施例1と同じニッケル含有量65vt%のニッケ
ルー珪藻土触媒を硫黄の収着剤として反応圧力10kg
/cm2 ・G、温度270℃、LH8V0゜5の条件
で処理した。通油初期から1000時間は処理灯油の硫
黄分は0 、4 wtppa+であったが、その後徐々
に増加し、20−00時間後には1 vtpp1以上に
なった。引き続いて得られた灯油を順次原料として実施
例1と同一の触媒を用い同一条件で水蒸気改質反応を行
った。その結果、反応初期は順調に水素ガス分が得られ
たが反応後125時間位してから、反応管の吸熱部が徐
々に反応管出口方向に移行しそれに伴い最高温度を示す
部分も下方に移行し、310時間後で出口ガス中に未反
応炭化水素が検出された。
Comparative Example 2 Commercially available No. 1 kerosene (sulfur content: 63 νtppm) was used as a raw material, and the same nickel-diatomaceous earth catalyst with a nickel content of 65 vt% as in Example 1 was used as a sulfur sorbent at a reaction pressure of 10 kg.
/cm2·G, temperature 270°C, and LH8V0°5. The sulfur content of the treated kerosene was 0.4 wtppa+ for 1000 hours from the beginning of the oil passage, but it gradually increased thereafter and reached 1 vtpp1 or more after 20-00 hours. Subsequently, a steam reforming reaction was carried out using the obtained kerosene as a raw material and using the same catalyst as in Example 1 under the same conditions. As a result, hydrogen gas was obtained smoothly at the beginning of the reaction, but after about 125 hours after the reaction, the endothermic part of the reaction tube gradually moved toward the outlet of the reaction tube, and the part showing the highest temperature also moved downward. After 310 hours, unreacted hydrocarbons were detected in the outlet gas.

発明の効果 以上の実施例および比較例で明らかなように硫黄分15
0 ppm以下の灯油留分を水素含有ガスの存在下で水
素化精製触媒および硫化水素吸収剤を用いて大部分の硫
黄化合物を除去した後ニッケル系収着剤と接触させて処
理することにより灯油中の硫黄分がニッケル系改質触媒
を用いる水蒸気改質反応に適した量まで低減され、本プ
ロセスを実施することにより長期間安定して水素を主体
としたガスが製造されることが明らかになった。
As is clear from the Examples and Comparative Examples described above, the sulfur content is 15.
A kerosene fraction with a concentration of 0 ppm or less is treated in the presence of a hydrogen-containing gas by using a hydrorefining catalyst and a hydrogen sulfide absorbent to remove most of the sulfur compounds, and then brought into contact with a nickel-based sorbent. It is clear that the sulfur content in the gas is reduced to an amount suitable for a steam reforming reaction using a nickel-based reforming catalyst, and that by implementing this process, gas consisting mainly of hydrogen can be produced stably over a long period of time. became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、水素化精製に用いられる水素含有ガスに含ま
れるC02とCOとの合計濃度が2v0.f:96以下
の場合のプロセスフローを示した概略図、第2図は、水
素含有ガスに含まれるCO2とCOとの合計濃度が2v
ojl:96を越える場合のプロセスフローを示した概
略図である。
FIG. 1 shows that the total concentration of CO2 and CO contained in the hydrogen-containing gas used for hydrorefining is 2v0. Fig. 2 is a schematic diagram showing the process flow when f: 96 or less, and the total concentration of CO2 and CO contained in the hydrogen-containing gas is 2v.
It is a schematic diagram showing a process flow when ojl: exceeds 96.

Claims (1)

【特許請求の範囲】 〔1〕硫黄分150ppm以下の灯油留分を水素含有ガ
ス存在下で圧力50kg/cm^2・G以下、温度27
0〜400℃、LHSV0.2〜7h^−^1、水素/
灯油0.02〜1.0Nm^3H_2/kg灯油の範囲
内で水素化脱硫触媒および硫化水素吸収剤と接触させた
のち、圧力50kg/cm^2・G以下、温度150〜
350℃、LHSV0.1〜10h^−^1の条件でN
i系収着剤と接触させ、さらに水蒸気を加えて通常の水
蒸気改質条件下で水蒸気改質触媒と接触させることを特
徴とする灯油留分から水素を製造する方法。
[Scope of Claims] [1] A kerosene fraction with a sulfur content of 150 ppm or less is heated in the presence of a hydrogen-containing gas at a pressure of 50 kg/cm^2 G or less and a temperature of 27
0~400℃, LHSV0.2~7h^-^1, hydrogen/
After contacting the hydrodesulfurization catalyst and the hydrogen sulfide absorbent within the range of 0.02 to 1.0 Nm^3H_2/kg kerosene, the pressure is 50 kg/cm^2 G or less and the temperature is 150 to
N under the conditions of 350℃, LHSV0.1~10h^-^1
1. A method for producing hydrogen from a kerosene fraction, which comprises contacting the fraction with an i-series sorbent, adding steam, and contacting the fraction with a steam reforming catalyst under normal steam reforming conditions.
JP63012244A 1988-01-22 1988-01-22 Method for producing hydrogen from kerosene fraction Expired - Lifetime JPH07115843B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63012244A JPH07115843B2 (en) 1988-01-22 1988-01-22 Method for producing hydrogen from kerosene fraction
US07/300,414 US5130115A (en) 1988-01-22 1989-01-23 Process for hydrogen production from kerosene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012244A JPH07115843B2 (en) 1988-01-22 1988-01-22 Method for producing hydrogen from kerosene fraction

Publications (2)

Publication Number Publication Date
JPH01188406A true JPH01188406A (en) 1989-07-27
JPH07115843B2 JPH07115843B2 (en) 1995-12-13

Family

ID=11799953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012244A Expired - Lifetime JPH07115843B2 (en) 1988-01-22 1988-01-22 Method for producing hydrogen from kerosene fraction

Country Status (1)

Country Link
JP (1) JPH07115843B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060182A (en) * 2003-08-18 2005-03-10 Shikoku Electric Power Co Inc Method for producing hydrogen, and hydrogen production device used therefor
JP2006202581A (en) * 2005-01-20 2006-08-03 Mitsubishi Electric Corp Fuel treatment device, fuel treatment method using fuel treatment device, fuel cell having fuel treatment device, and fuel supply method to fuel cell having fuel treatment device
JP2007222751A (en) * 2006-02-22 2007-09-06 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst and hydrodesulfurization method for kerosene fraction
JP2008018414A (en) * 2005-08-11 2008-01-31 Toda Kogyo Corp Catalyst for decomposing hydrocarbon, methods for decomposing hydrocarbon and for producing hydrogen using the same, and system for generating electricity
JP2012176897A (en) * 2012-06-21 2012-09-13 Tokyo Gas Co Ltd Hydrogenation desulfurizer-integrated cylindrical steam reformer
JP2015074601A (en) * 2013-10-11 2015-04-20 東京瓦斯株式会社 Hydrogen generator
JP2015196605A (en) * 2014-03-31 2015-11-09 Jx日鉱日石エネルギー株式会社 hydrogen supply system and hydrogen station

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060182A (en) * 2003-08-18 2005-03-10 Shikoku Electric Power Co Inc Method for producing hydrogen, and hydrogen production device used therefor
JP2006202581A (en) * 2005-01-20 2006-08-03 Mitsubishi Electric Corp Fuel treatment device, fuel treatment method using fuel treatment device, fuel cell having fuel treatment device, and fuel supply method to fuel cell having fuel treatment device
JP4511956B2 (en) * 2005-01-20 2010-07-28 三菱電機株式会社 FUEL PROCESSING APPARATUS, FUEL PROCESSING METHOD USING THE FUEL PROCESSING APPARATUS, FUEL CELL PROVIDED WITH FUEL PROCESSING APPARATUS, AND METHOD OF SUPPLYING FUEL CELL WITH FUEL PROCESSING APPARATUS
JP2008018414A (en) * 2005-08-11 2008-01-31 Toda Kogyo Corp Catalyst for decomposing hydrocarbon, methods for decomposing hydrocarbon and for producing hydrogen using the same, and system for generating electricity
JP2007222751A (en) * 2006-02-22 2007-09-06 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst and hydrodesulfurization method for kerosene fraction
JP2012176897A (en) * 2012-06-21 2012-09-13 Tokyo Gas Co Ltd Hydrogenation desulfurizer-integrated cylindrical steam reformer
JP2015074601A (en) * 2013-10-11 2015-04-20 東京瓦斯株式会社 Hydrogen generator
JP2015196605A (en) * 2014-03-31 2015-11-09 Jx日鉱日石エネルギー株式会社 hydrogen supply system and hydrogen station

Also Published As

Publication number Publication date
JPH07115843B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
EP0376419B2 (en) Hydrogen production from hydrocarbon
JP5191888B2 (en) Syngas production method and conversion method
US20100205863A1 (en) Process to Produce a Methane Rich Gas Mixture From Gasification Derived Sulphur Containing Synthesis Gases
US5130115A (en) Process for hydrogen production from kerosene
JPH02302301A (en) Improvement of hydrocarbon by water vapor
KR20150100805A (en) Parallel preparation of hydrogen, carbon monoxide and carbon-comprising product
AU2005201340B2 (en) Process for producing synthesis gas for the Fischer-Tropsch synthesis and producing apparatus thereof
US3551124A (en) Process of gasifying hydrocarbon fractions containing sulfur
CN102482583B (en) Slurry preparation method, slurry preparation device, hydrocarbon synthesis reaction device, and hydrocarbon synthesis reaction system
US20230174376A1 (en) Production of Hydrocarbons
US3625664A (en) Process for the production of rich fuel to replace natural gas by means of catalytic hydrogasification under pressure of fluid hydrocarbons
JP5501366B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis reaction method
CN102165038B (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis method
JPH01188406A (en) Production of hydrogen from kerosene fraction
US20100176346A1 (en) Process and system for conducting isothermal low-temperature shift reaction using a compact boiler
JP5102420B2 (en) Desulfurization
EA030387B1 (en) Process for preparing a paraffin product
CN210560263U (en) Device for preparing Fischer-Tropsch wax by utilizing coke oven gas
CN102348783B (en) Catalyst separation system
JPH02204301A (en) Production of hydrogen from kerosine fraction
CN102165041B (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis method
JP2519998B2 (en) Method for producing hydrogen from hydrocarbons
GB2183670A (en) Process for self-hydrogenation
JP2893328B2 (en) Method for producing high calorific gas using COG as main raw material
Turap et al. Deposition and release behavior of H2S during chemical looping hydrogen production process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 13