JPH0118791B2 - - Google Patents

Info

Publication number
JPH0118791B2
JPH0118791B2 JP58141871A JP14187183A JPH0118791B2 JP H0118791 B2 JPH0118791 B2 JP H0118791B2 JP 58141871 A JP58141871 A JP 58141871A JP 14187183 A JP14187183 A JP 14187183A JP H0118791 B2 JPH0118791 B2 JP H0118791B2
Authority
JP
Japan
Prior art keywords
water
carbon dioxide
gas
treated water
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58141871A
Other languages
Japanese (ja)
Other versions
JPS6034791A (en
Inventor
Norio Makita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP14187183A priority Critical patent/JPS6034791A/en
Publication of JPS6034791A publication Critical patent/JPS6034791A/en
Publication of JPH0118791B2 publication Critical patent/JPH0118791B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、溶解塩類の乏しい水に適度なミネラ
ル分を与えるとともに、水のPH緩衝能を高めるこ
とによつて腐食性を緩和する方法に関するもので
ある。 Ca,Mgは人体の必須元素であるが、一日の摂
取量のうち飲料水から摂取される量は10〜20%程
度とも言われ、蒸留水のような溶解塩類の乏しい
水を常飲した場合の人体に対する影響が問題とさ
れる場合もある。実際、蒸留法などによる海水脱
塩プラントにおいては直面した問題であり、国内
の上水道の水源においても特に上流に降雪地帯を
持つ河川水などでは、電気伝導率が10μs/cm
(at25℃)程度といつた蒸留水に近い水質のもの
が対象とされることも珍しくない。 このような水の水質を、水の腐食性を評価する
指標の一つであるランゲリア指数で表すと、−4
〜−6といつた数値となる。ランゲリア指数で
は、その数値がプラスの場合はスケール発生傾向
を、マイナスの場合は腐食傾向を、ゼロの場合は
安定状態であることをそれぞれ示すとされてお
り、上記のような蒸留水は極めて腐食を起こし易
い水質といえる。したがつて、このような水を扱
う施設においては装置および配管の腐食、また赤
水の苦情なども深刻な問題となつている。 蒸留水あるいは蒸留水に近いような溶解塩類の
乏しい水の腐食性を緩和したり、常飲しても問題
とならない水とする水質の改善には、何らかの手
段で水に適当な硬度、アルカリ度を付与し、かつ
適正なPH域に常時保てるような方法が要求され
る。 従来、水の腐食性の緩和、赤水問題への対応と
してNaOH,Na2CO3,Ca(OH)2などのアルカリ
剤添加によるPH調整が行なわれることが多いが、
ランゲリア指数が−4といつた水ではPH緩衝能が
小さいためランゲリア指数をゼロとするにはPHを
10程度とすることが必要となる。しかし、水道水
のPHは5.8〜8.6にするという基準があること、お
よび水の味の問題から実際上はPH7.5〜8.0程度が
PHの設定上限となるため、こういつた方法ではラ
ンゲリア指数−1.5〜−2.5といつた水質までしか
改善されない。 また、蒸留法による海水脱塩プラントにおいて
は蒸留水に適度の溶解塩類濃度を付与するため、
一部海水を添加したり、ドロマイト(CaCO3
MgCO3からなる鉱物)の層を通過させるなどの
方法が取られている。ただしこの場合、単に蒸留
水をドロマイト層に通過させるだけでは溶解され
る塩類が非常に少ないこと、およびアルカリ度成
分の中でCO2- 3イオンの比率が極めて高いことに
起因してPHが9以上となることから、ドロマイト
層の前段でCO2ガスを溶解せしめて通水すること
によつて溶解塩類濃度を高くし、さらにドロマイ
ト層の後段で酸添加を行ないPH調整を行なうなど
の措置が必要となり、運転管理が煩雑である。 本発明は、従来法の上記問題点および運転管理
の煩雑さを解消することを目的とするものであ
る。 本発明は、カルシウム、マグネシウムなどの硬
度成分の炭酸塩を主成分とする充填材を充填した
充填槽の下部に処理水槽を連通状態に併設し、原
水を前記充填槽の上部より下向流で通水し、かつ
前記処理水槽より炭酸ガスを含有する気体を通気
処理水のPHが5.8〜8.6の範囲内となるように通気
することを特徴とする水質改善方法である。 次に、作用について説明すると、前記充填槽に
おいては炭酸塩と水中に溶解した炭酸ガスと水と
の反応により原水中へ硬度成分、アルカリ度成分
が付与され、前記処理水槽においては炭酸ガスが
水中に溶解し、水に炭酸が付与されPH調整が行わ
れる。 しかして、本発明では前記充填材として石灰
石、大理石、ドロマイトなど硬度成分の炭酸塩を
主成分とするものならいずれでも適用でき、天然
鉱物でもよく、適度のミネラル分を添加した人工
のものでもよい。また、炭酸ガスを含有気体とし
ては殆どの場合、最も安価な気体である空気を使
用することができるが、炭酸ガスの含有比を増大
することによりアルカリ度、硬度の付与効果が向
上する。 次に、本発明の実施態様を図面に基づいて説明
すると、1は充填槽、1′は充填材、2は処理水
槽、3は散気管、4はブロワー、5は炭酸ガスボ
ンベ、6は排気口、7は原水流入管、8は処理水
流出管、9は充填材支持用の目皿、10は炭酸ガ
ス含有気体の供給管である。なお、処理水流出管
8は処理水槽2の上端位置すなわち、目皿9の配
置高さに立ち上げてあり、したがつて処理水槽2
内は常時処理水で満杯となつている。 しかして、原水を充填材1′の上方から下向流
で通水するのと並行して、炭酸ガス含有気体とし
て炭酸ガスと空気の混合ガスを散気管3から上向
流で供給すれば、該混合ガスは散気管3で微細な
気泡となつて通気されるため、充填材としての炭
酸塩と炭酸ガス(炭酸ガスボンベ5からの炭酸ガ
ス、及び空気中の炭酸ガス)および水の反応によ
つて原水中へ硬度成分、アルカリ度成分が付与さ
れる。 次いで処理水槽2へ流入した処理水には常時新
鮮な炭酸ガス及び空気が通気されているため、こ
こでさらに遊離炭酸の付与およびPH調整が行わ
れ、PH5.8〜8.6となつて処理水流出管8より排出
される。 なお、上記実施態様では充填材1′は原水中に
浸漬された状態にあるが、充填槽1の水位を目皿
9の位置にしてもよい。 次に、本発明の実施例(いずれも図面に示す装
置を使用した)について説明する。 実施例 1 蒸留法による海水の脱塩水に本発明を適用した
例で、この蒸留水の水質は第1表に示したごとく
であり、充填材には大理石を、通気ガスには空気
を用いた。
The present invention relates to a method of alleviating corrosiveness by adding an appropriate amount of minerals to water lacking dissolved salts and increasing the pH buffering capacity of the water. Ca and Mg are essential elements for the human body, but it is said that only 10 to 20% of the daily intake comes from drinking water, and people who regularly drink water that is low in dissolved salts, such as distilled water, In some cases, the effect on the human body is considered an issue. In fact, this is a problem encountered in seawater desalination plants using distillation methods, and even in domestic water sources, especially river water with snowy areas upstream, the electrical conductivity is 10μs/cm.
It is not uncommon for water quality similar to distilled water (at 25°C) to be targeted. If the quality of such water is expressed by the Langelier index, which is one of the indicators for evaluating the corrosivity of water, it is -4.
The value is ~-6. In the Langelier index, a positive value indicates a tendency to scale, a negative value indicates a tendency to corrosion, and a value of zero indicates a stable state. Distilled water as mentioned above is extremely corrosive. It can be said that the water quality is likely to cause this. Therefore, in facilities that handle such water, corrosion of equipment and piping, as well as complaints about red water, have become serious problems. In order to reduce the corrosiveness of distilled water or water that is similar to distilled water and which is low in dissolved salts, or to improve water quality so that it is safe to drink regularly, it is necessary to improve the water's hardness and alkalinity by some means. There is a need for a method that can provide the desired pH and maintain the pH within an appropriate range at all times. In the past, pH adjustment was often done by adding alkaline agents such as NaOH, Na 2 CO 3 , and Ca(OH) 2 to alleviate the corrosive nature of water and to deal with red water problems.
Water with a Langelier index of -4 has a small PH buffering capacity, so in order to make the Langelier index zero, the PH must be increased.
It is necessary to set it to about 10. However, there is a standard for the pH of tap water to be between 5.8 and 8.6, and because of the taste of the water, in practice the pH is around 7.5 to 8.0.
Since this is the upper limit of pH setting, these methods can only improve water quality up to a Langelier index of -1.5 to -2.5. In addition, in seawater desalination plants using the distillation method, in order to give the distilled water an appropriate concentration of dissolved salts,
By adding some seawater or by adding dolomite (CaCO 3 ,
Methods such as passing through a layer of MgCO 3 minerals) have been used. However, in this case, simply passing distilled water through the dolomite layer will result in a PH of 9 because very few salts will be dissolved and the proportion of CO2-3 ions in the alkalinity components is extremely high. Given the above, measures such as increasing the concentration of dissolved salts by dissolving CO 2 gas and passing water through it before the dolomite layer, and then adjusting the pH by adding acid after the dolomite layer are recommended. operation management is complicated. The present invention aims to solve the above-mentioned problems of the conventional method and the complexity of operation management. In the present invention, a treated water tank is connected to the bottom of a filling tank filled with a filler whose main component is carbonate, which is a hardness component such as calcium or magnesium, and the raw water is flowed downward from the top of the filling tank. This water quality improvement method is characterized by passing water through the water and aerating gas containing carbon dioxide from the treated water tank so that the pH of the aerated water is within the range of 5.8 to 8.6. Next, to explain the action, in the filling tank, hardness components and alkalinity components are added to the raw water by the reaction between carbonate and carbon dioxide gas dissolved in water, and in the treated water tank, carbon dioxide gas is added to the water. It dissolves in water, adds carbonic acid to the water, and adjusts the pH. Therefore, in the present invention, the filler can be any material whose main component is carbonate, which is a hardness component, such as limestone, marble, or dolomite, and may be a natural mineral or an artificial material with an appropriate amount of mineral added. . Furthermore, in most cases, air, which is the cheapest gas, can be used as the gas containing carbon dioxide gas, but by increasing the content ratio of carbon dioxide gas, the effect of imparting alkalinity and hardness is improved. Next, an embodiment of the present invention will be described based on the drawings. 1 is a filling tank, 1' is a filling material, 2 is a treated water tank, 3 is an aeration pipe, 4 is a blower, 5 is a carbon dioxide gas cylinder, and 6 is an exhaust port. , 7 is a raw water inflow pipe, 8 is a treated water outflow pipe, 9 is a perforated plate for supporting the filler, and 10 is a supply pipe for carbon dioxide-containing gas. The treated water outflow pipe 8 is raised at the upper end position of the treated water tank 2, that is, at the height of the perforated plate 9, so that the treated water outflow pipe 8
The inside is always filled with treated water. Therefore, if raw water is passed in a downward flow from above the filler 1', and a mixed gas of carbon dioxide and air is supplied as a carbon dioxide-containing gas in an upward flow from the aeration pipe 3, Since the mixed gas is aerated in the form of fine bubbles through the aeration pipe 3, the reaction between carbonate as a filler, carbon dioxide gas (carbon dioxide gas from the carbon dioxide gas cylinder 5 and carbon dioxide gas in the air), and water occurs. As a result, hardness components and alkalinity components are added to the raw water. Next, the treated water that flows into the treated water tank 2 is constantly aerated with fresh carbon dioxide gas and air, so free carbon dioxide is further added here and the pH is adjusted, resulting in a pH of 5.8 to 8.6 before the treated water flows out. It is discharged from the pipe 8. In the embodiment described above, the filler 1' is immersed in raw water, but the water level in the filling tank 1 may be set at the perforated plate 9. Next, embodiments of the present invention (all using the apparatus shown in the drawings) will be described. Example 1 This is an example in which the present invention was applied to desalinated seawater obtained by the distillation method.The water quality of this distilled water was as shown in Table 1, and marble was used as the filler and air was used as the ventilation gas. .

【表】 各SV(空間速度、1/h)の条件で、通気なし
の状態で処理した場合の結果を第2表に示した
が、通気なしの状態では溶解イオン量が極めて微
量であり、溶解量を増すためにSVを小さくする
とPH上昇が著しいことが解る。
[Table] Table 2 shows the results when processing was carried out under the conditions of each SV (space velocity, 1/h) without aeration. It can be seen that when the SV is decreased to increase the amount of dissolution, the pH increases significantly.

【表】 次に、本発明法にしたがつて通気を行なつた場
合の処理結果を第3表に示した。
[Table] Next, Table 3 shows the treatment results when aeration was performed according to the method of the present invention.

【表】 第3表のごとく通気を行なうと、PHは8.0〜8.1
と水道水基準内でありSV2.5〜5、G/L比10〜
20の条件ではアルカリ度、硬度とも10〜20mg/
に増加している。ランゲリア指数も−0.8〜−1.3
に改善された。なお、上記G/L比すなわち気液
比は、通気ガスの流量(標準状態)と原水流量と
の比である。 実施例 2 実施例1の水質改善に際して、通気ガスとして
空気と炭酸ガスの混合気体を使用した例を示す。
[Table] When ventilation is performed as shown in Table 3, the pH is 8.0 to 8.1.
and within tap water standards, SV2.5~5, G/L ratio 10~
Under 20 conditions, both alkalinity and hardness are 10 to 20 mg/
is increasing. The Langelier index is also −0.8 to −1.3.
improved. Note that the G/L ratio, that is, the gas-liquid ratio, is the ratio between the flow rate of ventilation gas (in a standard state) and the flow rate of raw water. Example 2 An example is shown in which a mixed gas of air and carbon dioxide is used as the ventilation gas in the water quality improvement of Example 1.

【表】【table】

【表】 第4表のごとく、空気に炭酸ガスを混合して通
気すると処理効果は更に高まる。SV10、G/L
比10の条件では空気:炭酸ガス=1000:2の場合
PH7.8、電気伝導率98.0μs/cm、アリカリ度42.1
mg/、硬度42.6、ランゲリア指数−0.8に改善
され、空気:炭酸ガス=1000:3の場合PH7.6、
電気伝導率122μs/cm、アリカリ度61.8mg/、
硬度62.6mg/、ランゲリア指数−0.6まで改善
された。 実施例 3 赤水障害が問題となつている水源の水質改善例
を示す。 原水は河川水であり、水質は第5表に示したと
おりである。
[Table] As shown in Table 4, the treatment effect is further enhanced when carbon dioxide gas is mixed with air and aerated. SV10, G/L
At a ratio of 10, air: carbon dioxide = 1000:2
PH7.8, electrical conductivity 98.0μs/cm, alkalinity 42.1
mg/, hardness improved to 42.6, Langelier index -0.8, PH7.6 when air: carbon dioxide = 1000:3,
Electrical conductivity 122μs/cm, alkalinity 61.8mg/,
The hardness was improved to 62.6mg/, and the Langelier index was -0.6. Example 3 An example of water quality improvement of a water source where red water damage is a problem will be shown. The raw water is river water, and the water quality is as shown in Table 5.

【表】 充填材には大理石を、通気ガスには空気を使用
して本発明法により処理を行なつた。処理条件を
SV2.5、G/L比10とした場合PH8.1〜8.3、電気
伝導率89.5μs/cm、アリカリ度27.6mg/、カル
シウム硬度27.5mg/、マグネシウム硬度5.7
mg/となり、ランゲリア指数−0.5〜0.9に改善
された。 実施例 4 第6表に示す水質の蒸留水を対象として、本発
明と、図面に示す処理水槽2を除外し通水ならび
に通気を充填槽下部から行う気液並流上向流式
(比較例)の処理について、処理効果の比較を行
つた。処理条件および処理結果を第7表に示す。
充填材は径2〜5mmの大理石を使用した。
[Table] Treatment was carried out according to the method of the present invention using marble as the filler and air as the aeration gas. processing conditions
SV2.5, G/L ratio 10 PH8.1-8.3, electrical conductivity 89.5μs/cm, alkalinity 27.6mg/, calcium hardness 27.5mg/, magnesium hardness 5.7
mg/, and the Langelier index improved to -0.5 to 0.9. Example 4 Targeting distilled water of the water quality shown in Table 6, the present invention and a gas-liquid cocurrent upward flow type (comparative example ), we compared the treatment effects. Table 7 shows the treatment conditions and treatment results.
Marble with a diameter of 2 to 5 mm was used as the filler.

【表】【table】

【表】 処理No.1は本発明の方法により、G/L比が
10、通水速度SVが5(1/h)の条件で処理した
ものであるが、約10mg/の総アリカリ度および
総硬度の増加がみられ、PHも8.1と水道水基準の
5.8〜8.6範囲内の処理水が得られている。 これに対して、処理No.2は気液並流上向流式に
よりG/L比、SVは処理No.1と同一条件で処理
したものであるが、総アリカリ度、総硬度の増加
は処理No.1より低いにもかかわらず、PHは9.0と
水道水基準を越える値となつている。これは処理
No.1の場合よりCO2の利用効率が悪いことを示し
ている。 処理No.3は気液並流上向流式により、SVは5
(1/h)のままG/L比を30に、すなわち空気
量を3倍に増加した場合のものである。このよう
に、空気量を多くすれば、前記処理水槽2を設け
なくてもPHは8.3と水道水基準内の水質となる。 以上の実施例から明らかなように、本発明は処
理効果の点でも、また、所要空気量という動力費
の点でも、気液並流上向流式では得られない特別
のの効果を有している。 以上述べたように本発明は、簡便な操作により
原水に硬度成分、アリカリ度成分、遊離炭酸をバ
ランス良く付与することが可能であるため、ラン
ゲリア指数も無理なく負の値を減じることができ
ると共にPH調整を行うことが可能となり、運転休
止時も含めPHを常時5.8〜8.6の基準内とすること
ができるほか、本発明を実施するための装置構造
も著しく簡単で空気もしくは炭酸ガスの送気設備
の他にはPH調整設備が一切不要であるなど多くの
利点を有する、実用上極めて有効な方法である。
[Table] Treatment No. 1 has a G/L ratio by the method of the present invention.
10. When treated at a water flow rate SV of 5 (1/h), an increase in total alkalinity and total hardness of approximately 10 mg/h was observed, and the pH was 8.1, which is lower than the tap water standard.
Treated water within the range of 5.8 to 8.6 is obtained. On the other hand, in treatment No. 2, the G/L ratio and SV were treated under the same conditions as treatment No. 1 using a gas-liquid parallel flow upward flow method, but the increase in total alkalinity and total hardness was Although it is lower than treatment No. 1, the pH is 9.0, which exceeds tap water standards. This is processed
This shows that the CO 2 usage efficiency is lower than in case No. 1. Processing No. 3 uses a gas-liquid parallel flow upward flow method, and the SV is 5.
(1/h), the G/L ratio is increased to 30, that is, the air amount is increased three times. In this way, if the amount of air is increased, the water quality will be 8.3, which is within the tap water standard, even without providing the treated water tank 2. As is clear from the above examples, the present invention has special effects that cannot be obtained with the gas-liquid parallel flow upward flow system, both in terms of treatment effects and in terms of the power cost of the required amount of air. ing. As described above, the present invention makes it possible to add hardness components, alkalinity components, and free carbonate to raw water in a well-balanced manner through simple operations, and therefore it is possible to easily reduce the negative value of the Langelier index. It is now possible to adjust the pH and keep the pH within the standard of 5.8 to 8.6 at all times, even when the operation is stopped.The structure of the device for carrying out the present invention is also extremely simple, and only air or carbon dioxide can be supplied. This method is extremely effective in practice and has many advantages, such as not requiring any other PH adjustment equipment.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の実施態様を示すフローシート
である。 1……充填槽、1′……充填材、2……処理水
槽、3……散気管、4……ブロワー、5……炭酸
ガスボンベ、6……排気口、7……原水流入管、
8……処理水流出管、9……目皿、10……供給
管。
The drawings are flow sheets illustrating embodiments of the invention. 1... Filling tank, 1'... Filling material, 2... Treated water tank, 3... Aeration pipe, 4... Blower, 5... Carbon dioxide gas cylinder, 6... Exhaust port, 7... Raw water inflow pipe,
8... Treated water outflow pipe, 9... Perforated plate, 10... Supply pipe.

Claims (1)

【特許請求の範囲】 1 カルシウム、マグネシウムなどの硬度成分の
炭酸塩を主成分とする充填材を充填した充填槽の
下部に処理水槽を連通状態に併設し、原水を前記
充填槽の上部より下向流で通水し、かつ前記処理
水槽より炭酸ガスを含有する気体を通気処理水の
PHが5.8〜8.6の範囲内となるように通気すること
を特徴とする水質改善方法。 2 前記通気処理が、前記炭酸ガス含有気体を前
記処理水槽底部に設けた散気機構に供給して行わ
れるものである特許請求の範囲第1項記載の方
法。 3 前記通気処理が、前記炭酸ガス含有気体とし
て炭酸ガスと空気の混合ガスを使用して行われる
ものである特許請求の範囲第2項記載の方法。
[Scope of Claims] 1. A treated water tank is provided in communication with the lower part of a filling tank filled with a filler whose main component is carbonate, which is a hardness component such as calcium or magnesium, and the raw water is poured below the upper part of the filling tank. Water is passed through in a countercurrent manner, and gas containing carbon dioxide is aerated from the treated water tank to the treated water.
A water quality improvement method characterized by aeration so that the pH is within the range of 5.8 to 8.6. 2. The method according to claim 1, wherein the aeration treatment is performed by supplying the carbon dioxide-containing gas to an aeration mechanism provided at the bottom of the treated water tank. 3. The method according to claim 2, wherein the aeration treatment is performed using a mixed gas of carbon dioxide and air as the carbon dioxide-containing gas.
JP14187183A 1983-08-04 1983-08-04 Process for improving quality of water Granted JPS6034791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14187183A JPS6034791A (en) 1983-08-04 1983-08-04 Process for improving quality of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14187183A JPS6034791A (en) 1983-08-04 1983-08-04 Process for improving quality of water

Publications (2)

Publication Number Publication Date
JPS6034791A JPS6034791A (en) 1985-02-22
JPH0118791B2 true JPH0118791B2 (en) 1989-04-07

Family

ID=15302096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14187183A Granted JPS6034791A (en) 1983-08-04 1983-08-04 Process for improving quality of water

Country Status (1)

Country Link
JP (1) JPS6034791A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730471B2 (en) * 1987-12-29 1995-04-05 高砂熱学工業株式会社 How to prevent corrosion of the piping system
JPH0632820B2 (en) * 1989-01-24 1994-05-02 呉羽化学工業株式会社 Method and apparatus for improving the Langerian index of tap water
PL2565165T3 (en) * 2011-08-31 2017-04-28 Omya International Ag Remineralization of desalinated and of fresh water by dosing of a calcium carbonate solution in soft water
CN105961238A (en) * 2016-05-05 2016-09-28 广州力必拓生物科技有限公司 Cultural water environment total hardness conditioning agent, and application method and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986518A (en) * 1972-12-26 1974-08-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986518A (en) * 1972-12-26 1974-08-19

Also Published As

Publication number Publication date
JPS6034791A (en) 1985-02-22

Similar Documents

Publication Publication Date Title
US4721569A (en) Phosphorus treatment process
JPH09192661A (en) Ultrapure water producing device
US4153556A (en) Method and apparatus for conditioning demineralized water
PT96213A (en) REACTOR AND BIOLOGICAL PROCESS OF AERIAL NITRIFICATION OF EFFLUENTS USING A NITRIFICANT BIOMASS SUPPORT AND PROCESS OF ELIMINATION OF WHIPPED COMPOUNDS
WO2012040943A1 (en) Method and apparatus for synchronously removing heavy metal and nitrate in drinking water
US3097163A (en) Treatment of water in municipal and industrial water systems
JPH0596286A (en) Method and apparatus for improving tap water
US2428418A (en) Removal of silica and other impurities from water by precipitation
Van Vuuren et al. Advanced purification of sewage works effluent using a combined system of lime softening and flotation
Birnhack et al. Potential applications of quarry dolomite for post treatment of desalinated water
JP3826289B2 (en) Desalination method
JPH0118791B2 (en)
CN105692856B (en) A kind of modification dolomite quenched for desalination water
JPH01231988A (en) Two-step treatment with reverse osmosis membrane
JP2562543B2 (en) How to prevent red water from tap water
JP2006142183A (en) Water purification method
JPH0592198A (en) Softening treatment of hard water
JP2610070B2 (en) How to treat tap water
CN1082033C (en) Method for improving pH value during prodn. of purified water
JPS6339696A (en) Penetrating water neutralizing method in seawater desalination by means of reverse osmosis
JPH11319411A (en) Water cleaning agent containing shell fossil and water cleaning method using the agent
JP2004174386A (en) Treatment method for phosphoric acid-containing wastewater
JPH0811233B2 (en) Method for purifying eutrophied raw water
CN219341882U (en) Waste water treatment device
JPH06154770A (en) Adjusting method of water quality