JPH01187505A - Light diffusing tube and its manufacture - Google Patents

Light diffusing tube and its manufacture

Info

Publication number
JPH01187505A
JPH01187505A JP1094288A JP1094288A JPH01187505A JP H01187505 A JPH01187505 A JP H01187505A JP 1094288 A JP1094288 A JP 1094288A JP 1094288 A JP1094288 A JP 1094288A JP H01187505 A JPH01187505 A JP H01187505A
Authority
JP
Japan
Prior art keywords
light
tubular body
core material
wall surface
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1094288A
Other languages
Japanese (ja)
Other versions
JP2665664B2 (en
Inventor
Koichi Iwami
石見 公一
Toshio Honda
本田 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP63010942A priority Critical patent/JP2665664B2/en
Publication of JPH01187505A publication Critical patent/JPH01187505A/en
Application granted granted Critical
Publication of JP2665664B2 publication Critical patent/JP2665664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To efficiently change rays of light having a high condensing property or directivity to rays of light having a high spatial distributing property from a tubular light source by filling up the transparent tubular body of the light source, the surface roughness of inner wall surface of which is specified, with a core material having a refractive index higher than that of the tubular body. CONSTITUTION:A light diffusing tube 1 is constituted of a transparent tubular body 2 filled up with a core material 3 and the openings at both ends of the tubular body 2 are respectively closed up with window materials 4 and 5. The refractive index of the core material 3 is higher than that of the material used for constituting the tubular body 2 and, moreover, the inner wall surface of the tubular body 2 is formed in a rough state, with the surface roughness of the inner wall surface being set within the range of 0.01-0.6mum in the mean roughness of center line Ra, so that at least one end of the tubular body 2 can be used as a light collecting section and its peripheral surface can be used as a light diffusing section. Therefore, rays of light having a high condensing property or directivity can be changed efficiently to rays of light having a high spatial distributing property from a tubular light source.

Description

【発明の詳細な説明】 111夏笠■史1 本発明は集光性の高い光を空間分布性の高い光に転換さ
せる散光管に関し、この散光管は、例えば太陽光が光伝
送路により送られて利用される分野、すなわち海洋狡場
、野菜工場9人口飼育室。
[Detailed Description of the Invention] 111 Natsukasa ■Fumi 1 The present invention relates to a diffuser tube that converts highly condensing light into light with a high spatial distribution. Fields where it is used are marine breeding farms, vegetable factories, and 9 artificial breeding rooms.

病院、都市マンション等の太陽光利用システムにおいて
、光導管の光出射端部に接続して利用され、また、人工
光が光伝送路により送られて利用される分野、すなわち
危険物倉庫、坑道、化学プラント、パイプライン、水中
照明、油中照明、危険作業手許照明等において、光導管
の光出射端部に接続しもしくはランプハウスに直接接続
して利用される。
In solar power utilization systems such as hospitals and urban condominiums, it is used by connecting to the light output end of light pipes, and in fields where artificial light is sent through optical transmission lines, such as hazardous materials warehouses, mine shafts, It is used in chemical plants, pipelines, underwater lighting, oil lighting, dangerous work access lighting, etc. by connecting to the light output end of a light pipe or directly to a lamp house.

【】」[韮 光もしくは光源に要求される性質は使用目的により多様
であり、光の明るさ、波長分布、均質性。
[ ] "The properties required of a dim light or light source vary depending on the purpose of use, such as brightness, wavelength distribution, and homogeneity of the light.

集光性2発熱性等ならびに光源の寿命9価格等を勘案し
て、最適の特性を有する光源が選択される、光を遠距離
まで伝達させるためには集光性の優れた光源が必要であ
り、このような場合には、光をレンズ等の光学的補助手
段により空間伝播させるか、または光ファイバ等の光伝
送路内を伝播させて必要な箇所に伝送し、例えば太陽光
利用システムにおいては、太陽光を安価に伝送する一手
段として、レンズで集光した太陽光を光フアイバー内に
導入することが行われている。しかしこのようにレンズ
で集光された光もしくは光ファイバーで伝送された光は
集光性、指向性が強く、輝度が高過ぎて生理的に不快で
ある事の他、光の利用空間も狭められたものとなる。従
ってこのような集光性もしくは指向性の強いスポット性
の光を、利用箇所において、面光源または管状光源から
の空間分布性の高い散乱光に変換して、生理的不快感を
除き、利用空間を拡大することがしばしば望まれる。
A light source with optimal characteristics is selected, taking into consideration factors such as light-gathering properties (2) heat generation properties, and light source life (9) price.In order to transmit light over long distances, a light source with excellent light-gathering properties is required. In such cases, the light can be propagated through space using optical auxiliary means such as lenses, or propagated through optical transmission lines such as optical fibers, and transmitted to the necessary locations, such as in solar power systems. In recent years, as a means of transmitting sunlight at low cost, sunlight has been focused by a lens and introduced into an optical fiber. However, the light focused by a lens or the light transmitted by an optical fiber has strong focusing and directivity, and the brightness is so high that it is physiologically uncomfortable, and the space in which the light can be used is also narrowed. It becomes something. Therefore, such spot light with strong convergence or directionality is converted into scattered light with high spatial distribution from a surface light source or a tubular light source at the point of use, eliminating physiological discomfort and improving the utilization space. It is often desirable to expand the

キセノンランプにより得られる光は、波長分布が太陽光
に類似するので、生物体には好ましい光源であるが、人
口飼育室、植物工場、培養装置等に光源として組込むた
めには、上述と同様に、スポット性の光を面光源または
管状光源による光に変換することが望まれる。
The light obtained from a xenon lamp has a wavelength distribution similar to that of sunlight, so it is a preferred light source for living organisms, but in order to incorporate it as a light source in artificial breeding rooms, plant factories, culture equipment, etc. It is desirable to convert spot light into light from a surface light source or a tubular light source.

蛍光灯は安価な管状光源であり、空間的な光分布は比較
的良好であるが、発光スペクトルが輝線を含む事、植物
の育成に必要な光成分が乏しい事、物理的外力に弱い事
、引火源になり得る事、発熱する事等のために、利用範
囲が限定され、または特別の防護措置を必要とする。
Fluorescent lamps are inexpensive tubular light sources with relatively good spatial light distribution, but their emission spectra include bright lines, lack of light components necessary for plant growth, and are susceptible to external physical forces. Because it can become a source of ignition and generates heat, its range of use is limited or special protective measures are required.

が ゛ しようとする・ 従って本発明は、集光性もしくは指向性の高い光を管状
光源からの空間分布性の高い光に効率良く変換できる構
造簡単で安価な光源装置を提供しようとするものである
Therefore, the present invention aims to provide a light source device with a simple structure and low cost that can efficiently convert highly condensing or highly directional light into light with a high spatial distribution from a tubular light source. be.

さらに本発明は、上記のような光源装置を容易に製造で
きる製造方法を提供しようとするものである。
Furthermore, the present invention aims to provide a manufacturing method that can easily manufacture the above-mentioned light source device.

を ゛するための  および 本発明によれば、上記課題は、内壁面の表面粗さを中心
線平均粗さRaで0,01ないし0.6μmとした透明
な管状体の内部に、該管状体よりも屈折率の高いコア材
を充填し、少なくとも一端を採光部とし周面を散光部と
して成る散光管により解決される。
According to the present invention, the above-mentioned problem is solved by installing a transparent tubular body inside a transparent tubular body whose inner wall surface has a center line average roughness Ra of 0.01 to 0.6 μm. This solution is solved by a light scattering tube filled with a core material having a higher refractive index than the above, with at least one end serving as a light-collecting portion and the peripheral surface serving as a light-diffusing portion.

この散光管にはその一端もしくは両端の採光部から指向
性の高い光がコア材内に入射して来る。
Highly directional light enters the core material from the light-collecting portion at one or both ends of the diffuser tube.

コア材の屈折率は管状体の屈折率よりも高いので、この
光は管状体の内壁面すなわち管状体とコア材との接触境
界面において屈折もしくは反射するが、該境界面が平滑
であれば、反射する光が多く、特に境界面に対する入射
角が臨界角を超えると全反射して依然として指向性を保
持しつつコア材内を進行する。しかし前記境界面すなわ
ち管状体の内壁面は中心線平均粗さRaが0.01ない
し0.6μmの粗面となっているので、該内壁面にコア
材側から入射する光源は屈折して管状体内に入るものが
多く、たとえ反射しても内壁面の他の部分に再び入射し
該部分において屈折して管状体内に入ることとなる。こ
のようにして管状体の外周面からその全面に亘って前記
管状体内に屈折入射した光が放散される。そしてこれら
の光は不規則な粗面において屈折したものであるので方
向性を持たず、かくして管状体の外周面を管状光源とす
る空間分布性の高い光が得られる。
Since the refractive index of the core material is higher than that of the tubular body, this light is refracted or reflected at the inner wall surface of the tubular body, that is, the contact interface between the tubular body and the core material. , a large amount of light is reflected, and especially when the angle of incidence with respect to the boundary surface exceeds a critical angle, it is totally reflected and travels through the core material while still maintaining its directivity. However, since the boundary surface, that is, the inner wall surface of the tubular body is a rough surface with a center line average roughness Ra of 0.01 to 0.6 μm, the light source incident on the inner wall surface from the core material side is refracted and shaped into the tubular body. Many of them enter the body, and even if they are reflected, they will re-enter other parts of the inner wall surface, where they will be refracted and enter the tubular body. In this way, the light that has been refracted and incident on the tubular body is diffused over the entire surface from the outer peripheral surface of the tubular body. Since these lights are refracted by irregular rough surfaces, they have no directionality, and thus light with high spatial distribution is obtained using the outer peripheral surface of the tubular body as a tubular light source.

ただし、前記内壁面の表面粗さは、中心線平均粗さRa
で表示した場合001μm〜0.6μmの範囲でなけれ
ばならない。Raが0.01μm以下では管状体の周面
から光を取出すことが実質的に困難であり、Raが0.
6μm以上では管状体の周面から取出される光の長手方
向の強度分布に大きな偏りが生じ実用性に欠ける。なお
、中心線平均粗さRaは、表面粗さを数値的に表示する
のによく用いられる表示法の1つであり(JIS B 
0601参照)、粗さ曲線の中心線(すなわちこの直線
と粗さ曲線で囲まれる面積がこの直線の両側で等しくな
る直線)をX軸とし、粗さ曲線をy = f (x)で
表わした時、次の式で与えられるRaをミクロン単位で
表わしたものである。
However, the surface roughness of the inner wall surface is the center line average roughness Ra
When expressed as , it must be in the range of 0.001 μm to 0.6 μm. When Ra is 0.01 μm or less, it is substantially difficult to extract light from the circumferential surface of the tubular body;
If the diameter is 6 μm or more, the intensity distribution in the longitudinal direction of the light extracted from the circumferential surface of the tubular body will be largely biased, resulting in a lack of practicality. Note that the center line average roughness Ra is one of the display methods often used to numerically display surface roughness (JIS B
0601), the center line of the roughness curve (i.e., the straight line where the area surrounded by this straight line and the roughness curve is equal on both sides of this straight line) is the X axis, and the roughness curve is expressed as y = f (x). When, Ra is expressed in microns as given by the following formula.

刃は基準の測定長さである。The blade is a standard measurement length.

上記散光管においては、透明な管状体の両端部を窓材で
閉塞すれば、コア材を所定位置に保持しかつ保護する上
で好適である。
In the above-mentioned diffuser tube, it is preferable to close both ends of the transparent tubular body with a window material in order to hold and protect the core material in a predetermined position.

−〇 − また、一端部の窓材を透明体として該端部を採光部とし
、他端部の窓材を光反射部材とすれば、他端部から外部
に逃げる光がなくなり、散光管に入って来た光がほとん
どすべて管状体の外周面から放散されることとなるので
、光の変換効率が高くなる。
−〇 − In addition, if the window material at one end is made transparent and this end is used as a lighting part, and the window material at the other end is used as a light reflecting member, there will be no light escaping to the outside from the other end, and the diffuser tube will Since almost all of the incoming light is dissipated from the outer peripheral surface of the tubular body, the light conversion efficiency is increased.

このような本発明による散光管は、前記管状体の内部に
未硬化状態のコア材を充填した後、該コア材を硬化また
は半硬化せしめることにより極めて容易に製造すること
ができる。
Such a diffuser tube according to the present invention can be manufactured very easily by filling the interior of the tubular body with an uncured core material and then hardening or semi-hardening the core material.

夫−庸−1 以下本発明を実施例について図面を参照して説明する。Husband-Yong-1 The present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を模式的に示した断面図で、
この散光管1は、透明な管状体2の内部にコア材3を充
填して構成され、管状体2の両端の開口部はそれぞれ窓
材4,5により閉塞されている。管状体2は透明な無機
または有機材料から成り、例えばガラス、石英、アルミ
ナ、ポリエチレン、ポリプロピレン、ポリエステル、ポ
リアミド、シリコンゴム、ポリカーボネート、ポリ塩化
ビニル、四弗化エチレン、六弗化プロピレン共重合体、
四弗化エチレンパーフロロアルコキシエチレン共重合体
等で作られている。コア材3も透明な材料で作られてい
るが、このコア材3としては、プラスチック、サーモエ
ラストマー、液状硬化物の他、液状物も利用される。液
状物をコア材3として利用する場合には、該液状物が管
状体2の内部に長期にわたって確実に保持される必要が
あるので、粘性液体または半固体状物を用いるのが望ま
しい。具体的にはポリエチレンオキサイド、ポリプロピ
レンオキサイド、グリセリン等のポリオール類、ポリオ
ールエステル類、ポリオールエーテル類、トリス(クロ
ロエヂル)ホスフェート、トリス(ジクロロプロピル)
ホスフェート等のリン酸エステル類、流動パラフィン、
弗素油、シリコンオイル、ポリイソブチレン、ポリシロ
キサン変性ポリエーテル等が挙げられる。
FIG. 1 is a cross-sectional view schematically showing an embodiment of the present invention.
This diffuser tube 1 is constructed by filling the inside of a transparent tubular body 2 with a core material 3, and the openings at both ends of the tubular body 2 are closed by window materials 4 and 5, respectively. The tubular body 2 is made of a transparent inorganic or organic material, such as glass, quartz, alumina, polyethylene, polypropylene, polyester, polyamide, silicone rubber, polycarbonate, polyvinyl chloride, tetrafluoroethylene, hexafluoropropylene copolymer,
It is made from tetrafluoroethylene perfluoroalkoxyethylene copolymer. The core material 3 is also made of a transparent material, and in addition to plastics, thermoelastomers, and liquid cured materials, liquid materials can also be used as the core material 3. When a liquid material is used as the core material 3, it is necessary to reliably hold the liquid material inside the tubular body 2 for a long period of time, so it is desirable to use a viscous liquid or a semi-solid material. Specifically, polyethylene oxide, polypropylene oxide, polyols such as glycerin, polyol esters, polyol ethers, tris (chloroethyl) phosphate, tris (dichloropropyl)
Phosphate esters such as phosphate, liquid paraffin,
Examples include fluorine oil, silicone oil, polyisobutylene, and polysiloxane-modified polyether.

また、管状体2の内部に硬化性液状物を未硬化の状態で
充填した後、室温、加熱、光、放射線等で硬化させたも
のをコア材3とすることもできる。
The core material 3 can also be formed by filling the inside of the tubular body 2 with a curable liquid material in an uncured state and then curing it at room temperature, by heating, with light, with radiation, or the like.

上記硬化性液状物としてはエポキシ樹脂、液状シリコン
、ポリウレタン、液状ポリブタジェン等が挙げられる。
Examples of the curable liquid material include epoxy resin, liquid silicone, polyurethane, and liquid polybutadiene.

コア材3をこのようにして形成すれば、後述するように
粗面をなす管状体2の内壁面にコア材3が確実に密着し
た散光管1を極めて容易に製作することができる。
By forming the core material 3 in this manner, it is possible to extremely easily manufacture the diffuser tube 1 in which the core material 3 is reliably in close contact with the inner wall surface of the tubular body 2, which has a rough surface, as will be described later.

窓材4は透明な材料から成り、コア材3を管状体2の内
部に封入する働きと共に、光を散光管1内に入射させる
働きを有する。窓材4の材料としては、石英、クラウン
ガラス、フリントガラス。
The window material 4 is made of a transparent material, and has the function of enclosing the core material 3 inside the tubular body 2 and also the function of allowing light to enter the diffuser tube 1 . Materials for the window material 4 include quartz, crown glass, and flint glass.

カルコゲナイド系ガラス、サファイヤ、水晶、ポリカー
ボネート、メタクリル樹脂、ポリスチレン樹脂等が挙げ
られる。
Examples include chalcogenide glass, sapphire, crystal, polycarbonate, methacrylic resin, and polystyrene resin.

窓材4の反対側に設けられる窓材5は、コア材3の封止
が主目的であり、透明性は問わないが、散光管1の周面
ばかりでなく端面からも光を取出したい場合あるいは窓
材5からも光を散光管1内に入射させたい場合には窓材
4と同様な透明材でこれを作る。
The main purpose of the window material 5 provided on the opposite side of the window material 4 is to seal the core material 3, and its transparency is not a concern, but it can be used when it is desired to extract light not only from the peripheral surface of the diffuser tube 1 but also from the end surface. Alternatively, if it is desired to allow light to enter the diffuser tube 1 from the window material 5 as well, it is made of a transparent material similar to the window material 4.

ところで前記管状体2の材料とコア材3の材料とでは伝
送光の波長に対する屈折率が相違し、コア材3の材料の
屈折率が管状体2の材料の屈折率よりも高い。ただし管
状体2はその肉厚方向全体にわたって屈折率がコア材3
の材料の屈折率より小さい必要はなく、コア材3に接す
る内壁面6の近傍における材料の屈折率がコア材3の材
料の屈折率より小さければよい。
By the way, the material of the tubular body 2 and the material of the core material 3 have different refractive indexes with respect to the wavelength of transmitted light, and the refractive index of the material of the core material 3 is higher than the refractive index of the material of the tubular body 2. However, the refractive index of the tubular body 2 is the same as that of the core material 3 over its entire thickness direction.
It is not necessary that the refractive index of the material in the vicinity of the inner wall surface 6 in contact with the core material 3 is smaller than the refractive index of the material of the core material 3.

さらに、管状体2の内壁面6は第2図に誇張して示しで
あるように粗面に形成されており、その表面粗さは前述
したRa表示で0.01μm〜0.6μmの範囲に納め
られている。窓材4を通って散光管1内に入射した光の
各光線は、第2図にLllA−21尤3で例示しである
ように、種々の経路をとってコア材3内を奥の方へ進行
して行くが、この間管状体2とコア材3との境界面すな
わち管状体2の内壁面6において一部は屈折して管状体
2内に進入し、一部は反射して再びコア材3内を進む。
Furthermore, the inner wall surface 6 of the tubular body 2 is formed into a rough surface as shown in an exaggerated manner in FIG. It is stored. Each ray of light that has passed through the window material 4 and entered the diffuser tube 1 takes various routes to the inner part of the core material 3, as illustrated by LllA-21-3 in FIG. During this time, at the interface between the tubular body 2 and the core material 3, that is, at the inner wall surface 6 of the tubular body 2, a part is bent and enters the tubular body 2, and a part is reflected and returns to the core. Proceed through material 3.

屈折した光線は管状体2を厚さ方向に通過してその外周
面7から放散されるが、屈折光と反射光の割合および角
度は各光線が入射する内壁而6局部の粗さ曲線の傾斜に
よって多様であり、結局外周面7から屈折光がその全面
に亘って実質的に均等な強さでかつすべての方向に一様
に放散される。
The refracted light rays pass through the tubular body 2 in the thickness direction and are dissipated from the outer circumferential surface 7, but the ratio and angle of the refracted light and reflected light are determined by the slope of the local roughness curve of the inner wall where each light ray is incident. As a result, the refracted light from the outer circumferential surface 7 is diffused uniformly in all directions with substantially equal intensity over the entire surface.

ただし、内壁面6の表面粗さがRa表示で0.01μm
以下では管状体2の外周面7から光を取出すことが実質
的に困難であり、Raが0.6μm以上では管状体2の
外周面7から取出される光の長手方向の強疫分布に大き
な偏りが生じ実用性に欠けるので、内壁面6の表面粗さ
はRa表示で0.01μm〜0.6μmの範囲内でなけ
ればならない。このような表面粗さは、管状体2の内壁
面6に液体ホーニング等の機械的加工処理を行ったり、
プラズマエツチング処理を行ったりすることにより得ら
れるが、あるいは管状体2の押し出し加工時に熱収縮そ
の他の要因を適当に制御することによっても実現できる
However, the surface roughness of the inner wall surface 6 is 0.01 μm in Ra
Below, it is substantially difficult to extract light from the outer circumferential surface 7 of the tubular body 2, and when Ra is 0.6 μm or more, the intensity distribution of the light extracted from the outer circumferential surface 7 of the tubular body 2 in the longitudinal direction becomes large. The surface roughness of the inner wall surface 6 must be within the range of 0.01 μm to 0.6 μm in terms of Ra, since this would result in unevenness and lack of practicality. Such surface roughness can be achieved by subjecting the inner wall surface 6 of the tubular body 2 to mechanical processing such as liquid honing, or
This can be achieved by plasma etching or by appropriately controlling heat shrinkage and other factors during extrusion of the tubular body 2.

第3図は窓材5を金属製とし、その内側の端面を鏡面化
して光反射面8とした例を示す。このようにすれば、窓
材4側から導入された後管状体2の外周面7から取出さ
れることなく窓材5まで達した光が、光反射面8によっ
て再びコア材3内に差し向けられて、内壁面6を経て外
周面7からの放散光に変換されるので、光の変換効率が
高くなる。窓材5としてはステンレス鋼、アルミニウム
FIG. 3 shows an example in which the window material 5 is made of metal and the inner end surface thereof is mirror-finished to form a light-reflecting surface 8. In this way, the light introduced from the window material 4 side and reaching the window material 5 without being extracted from the outer peripheral surface 7 of the rear tubular body 2 is directed into the core material 3 again by the light reflecting surface 8. Since the light is converted into diffused light from the outer circumferential surface 7 via the inner wall surface 6, the light conversion efficiency is increased. The window material 5 is stainless steel or aluminum.

銅、黄銅、鉄等の金属材料を使用する。あるいは、窓材
5としてガラスや樹脂等のそれ自体の平滑化のみでは鏡
面化が困難な材料を使用し、表面に金属薄膜を蒸着、ス
パッタ、メツキ等の手段で形成することにより、光反射
面8を形成することもできる。
Use metal materials such as copper, brass, and iron. Alternatively, the window material 5 may be made of a material such as glass or resin that is difficult to mirror by simply smoothing itself, and a thin metal film may be formed on the surface by means such as vapor deposition, sputtering, plating, etc. to create a light-reflecting surface. 8 can also be formed.

第4図は窓材5の外面に光反射膜9を形成した例を示す
。窓材5の材質は透明な石英等であり、光反射膜9は窓
材5の端面に金属薄膜を前述のように蒸着、スパッタ、
メツキ等の手段で形成することにより得られ、あるいは
アルミニウムや銅の薄膜を窓材5に密着させることによ
っても得られる。
FIG. 4 shows an example in which a light reflecting film 9 is formed on the outer surface of the window material 5. The material of the window material 5 is transparent quartz or the like, and the light reflecting film 9 is formed by depositing a metal thin film on the end surface of the window material 5 by vapor deposition, sputtering, or the like as described above.
It can be obtained by forming by means such as plating, or by closely adhering a thin film of aluminum or copper to the window material 5.

本発明者は下記実験例1および2に示すように、本発明
による散光管を試作し、その効果を確認した。
As shown in Experimental Examples 1 and 2 below, the present inventor prototyped a diffuser tube according to the present invention and confirmed its effects.

実験例1 前記管状体2として、四弗化エチレン−パー70ロアル
コキシエヂレン共重合体樹脂製で、内径2 m 、外径
4 mm 、長さ300#ll11の中空管を使用し、
この中空管内にトリス(モノクロルエチル)ホスフェー
トをコア材3として充填した後、両端を直径3 mm 
、長さ30mmの石英栓で封止した。前記中空管の内壁
面の表面粗さを触針式表面粗さ計5URTRONIC(
テーラーホブソン社製)で測定した所Ra = 0.1
7 μmであった。
Experimental Example 1 As the tubular body 2, a hollow tube made of tetrafluoroethylene-per70-roalkoxyethylene copolymer resin and having an inner diameter of 2 m, an outer diameter of 4 mm, and a length of 300 #11 was used,
After filling this hollow tube with tris (monochloroethyl) phosphate as the core material 3, the diameter of both ends was 3 mm.
, and sealed with a 30 mm long quartz plug. The surface roughness of the inner wall surface of the hollow tube was measured using a stylus type surface roughness meter 5URTRONIC (
Ra = 0.1 (manufactured by Taylor Hobson)
It was 7 μm.

この散光管の一端からハロゲンランプの光を入光させ、
該散光管の外周面の輝度を輝度計(ミノルタ社製)で計
測した。計測箇所は窓材から50゜間隔とした。この結
果を表1の上段に示す。
Light from a halogen lamp enters from one end of this diffuser tube,
The brightness of the outer peripheral surface of the diffuser tube was measured using a brightness meter (manufactured by Minolta). Measurement points were placed at 50° intervals from the window material. The results are shown in the upper row of Table 1.

実験例2 入射光側と反対側の窓材(前記第3図におけるコア材3
)として、直径3an、長さ30mmの石英栓の端面に
アルミニウム薄膜をスパッタ法により生成したものを用
いた以外は、前記実験例1と同様な散光管を製作し、こ
れについて前記実験例1と同様は計測を行った。この結
果を表1の下段に示しである。
Experimental Example 2 Window material on the side opposite to the incident light side (core material 3 in Fig. 3 above)
), except that a thin aluminum film was formed by sputtering on the end face of a quartz plug with a diameter of 3 an and a length of 30 mm.A diffuser tube similar to that of Experimental Example 1 was manufactured, and the same method as that of Experimental Example 1 was used. Similar measurements were taken. The results are shown in the lower part of Table 1.

これにより、高輝度かつ均質な管状光源が本発明によっ
て得られることが確認された。
This confirmed that a highly bright and homogeneous tubular light source could be obtained by the present invention.

l更五11 以上の通り、本発明による散光管は、内壁面の表面粗さ
を中心線平均粗さRaで0.01ないし0.6μmとし
た透明な管状体の内部に、該管状体よりも屈折率の高い
コア材を充填し、少なくとも一端を採光部とし周面を散
光部としたので、極めて単純な構造によって、集光性も
しくは指向性の高い光を前記周面を管状光源とする空間
分布性の高い光に効率良く転換することができる。
As described above, the diffuser tube according to the present invention has a transparent tubular body whose inner wall surface has a center line average roughness Ra of 0.01 to 0.6 μm. The tube is also filled with a core material having a high refractive index, and at least one end is used as a light-collecting part and the peripheral surface is used as a light-diffusing part, so that with an extremely simple structure, the peripheral surface can be used as a tubular light source for highly condensing or highly directional light. It can be efficiently converted into light with high spatial distribution.

また、コア材が両端の窓材によって所定位置に保持され
かつ保護されているので寿命が長い。
It also has a long lifespan because the core is held in place and protected by the windows at both ends.

さらに、一端部の窓材を透明体とし、他端部の窓材を光
反射部材とすることにより、入射光をさらに高い変換効
率で空間分布性の高い光に変換させることができる。
Furthermore, by using the window material at one end as a transparent body and the window material at the other end as a light reflecting member, incident light can be converted into light with higher spatial distribution with higher conversion efficiency.

上記散光管は、管状体の内部に未硬化状態のコア材を充
填した後、該コア材を硬化または半硬化せしめることに
より、極めて容易に製造することができる。
The above-mentioned diffuser tube can be manufactured very easily by filling an uncured core material inside a tubular body and then hardening or semi-hardening the core material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る散光管の縦断面図、第
2図は同散光管の一部を、粗面を誇張して示した拡大縦
断面図、第3図および第4図はそれぞれ本発明の他の実
施例を示す第1図と同様な縦断面図である。 1・・・散光管、2・・・管状体、3・・・コア材、4
・・・窓材、5・・・窓材、6・・・内壁面、7・・・
外周面、8・・・光反射面、9・・・光反射膜。
FIG. 1 is a vertical cross-sectional view of a diffuser tube according to an embodiment of the present invention, FIG. 2 is an enlarged vertical cross-sectional view of a part of the diffuser tube with its rough surface exaggerated, and FIGS. Each figure is a longitudinal sectional view similar to FIG. 1 showing another embodiment of the invention. 1... Diffusion tube, 2... Tubular body, 3... Core material, 4
...Window material, 5...Window material, 6...Inner wall surface, 7...
Outer peripheral surface, 8... Light reflecting surface, 9... Light reflecting film.

Claims (4)

【特許請求の範囲】[Claims] (1)内壁面の表面粗さを中心線平均粗さRaで0.0
1ないし0.6μmとした透明な管状体の内部に、該管
状体よりも屈折率の高いコア材を充填し、少なくとも一
端を採光部とし周面を散光部として成る散光管。
(1) The surface roughness of the inner wall surface is 0.0 as the center line average roughness Ra.
A light scattering tube comprising a transparent tubular body with a diameter of 1 to 0.6 μm, filled with a core material having a higher refractive index than the tubular body, with at least one end serving as a light-collecting portion and the peripheral surface serving as a light-diffusing portion.
(2)透明な管状体の両端部を窓材で閉塞した請求項1
記載の散光管。
(2) Claim 1 in which both ends of the transparent tubular body are closed with a window material.
The diffuser tube described.
(3)一端部の窓材を透明体として該端部を採光部とし
、他端部の窓材を光反射部材とした請求項2記載の散光
管。
(3) The diffuser tube according to claim 2, wherein the window material at one end is a transparent body, the end is used as a lighting section, and the window material at the other end is a light reflecting member.
(4)透明な管状体の内部に未硬化状態のコア材を充填
した後、該コア材を硬化または半硬化せしめる、請求項
1ないし3のいずれかに記載の散光管の製造方法。
(4) The method for manufacturing a diffuser tube according to any one of claims 1 to 3, wherein the interior of the transparent tubular body is filled with an uncured core material, and then the core material is hardened or semi-hardened.
JP63010942A 1988-01-22 1988-01-22 Diffusion tube and method of manufacturing the same Expired - Lifetime JP2665664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63010942A JP2665664B2 (en) 1988-01-22 1988-01-22 Diffusion tube and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63010942A JP2665664B2 (en) 1988-01-22 1988-01-22 Diffusion tube and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH01187505A true JPH01187505A (en) 1989-07-26
JP2665664B2 JP2665664B2 (en) 1997-10-22

Family

ID=11764262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63010942A Expired - Lifetime JP2665664B2 (en) 1988-01-22 1988-01-22 Diffusion tube and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2665664B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898810A (en) * 1997-04-04 1999-04-27 Minnesota Mining And Manufacturing Company Illumination waveguide and method for producing same
US6123442A (en) * 1997-10-24 2000-09-26 Minnesota Mining And Manufacturing Company Articles with diffuse reflection of light from light fibers
US6301418B1 (en) 1997-10-24 2001-10-09 3M Innovative Properties Company Optical waveguide with diffuse light extraction
US6863428B2 (en) 1997-10-24 2005-03-08 3M Innovative Properties Company Light guide illumination device appearing uniform in brightness along its length
JP2006047567A (en) * 2004-08-03 2006-02-16 Sony Corp Laser irradiation apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090249A1 (en) * 2015-11-27 2017-06-01 フクビ化学工業株式会社 Method for manufacturing circumferential-surface-light-emitting light guide rod and circumferential-surface-light-emitting light guide rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118806A (en) * 1983-11-30 1985-06-26 Agency Of Ind Science & Technol Illuminating appliance
JPS61105512A (en) * 1984-10-29 1986-05-23 Tatsuta Electric Wire & Cable Co Ltd Optical transmission body
JPS62231904A (en) * 1986-04-01 1987-10-12 Bridgestone Corp Optical transmission hose

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118806A (en) * 1983-11-30 1985-06-26 Agency Of Ind Science & Technol Illuminating appliance
JPS61105512A (en) * 1984-10-29 1986-05-23 Tatsuta Electric Wire & Cable Co Ltd Optical transmission body
JPS62231904A (en) * 1986-04-01 1987-10-12 Bridgestone Corp Optical transmission hose

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898810A (en) * 1997-04-04 1999-04-27 Minnesota Mining And Manufacturing Company Illumination waveguide and method for producing same
US6123442A (en) * 1997-10-24 2000-09-26 Minnesota Mining And Manufacturing Company Articles with diffuse reflection of light from light fibers
US6301418B1 (en) 1997-10-24 2001-10-09 3M Innovative Properties Company Optical waveguide with diffuse light extraction
US6863428B2 (en) 1997-10-24 2005-03-08 3M Innovative Properties Company Light guide illumination device appearing uniform in brightness along its length
JP2006047567A (en) * 2004-08-03 2006-02-16 Sony Corp Laser irradiation apparatus

Also Published As

Publication number Publication date
JP2665664B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JP2019074744A (en) Light diffusing optical fiber bundles, illumination systems including light diffusing optical fiber bundles, and methods of affixing light diffusing optical fiber bundles to polymer optical fibers
US7391939B1 (en) Optical apparatus
US4933815A (en) Light pipe for decorative illumination
US20140268871A1 (en) Optics for illumination devices
KR20010075368A (en) Illumination System Having an Array of Linear Prisms
Vu et al. Modified optical fiber daylighting system with sunlight transportation in free space
US8789992B2 (en) Light pipe and illuminating device having the same
EP0727054B1 (en) Liquid core optical waveguide
JPH01187505A (en) Light diffusing tube and its manufacture
Grisé et al. Passive solar lighting using fiber optics
Saxe et al. Progress in the development of prism light guides
JPH05341125A (en) Side surface light emitting cable and structure thereof
JPH01503576A (en) Concentrator for conducted light rays having optical density with large gradient, lenses with large shapes and compound lenses, and methods of manufacturing the same
Saxe Prismatic film light guides: Performance and recent developments
KR20090119561A (en) A light pipe and illuminating apparatus comprising the same
JPH0229702A (en) Light diffusing tube and its production
JP2766841B2 (en) Lighting equipment
RU201686U1 (en) DEVICE FOR AUTONOMOUS LIGHTING OF OBJECTS ISOLATED FROM SOLAR LIGHT
KR20100073628A (en) Optical pipe and illuminating apparatus comprising the same
KR100988624B1 (en) Optical pipe and illuminating apparatus comprising the same
Francini et al. Transport of light by optical fibers and light pipes
KR101000061B1 (en) Optical pipe and illuminating apparatus comprising the same
KR101028088B1 (en) Optical pipe and illuminating apparatus comprising the same
KR101793323B1 (en) Light cylinder with light-emitting hole and light device using the same
KR101793322B1 (en) Bulb type light device having Fresnel lens in light-incident part and light-emitting part of light cylinder