JPH01187350A - Regenerator for heat engine - Google Patents

Regenerator for heat engine

Info

Publication number
JPH01187350A
JPH01187350A JP1159488A JP1159488A JPH01187350A JP H01187350 A JPH01187350 A JP H01187350A JP 1159488 A JP1159488 A JP 1159488A JP 1159488 A JP1159488 A JP 1159488A JP H01187350 A JPH01187350 A JP H01187350A
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling water
circumferential surface
flow passage
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1159488A
Other languages
Japanese (ja)
Inventor
Yoichi Hisamori
洋一 久森
Kazuo Yoshida
和夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1159488A priority Critical patent/JPH01187350A/en
Publication of JPH01187350A publication Critical patent/JPH01187350A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes

Abstract

PURPOSE:To make such manufacture that dispenses with any brazing work performable by forming a lot of grooves on the inner circumferential surface of a thick-wall pipe excellent in thermal conductivity and a fin for cooling fluid on the outer circumferential surface, respectively, while press-fitting a liner in this pipe, and forming a minute flow passage for working fluid with this groove. CONSTITUTION:When applying to a regenerator at the low temperature side of a Stirling cycle engine, a cylindrical regenerator body 24 is made up of materials of a copper alloy, titanium or the like higher in thermal conductivity than steel material and smaller in specific gravity than the steel material, and a lot of minute grooves are formed on the inner circumferential surface along the axial direction, while a fin 23 constituting a flow passage for cooling water is formed on the outer circumferential surface. In addition, a cast iron liner 25 is pressed in the inner part of this regenerator body 24, and a minute flow passage 26 is formed in a gap with the groove of the inner circumferential surface of the regenerator body 24. Then, helium high in temperature or regenerating fluid is made to flow in this flow passage 26, and during this while, it is made so as to be cooled by cooling water taken in from a cooling water inlet 21 and discharged out of a cooling water outlet 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は熱機関の熱交換器に関し、特にスターリング
エンジンなどの熱ガス機関の低温側熱交換器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger for a heat engine, and particularly to a low-temperature side heat exchanger for a hot gas engine such as a Stirling engine.

〔従来の技術〕[Conventional technology]

第4図は例えば実開昭61−55147号公報に示され
た従来のスターリング機関を示す断面図であり、図にお
いて、1は再生器ハウジング2に取り付けられたヒータ
管、3はステンレスの金精からなる再生器、4は低温側
熱交換器である冷却器、5は冷却器が挿入されるブロッ
ク、6は通路案内部材である。
FIG. 4 is a cross-sectional view showing a conventional Stirling engine disclosed in, for example, Japanese Utility Model Application Publication No. 61-55147. In the figure, 1 is a heater tube attached to the regenerator housing 2, and 3 is a stainless steel metal 4 is a cooler which is a low temperature side heat exchanger, 5 is a block into which the cooler is inserted, and 6 is a passage guide member.

また、第5図は低温側熱交換器を詳細に示す断面図であ
り、7はシェル&チューブ型熱交換器の冷却流体である
水が流入する冷却水入口フランジ、8は冷却水が流出す
る冷水出口フランジである。
FIG. 5 is a detailed sectional view of the low-temperature side heat exchanger, where 7 is a cooling water inlet flange into which water, which is the cooling fluid of the shell & tube heat exchanger, flows in, and 8 is a cooling water inlet flange through which the cooling water flows out. Cold water outlet flange.

9は熱交換流体であるHe(ヘリウム)が流入するHe
入口フランジ、10はHeが流出するH e出ロフラン
ジである。1)はHe入口フランジ9とHe出ロフラン
ジlOとの間に配置されるとともにその両端が各フラン
ジにろう付され、熱交換媒体であるHeを流通させる熱
交換パイプ、12は水の熱交換を促進するためのジャマ
板、13はシェル&チューブのシェルの部分にあたる胴
である。
9 is He where He (helium), a heat exchange fluid, flows.
The inlet flange 10 is a He outlet flange through which He flows out. 1) is a heat exchange pipe disposed between the He inlet flange 9 and the He outlet flange 1O, both ends of which are brazed to each flange, and allows He, which is a heat exchange medium, to flow; 12 is a heat exchange pipe for water heat exchange; A baffle plate 13 is a body corresponding to the shell part of the shell & tube.

次に動作について説明する。ヒータ管1部で加熱された
流体(He)は、再生器3に流入して徐冷され、その温
度は650℃から80℃まで低くなる。次に流体は冷却
器4に流入して冷却され、その温度は25℃まで下がる
Next, the operation will be explained. The fluid (He) heated in the first part of the heater tube flows into the regenerator 3 and is gradually cooled, and its temperature is lowered from 650°C to 80°C. The fluid then enters the cooler 4 and is cooled, reducing its temperature to 25°C.

次に、冷却器4での動作について詳しく説明する。第5
図において、熱交換流体である温度の高いHe(約80
℃)がHe入口フランジ9から入り、熱交換パイプ1)
の中を流れる。また、冷却流体である水(約10℃)が
冷却水入口フランジ7から入って熱交換パイプ1)の外
側を流れ、熱交換パイプ1)中のHeを熱伝達により冷
却する。
Next, the operation of the cooler 4 will be explained in detail. Fifth
In the figure, high-temperature He, which is a heat exchange fluid (approximately 80
°C) enters from the He inlet flange 9, and the heat exchange pipe 1)
flows inside. Further, water (approximately 10° C.), which is a cooling fluid, enters from the cooling water inlet flange 7 and flows outside the heat exchange pipe 1) to cool He in the heat exchange pipe 1) by heat transfer.

熱交換パイプ1)を通過中に冷却されたHe(約25℃
)は、He出ロフランジlOから流出する。
He cooled while passing through the heat exchange pipe 1) (approximately 25°C
) flows out from the He outlet flange lO.

また、冷却流体である水は)(eから熱を奪い、冷却水
出口フランジ8から流出する。ジャマ仮12は冷却水の
流れを乱し、強制対流によりパイプ表面の温度の上がっ
た水を冷却し、熱交換効率を向上させる。
In addition, water, which is a cooling fluid, absorbs heat from (e) and flows out from the cooling water outlet flange 8. The temporary jammer 12 disturbs the flow of cooling water and cools the water whose temperature has risen on the pipe surface by forced convection. and improve heat exchange efficiency.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の低温側熱交換器は以上のように構成されているの
で、Heガスが冷却水に漏れないように、He入口フラ
ンジ9.He出口フランジ10と熱交換パイプ1)とを
ろう付しなければならない。
Since the conventional low-temperature side heat exchanger is configured as described above, the He inlet flange 9. The He outlet flange 10 and the heat exchange pipe 1) must be brazed.

しかるにこのろう付を行うと、ろう付時に発生する熱応
力による歪や、ろう付不良による熱交換パイプのつまり
、漏れが発生することになり、これらを解消するために
は、加工法が複雑になり、加工費も高価となる。また上
記従来構造ではパイプの本数が多くなるが、ろう付時の
制約からパイプピッチを小さくするには限界があり、従
って装置が大きく、重いなどの問題点があった。
However, when this brazing is performed, distortion due to thermal stress generated during brazing and clogging and leakage of heat exchange pipes due to poor brazing may occur, and in order to eliminate these problems, complicated processing methods are required. Therefore, the processing cost is also high. In addition, although the conventional structure described above requires a large number of pipes, there is a limit to reducing the pipe pitch due to constraints during brazing, resulting in problems such as the device being large and heavy.

この発明は上記のような問題点を解消するためになされ
たもので、ろう付を製作工程から無くし、加工法を簡素
化して加工費を安価にするとともに、軽量・小型化され
た熱機関の熱交換器を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it eliminates brazing from the manufacturing process, simplifies the processing method, reduces processing costs, and allows for lighter and smaller heat engines. The purpose is to obtain a heat exchanger.

〔課題を解消するための手段〕[Means to solve the problem]

この発明に係る熱機関の熱交換器は、鉄鋼材より熱伝導
率が高く、比重が小さい材料からなる厚肉パイプの内周
面に軸方向に沿って微小な溝を多数設けるとともに、こ
の厚肉パイプにライナを圧入して上記微小な溝を熱交換
流体用の流路とし、さらに上記厚肉パイプの外周面にこ
のパイプ周囲から上記熱交換流体を冷却するためのフィ
ンを設けたものである。
The heat exchanger for a heat engine according to the present invention has many minute grooves along the axial direction on the inner circumferential surface of a thick-walled pipe made of a material with higher thermal conductivity and lower specific gravity than steel materials. A liner is press-fitted into the thick-walled pipe to make the minute groove a flow path for the heat exchange fluid, and fins are provided on the outer peripheral surface of the thick-walled pipe to cool the heat exchange fluid from around the pipe. be.

〔作用〕[Effect]

この発明においては、鉄鋼材に比し熱伝導率が高く、比
重が小さい材料からなる厚肉管の内周面に軸方向と平行
な多数の微小な溝を設け、該厚肉管内にライナを圧入す
ることにより′熱交換流体用の流路を構成したから、工
作法が圧入だけで済み、また材料の大部分が熱伝導率が
鉄鋼材より高く、比重が鉄鋼材より小さい材料の熱交換
器となるので、重量を著しく減少できるとともに、各部
の熱伝導性を向上でき、これにより装置全体を軽量・小
型化することができる。
In this invention, a large number of minute grooves parallel to the axial direction are provided on the inner peripheral surface of a thick-walled tube made of a material with higher thermal conductivity and lower specific gravity than steel materials, and a liner is installed inside the thick-walled tube. By press-fitting, we created a flow path for the heat exchange fluid, so we only needed press-fitting, and most of the materials have a higher thermal conductivity than steel and a lower specific gravity than steel. Since it becomes a container, the weight can be significantly reduced and the thermal conductivity of each part can be improved, thereby making the entire device lighter and smaller.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(alはこの発明の第1の実施例によるスターリ
ングエンジンの低温側熱交換器の平面図、同図偽)はそ
の一部拡大図、同図(C)は該低温側熱交換器の断面構
成図である。これらの図において、24は銅合金、チタ
ン(Ti)などの熱伝導率が鉄鋼材より高く、比重が鉄
鋼材より小さい材料の厚肉パイプからなる熱交換器本体
であり、その内周面には、例えば幅0.5m■、高さ2
鶴、ピッチl鶴の微小な溝が軸方向に沿って形成されて
いる。
FIG. 1 (al is a plan view of the low-temperature side heat exchanger of a Stirling engine according to the first embodiment of the present invention, the same figure is a fake) is a partially enlarged view thereof, and FIG. FIG. In these figures, 24 is a heat exchanger main body made of a thick-walled pipe made of a material such as copper alloy or titanium (Ti), which has a higher thermal conductivity than steel materials and a lower specific gravity than steel materials, and has a heat exchanger body on its inner peripheral surface. For example, the width is 0.5m, the height is 2
Tiny grooves are formed along the axial direction.

またその外周面には、冷却効率を高めるとともに冷却水
の流路を構成するフィン23が形成されている。25は
熱交換器本体24の内部に圧入された鋳鉄製のライナー
、26は熱交換器本体24の内周面の溝とライナー25
との間に形成された微小なHe流路である。また、21
は冷却流体である水が流入する冷却水入口、22は冷却
水が流出する冷却水出口である。
Furthermore, fins 23 are formed on the outer circumferential surface of the fins 23 to increase cooling efficiency and to form a flow path for cooling water. 25 is a cast iron liner press-fitted into the heat exchanger body 24; 26 is a groove on the inner peripheral surface of the heat exchanger body 24 and the liner 25;
This is a minute He channel formed between the two. Also, 21
22 is a cooling water inlet through which water as a cooling fluid flows in, and a cooling water outlet through which the cooling water flows out.

次に動作について説明する。Next, the operation will be explained.

熱交換流体である温度の高いHe(約80℃)がHe流
路26の入口(上側)から入り、He流路26の中を高
速で流れる。また、冷却流体である水(約10℃)が冷
却水人口21から入り、フィン23のまわりを流れ、熱
伝達によりHe流路26を流れているHeを冷却する。
High-temperature He (approximately 80° C.), which is a heat exchange fluid, enters from the entrance (upper side) of the He channel 26 and flows through the He channel 26 at high speed. Further, water (approximately 10° C.), which is a cooling fluid, enters from the cooling water port 21, flows around the fins 23, and cools the He flowing through the He flow path 26 by heat transfer.

He流路26を通過中に冷却されたHe(約25℃)は
、He流路26の出口から流出する。また、冷却流体で
ある水はHeから熱を奪い、冷却水出口22から流出す
る。フィン23は水側の伝熱表面積を増加させ、熱交換
効率を向上させる。
The He (approximately 25° C.) cooled while passing through the He channel 26 flows out from the outlet of the He channel 26 . Further, water, which is a cooling fluid, removes heat from He and flows out from the cooling water outlet 22. The fins 23 increase the heat transfer surface area on the water side and improve heat exchange efficiency.

このような本実施例では、接触伝熱面積を従来装置と同
様としたままHe流路26を従来より小さくし、流速を
増加させて熱伝達率を向上させることができるので、H
e流路26本数が少なくてよく、熱交換器を小径化する
ことができる。また熱交換器の大部分が熱伝導率が鉄鋼
材より高く、比重が鉄鋼材より小さい材料で構成されて
いるため、重量を著しく減少できるだけでなく、熱伝導
率をさらに向上でき、装置全体を軽量・小型化できる。
In this embodiment, while keeping the contact heat transfer area similar to that of the conventional device, the He flow path 26 can be made smaller than before, and the flow velocity can be increased to improve the heat transfer coefficient.
e The number of 26 channels may be small, and the diameter of the heat exchanger can be reduced. In addition, most of the heat exchanger is made of materials that have higher thermal conductivity than steel materials and lower specific gravity than steel materials, so not only can the weight be significantly reduced, but the thermal conductivity can be further improved, making the entire device more efficient. Can be made lighter and smaller.

また、低温側熱交換器が有する死容積が従来のシェル&
チューブ型の熱交換器より小さくなり、エンジン効率も
高くなる。
In addition, the dead volume of the low-temperature side heat exchanger is smaller than that of the conventional shell &
It is smaller than a tube-type heat exchanger and has higher engine efficiency.

第2図は本発明の第2の実施例による低温側熱交換器を
示し、この実施例では、上記実施例のように水の流路を
形成するために低温側熱交換器の外周側にハウジングを
設ける代わりに、図に示すようにエンジンの高温側熱交
換器壁29.をハウジングとして用いており、この場合
低温側熱交換器を一層小型化(小径化)することができ
る。なお、この第2図において第1図と同一符号は同一
のものを示し、27は冷却水の漏れを防止するためのオ
ーリングである。
FIG. 2 shows a low-temperature heat exchanger according to a second embodiment of the present invention. Instead of providing a housing, the hot side heat exchanger wall 29 of the engine is shown. is used as the housing, and in this case, the low temperature side heat exchanger can be further downsized (reduced in diameter). Note that in FIG. 2, the same reference numerals as in FIG. 1 indicate the same parts, and 27 is an O-ring for preventing leakage of cooling water.

また第3図は本発明の第3の実施例を示し、ここでは図
に示すように、上記第1、第2の実施例の構成に加えて
、ライナー28の外周面に熱交換器本体24の溝に嵌挿
される突起28aを形成し、熱交換器本体の微小溝と組
み合せてHe流路を構成しており、この場合熱交換器本
体に形成する溝幅を上記各実施例に比較して広くするこ
とができ、溝の加工が容易になる。
FIG. 3 shows a third embodiment of the present invention. Here, in addition to the structure of the first and second embodiments, a heat exchanger main body 24 is provided on the outer peripheral surface of the liner 28, as shown in the figure. A protrusion 28a is formed to be fitted into the groove of the heat exchanger body, and is combined with the micro groove of the heat exchanger body to form a He flow path. The groove can be made wider, making it easier to process the groove.

なお、上述の各実施例ではライナーを熱交換器本体に圧
入により固定するようにしたが、これは焼き嵌め又は冷
し嵌めにより固定するようにしてもよい、また、水側の
フィン及び熱交換器本体内周側の溝の幅、ピッチ・高さ
などは規定するものでなく、伝熱効率の高い形状ならど
のような形状でもよい。さらに上記各実施例ではライナ
ー材として鋳鉄を使用したが、これはAl製ライナーな
どでもよ(、材料は規定するものではなく、またこれら
の実施例では、素材に銅合金やチタンを使用したが、熱
伝導率が鉄鋼材より高く比重が鉄鋼材より小さい材料な
ら何を用いてもかまわない。
In each of the above embodiments, the liner is fixed to the heat exchanger body by press fitting, but this may be fixed by shrink fitting or cold fitting. The width, pitch, height, etc. of the grooves on the inner circumferential side of the container body are not specified, and any shape may be used as long as it has a high heat transfer efficiency. Furthermore, although cast iron was used as the liner material in each of the above embodiments, it could also be an Al liner (the material is not specified, and in these embodiments, copper alloy or titanium was used as the material). Any material may be used as long as the thermal conductivity is higher than that of steel and the specific gravity is smaller than that of steel.

また、上記各実施例では本発明の熱交換器をスターリン
グエンジンに適用した場合について説明したが、スター
リングサイクルを使った熱機関、例えばスターリング冷
凍機、ベルマイヤサイクル機関(冷凍機又はヒートポン
プ)、G、Mサイクル機関等やその他の熱機関に使用し
てもよい。また、作動流体(熱交換流体)はHeに限定
するものではない。
Furthermore, in each of the above embodiments, the case where the heat exchanger of the present invention is applied to a Stirling engine has been described, but heat engines using the Stirling cycle, such as Stirling refrigerators, Bellmeyer cycle engines (refrigerators or heat pumps), G , M cycle engine, etc., and other heat engines. Further, the working fluid (heat exchange fluid) is not limited to He.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、その構成材料の熱伝
導率が鉄鋼材より高く、比重が鉄鋼材より小さい厚肉パ
イプの内周面に微小な溝を多数設けるとともに、この厚
肉パイプにライナを圧入等して上記微小溝を熱交換流体
用の流路とし、さらに該厚肉パイプの外周面に冷却用の
フィンを設けて熱交換器を構成したので、従来装置のよ
うなろう何工程がなくなって工作が非常に簡単になり、
装置が安価にできる。また、大部分が鉄鋼材より比重の
小さく、熱伝導率の大きい材料で構成されているので、
非常に軽量でありかつ各部の熱伝導性がよ(、しかも接
触伝熱面積を従来同様のまま流路を小さくして高速で熱
交換流体を流すようにしているため、熱伝導率を大きく
向上でき、この結果溝本数を削減して小型な熱交換器を
得ることができる。
As described above, according to the present invention, a large number of minute grooves are provided on the inner circumferential surface of a thick-walled pipe whose constituent materials have a higher thermal conductivity than steel and a specific gravity smaller than that of steel, and A liner is press-fitted into the pipe to make the micro groove a flow path for the heat exchange fluid, and cooling fins are provided on the outer circumferential surface of the thick-walled pipe to form a heat exchanger. Many steps have been eliminated, making the work much easier.
The device can be made at low cost. In addition, most of the materials are made of materials with lower specific gravity and higher thermal conductivity than steel materials, so
It is extremely lightweight and has good thermal conductivity in each part (in addition, the contact heat transfer area remains the same as before, but the flow path is made smaller to allow the heat exchange fluid to flow at high speed, greatly improving thermal conductivity. As a result, the number of grooves can be reduced and a compact heat exchanger can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明の第1の実施例による低温側熱
交換器の平面図、第1図(b)はその一部拡大図、第1
図(C)は該低温側熱交換器の断面構成図、第2図fa
)はこの発明の第2の実施例による低温側熱交換器の平
面図、第2図(b)はその一部拡大図、第2図(C)は
該低温側熱交換器の断面構成図、第3図(a)はこの発
明の第3の実施例による低温側熱交換器の平面図、第3
回申)はその一部拡大図、第3図(C)は該低温側熱交
換器の断面構成図、第4図は従来のスターリングエンジ
ンの熱交換器部を示す断面構成図、第5゛図は従来のシ
ェル4チユーブ型低温側熱交換器の断面構成図である。 21・・・冷却水入口、22・・・冷却水出口、23・
・・フィン、24・・・熱交換器本体、25・・・ライ
ナ、26・・・He流路、27・・・オーリング、28
・・・突起付ライナー、29・・・高温熱交換器壁。 なお、図中同一符号は同−又は相当部分を示す。
FIG. 1(a) is a plan view of a low-temperature side heat exchanger according to a first embodiment of the present invention, FIG. 1(b) is a partially enlarged view thereof, and FIG.
Figure (C) is a cross-sectional configuration diagram of the low temperature side heat exchanger, Figure 2fa
) is a plan view of a low-temperature side heat exchanger according to a second embodiment of the present invention, FIG. 2(b) is a partially enlarged view thereof, and FIG. 2(C) is a cross-sectional configuration diagram of the low-temperature side heat exchanger. , FIG. 3(a) is a plan view of a low temperature side heat exchanger according to a third embodiment of the present invention.
Figure 3(C) is a cross-sectional configuration diagram of the low-temperature side heat exchanger, Figure 4 is a cross-sectional configuration diagram showing the heat exchanger section of a conventional Stirling engine, and Figure 5(C) is a partially enlarged view of the same. The figure is a cross-sectional configuration diagram of a conventional shell four-tube type low-temperature side heat exchanger. 21...Cooling water inlet, 22...Cooling water outlet, 23.
... Fin, 24 ... Heat exchanger main body, 25 ... Liner, 26 ... He channel, 27 ... O-ring, 28
...Liner with protrusions, 29...High temperature heat exchanger wall. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)熱機関の作動流体を熱交換するための熱交換器で
あって、 その内周部に軸方向に沿って微小な溝が、外周部に冷却
流体用のフィンが形成され、熱伝導率が鉄鋼材より高く
、比重が鉄鋼材より小さいアルミニウム以外の材料から
なる円筒体状の熱交換器本体と、 該熱交換器本体の内部に圧入され、上記溝を上記作動流
体の流路とするためのライナとを備えたことを特徴とす
る熱機関の熱交換器。
(1) A heat exchanger for exchanging heat with the working fluid of a heat engine, which has minute grooves along the axial direction on its inner periphery and fins for cooling fluid on its outer periphery to conduct heat transfer. A cylindrical heat exchanger body made of a material other than aluminum, which has a higher specific gravity than steel materials and a specific gravity smaller than that of steel materials, and is press-fitted into the heat exchanger body, and the grooves are made into flow paths for the working fluid. A heat exchanger for a heat engine, characterized in that it is equipped with a liner for.
JP1159488A 1988-01-20 1988-01-20 Regenerator for heat engine Pending JPH01187350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1159488A JPH01187350A (en) 1988-01-20 1988-01-20 Regenerator for heat engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159488A JPH01187350A (en) 1988-01-20 1988-01-20 Regenerator for heat engine

Publications (1)

Publication Number Publication Date
JPH01187350A true JPH01187350A (en) 1989-07-26

Family

ID=11782233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159488A Pending JPH01187350A (en) 1988-01-20 1988-01-20 Regenerator for heat engine

Country Status (1)

Country Link
JP (1) JPH01187350A (en)

Similar Documents

Publication Publication Date Title
JPH06109397A (en) High pressure-resistant long-life heat exchanger made of aluminum
US6715285B2 (en) Stirling engine with high pressure fluid heat exchanger
CN104595056B (en) Cold end heat exchanger of free piston type Stirling engine
US2405722A (en) Heat exchange structure
US2707096A (en) Heat exchanger
US4862955A (en) Heat exchanger
JP3757166B2 (en) Heat exchanger and method of forming the same
US4671064A (en) Heater head for stirling engine
JPH0316590B2 (en)
JPS63118594A (en) Heat exchanger of heat engine on low temperature side
JPH01187350A (en) Regenerator for heat engine
JPS5825556A (en) Starring engine with bayonet heater
JPH0587755B2 (en)
JPH11118370A (en) Double tube type heat exchanger
JPH01187351A (en) Cold-side regenerator for heat engine
JPH10185489A (en) Egr gas cooler
JPH0926281A (en) Heat exchanger
JPH11223401A (en) Heat exchanger for heat engine
JP2694894B2 (en) Heat exchanger
JPH11223400A (en) Heat exchanger for heat engine
CN107764101B (en) Sleeve type heat exchanger and oil cooling machine
EP0273073A1 (en) Heat Exchanger
SU456118A1 (en) Swirl tube
JPH07294163A (en) Heat exchanger
JPS5956088A (en) Heat exchanger