JPH01186934A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPH01186934A
JPH01186934A JP961488A JP961488A JPH01186934A JP H01186934 A JPH01186934 A JP H01186934A JP 961488 A JP961488 A JP 961488A JP 961488 A JP961488 A JP 961488A JP H01186934 A JPH01186934 A JP H01186934A
Authority
JP
Japan
Prior art keywords
glass transition
transition point
pattern
exposed
silylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP961488A
Other languages
Japanese (ja)
Inventor
Shinichi Ito
信一 伊藤
Makoto Nakase
中瀬 真
Hajime Yamaguchi
一 山口
Shuji Hayase
修二 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP961488A priority Critical patent/JPH01186934A/en
Publication of JPH01186934A publication Critical patent/JPH01186934A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/265Selective reaction with inorganic or organometallic reagents after image-wise exposure, e.g. silylation

Abstract

PURPOSE:To selectively absorb a silicon compd. and to form a pattern with high accuracy by setting the temp. of a silylation treatment at the glass transition point of a desired part or above. CONSTITUTION:The difference in the glass transition point between an exposed part 5 and unexposed part 5' is increased and the silylation treatment is executed at the temp. above the glass transition point of the part intended to be absorbed with the silicon compd. and below the glass transition point of the part intended not to be absorbed with the silicon compd. in the case of forming the pattern by a silylation process. The absorption of the silicon compd. at a high selection ratio is thereby enabled and the pattern of a high selection ratio is formed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体装置の製造工程のリソグラフィー工程に
用いられるレジストパターン形成方法に係わり、特にシ
リル化プロセスによりパターンを形成する方法に関する
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for forming a resist pattern used in a lithography process in the manufacturing process of semiconductor devices, and in particular a method for forming a pattern by a silylation process. Regarding.

(従来の技術) 半導体技術の進歩とともの半導体装置ひいては半導体素
子の高速化、高累積化が進められてきている。それに伴
いパターン微細化の7整性は増々高くなり、パターン寸
法も高精度化が要求されるようになっている。現在のプ
ロセスでは感光性ポリマー(レジスト)パターンをマス
クとしてRIEにより、下地薄膜がエツチングされるた
めリングラフイー技術では段差のある素子表面に微細な
レジストパターンを高アスペクト比でかつ寸法精度よく
形成することが要求される。光リングラフイー技術にお
いて従来の単層プロセスは、これらの要求に十分に応じ
ることは難しく多層レジストプロセスの意味がますます
重要なものになってきた。
(Prior Art) As semiconductor technology progresses, semiconductor devices, and even semiconductor elements, are becoming faster and more integrated. Along with this, the precision of pattern miniaturization is becoming increasingly high, and pattern dimensions are also required to be highly accurate. In the current process, the underlying thin film is etched by RIE using a photosensitive polymer (resist) pattern as a mask, so the ring graphie technology forms a fine resist pattern with a high aspect ratio and high dimensional accuracy on the surface of an element with steps. This is required. In photophosphorography technology, it is difficult for the conventional single-layer process to fully meet these demands, and the significance of multi-layer resist processes has become increasingly important.

多層レジスト法は多層にすることによりレジストに課せ
られた役割を分担させようというものである。まず2〜
3μm厚にレジスト層を設け、素子表面段差を平坦化す
るとともに下地からの反射光を吸収させる。この上に高
解像力レジストでパターン形成グすれば、下地から分離
された理想的条件下で露光現象を行うことができ高解像
で寸法精度のよいパターンが形成される。
The multilayer resist method is intended to divide the roles assigned to the resist by forming multiple layers. First 2~
A resist layer with a thickness of 3 μm is provided to flatten the steps on the element surface and absorb reflected light from the underlying layer. If a pattern is formed on this with a high-resolution resist, the exposure phenomenon can be performed under ideal conditions separated from the underlying layer, and a pattern with high resolution and good dimensional accuracy can be formed.

これが多層レジストの基本思想であるが、具体的な方法
は層の数、下層へのパターン転写方法より多岐にわたる
。代表的な多層プロセスに上下レジスト層間に中間層を
設けた3層レジスト法がある。上層から中間層および中
間層から下層へのパターン転写は2段階のりアクティブ
オンエツチング(RI E、以下RIEと略す)により
行う。ここでは中間層は上下層レジスト間での相互作用
防止と下層レジストRIEに耐圧をもたせる2つの役割
をになう。そのため中間層の材料は回転塗布法で成膜可
能なS、OoG (Spin On Glass :有
機シリコンガラス)が最もよく用いられている。
This is the basic idea of multilayer resist, but the specific methods vary depending on the number of layers and the method of pattern transfer to the underlying layer. A typical multilayer process is a three-layer resist method in which an intermediate layer is provided between upper and lower resist layers. Pattern transfer from the upper layer to the intermediate layer and from the intermediate layer to the lower layer is performed by two-step glue active-on-etching (RIE, hereinafter abbreviated as RIE). Here, the intermediate layer plays two roles: preventing interaction between the upper and lower resist layers and providing withstand voltage to the lower resist RIE. Therefore, the most commonly used material for the intermediate layer is S or OoG (Spin On Glass: organic silicon glass), which can be formed into a film by a spin coating method.

この方法はその他の技術にくらべかなり安定したプロセ
スであるが、RIEが2度にわたるなど工程がかなり複
雑であり、量産を目的とした実用化には適さない。そこ
で工程の簡略化が大きな課題となり様々なプロセスが検
討されている。有望な技術のひとつに上述の一3層レジ
ストにおける機能を実現するもので、究極的かつ理想的
なレジストプロセスと言えるものである。
Although this method is a fairly stable process compared to other techniques, the process is quite complicated, including two RIE steps, and is not suitable for practical use for mass production. Therefore, simplification of the process has become a major issue, and various processes are being considered. One promising technology is one that realizes the functions of the above-mentioned 13-layer resist, and can be said to be the ultimate and ideal resist process.

特開昭61−107346によれば代表的なシリル化プ
ロセスは基材に感光性樹脂層を塗布し、次にマスクを介
し、紫外線などの露光線により露光を行ない、露光部を
作り、そしてこの露光部に対し、珪素化合物を選択的に
吸収させてシリル化層を作り、反応性イオンエツチング
により非露光部を選択的に除去し所望のネガパターンを
得るというものである。
According to JP-A No. 61-107346, a typical silylation process involves applying a photosensitive resin layer to a base material, then exposing it to an exposure beam such as ultraviolet light through a mask to create an exposed area. A silylated layer is created by selectively absorbing a silicon compound in the exposed areas, and the non-exposed areas are selectively removed by reactive ion etching to obtain a desired negative pattern.

(発明が解決しようとする課題) これに対し本発明者等が鋭意研究した結果、シリル化プ
ロセスでは、露光部と未露光部のシリル化の差が、設定
温度により大きく左右され、このためパターンの選択性
に変化が生じる事が判った。
(Problem to be Solved by the Invention) As a result of intensive research by the present inventors, it has been found that in the silylation process, the difference in silylation between exposed and unexposed areas is greatly influenced by the set temperature, and as a result, the pattern It was found that there was a change in the selectivity of

本発明の目的はシリル化を制御し、高いパターンの選択
性を得るパターン形成方法を提供することにある。
An object of the present invention is to provide a pattern forming method that controls silylation and provides high pattern selectivity.

[発明の構成] (課題を解決するための手段) 本発明はポリマーがガラス転位点以上の温度になると、
ガラス転位点以下の温度の状態に比べて拡散係数が増大
することを利用し、シリル化処理の温度設定を目的の部
分のガラス転位点以上にすることにより、選択的に珪素
化合物を吸収させ、高精度のパターン形成を行う方法を
提供することにある。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides that when a polymer reaches a temperature equal to or higher than its glass transition point,
Utilizing the fact that the diffusion coefficient increases compared to the state at a temperature below the glass transition point, by setting the temperature of the silylation treatment above the glass transition point of the target part, silicon compounds can be selectively absorbed. An object of the present invention is to provide a method for forming a pattern with high precision.

(作 用) 本発明はシリル化処理を、珪素化合物を吸収させる部分
のガラス転位点以上の温度で行い、さらには珪素化合物
を吸収させない部分のガラス転位点以下の温度で行う。
(Function) In the present invention, the silylation treatment is carried out at a temperature above the glass transition point of the portion where the silicon compound is absorbed, and further at a temperature below the glass transition point of the portion where the silicon compound is not absorbed.

感光性樹脂は露光前後で感光剤の構造変化に判う相互作
用の変化または構造の変化を生じる。一方、熱処理によ
っても相互作用の変化または構造の変化が生じる。この
変化はポリマーと光活性物質が露光及びシリル化処理の
加熱時にエステル化などの縮重反応または相互作用を起
こすことにより生じる。あるいは、ポリマーが露光及び
シリル化処理の加熱時に、架橋ないし主鎖切断を起こす
ことにより生じる。この効果はガラス転位点を変化させ
る方向に働くものである。ガラス転位点以上の温度での
拡散係数はガラス転位点以下の拡散係数と比べて増大す
る。従ってガラス転位点以下の温度の場合と比べてガラ
ス転位点以上では珪素化合物を吸収させるのが容易とな
る。本発明では露光部と未露光部のガラス転位点の差を
大きくし、シリル化処理を、珪素化合物を吸収させるこ
とを目的とする部分のガラス転位点以上、珪素化合物を
吸収させないことを目的とする部分のガラス転位点以下
の温度で行うことにより、高選択比で珪素化合物を吸収
させることを可能にし、高選択比のパターンを形成する
ことを可能にした。
Before and after exposure, the photosensitive resin undergoes a change in interaction or a change in structure, which can be seen as a structural change in the photosensitive agent. On the other hand, heat treatment also causes interaction changes or structural changes. This change occurs when the polymer and the photoactive substance undergo a degeneracy reaction or interaction such as esterification during exposure and heating during the silylation process. Alternatively, it occurs when the polymer undergoes crosslinking or main chain scission during exposure and heating during silylation treatment. This effect works in the direction of changing the glass transition point. The diffusion coefficient at temperatures above the glass transition point increases compared to the diffusion coefficient below the glass transition point. Therefore, it is easier to absorb silicon compounds at temperatures above the glass transition point, compared to when the temperature is below the glass transition point. In the present invention, the difference between the glass transition point of the exposed area and the unexposed area is increased, and the silylation treatment is performed to prevent the absorption of silicon compounds beyond the glass transition point of the area intended for absorption of silicon compounds. By carrying out the process at a temperature below the glass transition point of the part to be absorbed, it is possible to absorb a silicon compound with a high selectivity, and it is possible to form a pattern with a high selectivity.

(実施例) 実施例1 以下実施例を用いて本発明の詳細な説明する。(Example) Example 1 The present invention will be described in detail below using Examples.

ノボラック樹脂8gとナフトキノンジアジドを含む感光
剤2gをエチルセロソルブアセテート23g中で溶解し
、感光性樹脂を調整した。シリコンウェハー(1)を予
めヘキサメチルジシラザンの雰囲気中に120秒さらし
、接着性向上の為の表面改質を行った後、前記感光性樹
脂(2)を35007pfflでシリコンウェハーに1
μmの膜厚にスピンコードし、90℃5分のベーキング
を行った(第2図)。このウェハーをマスク(3)を介
して水銀ランプのg線(4)で露光した。(第3図)こ
の樹脂の露光部(5)のガラス転位点は123℃であり
、未露光部(5′)のガラス転位点は138℃であった
。次にこのウェハーをチャンバーに入れ、内気を窒素置
換した後、ヘキサメチルジシラザン雰囲気中で127℃
でシリル化(第4図)。チャンバーを大気圧にしたのち
、シリル化処理されたウェハーを取り出し、減圧容器に
酸素ガスを導入し、平行平板電極間に高周波弊放電を起
して酸素ガスをプラズマ化しその陰性側に試料を置いて
反応性イオンエツチングを行なうことによりドライ現象
したところ、シリル化された部分はSiO2(7)、に
変化しシリル化されなかった部分がエツチングされ0.
5μmのパターンが精度良く得られた(第1図)。この
後、該パターンをマスクとして基板をエツチングした。
A photosensitive resin was prepared by dissolving 8 g of novolak resin and 2 g of a photosensitizer containing naphthoquinone diazide in 23 g of ethyl cellosolve acetate. The silicon wafer (1) was exposed in advance to an atmosphere of hexamethyldisilazane for 120 seconds to perform surface modification to improve adhesion, and then 35,007 pffl of the photosensitive resin (2) was applied to the silicon wafer.
The film was spin-coded to a thickness of μm and baked at 90° C. for 5 minutes (Figure 2). This wafer was exposed to the g-line (4) of a mercury lamp through a mask (3). (Figure 3) The glass transition point of the exposed area (5) of this resin was 123°C, and the glass transition point of the unexposed area (5') was 138°C. Next, this wafer was placed in a chamber, and after replacing the inside air with nitrogen, it was heated to 127°C in a hexamethyldisilazane atmosphere.
silylation (Fig. 4). After the chamber was brought to atmospheric pressure, the silylated wafer was taken out, oxygen gas was introduced into the vacuum container, a high-frequency electric discharge was generated between the parallel plate electrodes, the oxygen gas was turned into plasma, and the sample was placed on the negative side. When a dry phenomenon was carried out by performing reactive ion etching, the silylated portion changed to SiO2(7), and the non-silylated portion was etched to 0.
A 5 μm pattern was obtained with good precision (Fig. 1). Thereafter, the substrate was etched using the pattern as a mask.

実施例2 ポリビニルフェノールを樹脂とし、ナフトキノ函ンジア
ジドを感光剤としたレジストを用い、実施例1に示した
方法によりパターン形成を行い、0.5μ口のパターン
が精度良く得られた。
Example 2 A pattern was formed by the method shown in Example 1 using a resist using polyvinylphenol as a resin and naphthoquinobox diazide as a photosensitizer, and a 0.5 μm pattern was obtained with high accuracy.

実施例3 ポリメチルメタクリレートのメチレン基の水素の一部を
水酸基にしたものをポリマーとし、1μmの厚さにシリ
コンウェハー上にスピンコードし、180℃60分のベ
ーキングを行った。次に、加速電圧50KV、で50μ
C7c&の電子線露光を行い以下実施例1に示した方法
によりパターン形成を行ったところ0.2μmのパター
ンが精度良く得られた。
Example 3 A polymer was prepared by converting some of the hydrogen atoms in the methylene groups of polymethyl methacrylate into hydroxyl groups, and the polymer was spin-coded onto a silicon wafer to a thickness of 1 μm, and baked at 180° C. for 60 minutes. Next, at an acceleration voltage of 50KV, 50μ
When C7c& was subjected to electron beam exposure and pattern formation was performed by the method shown in Example 1 below, a 0.2 μm pattern was obtained with high accuracy.

即ち例えばヒドロキシエチルメタクリレートH3 −O 0−CH2−CH20H は電子線もしくは遠紫外線の露光により主鎖切断が生じ
分子量が低下して露光部のガラス転位点が低下する。次
に、露光部のガラス転位点以上かつ、非露光部のガラス
転位点以下の温度で珪素化合物として例えばヘキサメチ
ルジシラザン双HN (St  (CH3)3)2の蒸
気中にさらすとガラス転位点の低い露光部でのへキサメ
チルジシラザンの拡散速度が非露光部のそれよりも太き
いため、露光部においてより速やかにヘキサメチルジシ
ラザンがポリマー中に侵入する。そして以下のようなア
ンモニアガスNH3を発生してシリル化する。
That is, for example, when hydroxyethyl methacrylate H3-O0-CH2-CH20H is exposed to electron beams or far ultraviolet rays, the main chain is cut, the molecular weight decreases, and the glass transition point of the exposed portion decreases. Next, when exposed to the vapor of a silicon compound such as hexamethyldisilazane double HN (St (CH3)3)2 at a temperature above the glass transition point of the exposed area and below the glass transition point of the non-exposed area, the glass transition point is Since the diffusion rate of hexamethyldisilazane in the exposed areas with low light is higher than that in the non-exposed areas, hexamethyldisilazane penetrates into the polymer more quickly in the exposed areas. Then, ammonia gas NH3 as shown below is generated and silylated.

0−CH2−CH2−OH H3 一方、非露光部においては、シリル化は生じない。0-CH2-CH2-OH H3 On the other hand, silylation does not occur in the non-exposed areas.

次、02ガスを用いたプラズマによりドライ現像を施す
と、露光部でカプリングしたSiは酸素と反応して表面
にSiO2を形成し、これが02プラズマのマスクと作
用することによって、非露光部の露出したヒドロキシエ
チルメタクリレートのみがドライ現像され高精度にパタ
ーンが形成される。
Next, when dry development is performed using plasma using 02 gas, the Si coupled in the exposed area reacts with oxygen to form SiO2 on the surface, which interacts with the 02 plasma mask to expose the non-exposed area. Only the hydroxyethyl methacrylate is dry developed to form a highly accurate pattern.

尚、上述のように感光性樹脂としては光活性物質と混合
または結合させたポリマーやポリマー単体からなるもの
を用いることができる。また、露光も可視光、紫外線、
X線等の放射線、または電子線、イオンビーム等の荷電
粒子線を用いることができる。
As described above, the photosensitive resin may be a polymer mixed or bonded with a photoactive substance or a polymer alone. In addition, exposure to visible light, ultraviolet light,
Radiation such as X-rays, or charged particle beams such as electron beams and ion beams can be used.

又、感光性樹脂としてクロロメチル化スチレンとポリビ
ニルフェノールとの共重合体 等、感光及びシリル化処理の加熱時に架橋を起す材料を
感光性樹脂として用いてもよい。
Further, as the photosensitive resin, a material that causes crosslinking during heating during photosensitization and silylation treatment, such as a copolymer of chloromethylated styrene and polyvinylphenol, may be used as the photosensitive resin.

[発明の効果] 以上説明したように、シリル化処理を、珪素化合物を吸
収させることを目的とする部分のガラス転位点以上の温
度、かつ珪素化合物を吸収させないことを目的とする部
分のガラス転位点以下の温度で行うことにより、高選択
比で珪素化合物を吸収させることが可能となり、高選択
比のパターンを形成することが可能である。
[Effect of the invention] As explained above, the silylation treatment is carried out at a temperature higher than the glass transition point of the part intended to absorb silicon compounds, and at a temperature higher than the glass transition point of the part intended not to absorb silicon compounds. By carrying out the process at a temperature below the temperature point, it becomes possible to absorb the silicon compound with a high selectivity, and it is possible to form a pattern with a high selectivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、jf!4図は本発明の実施例
の断面図である。 1・・・基材、2・・・感光性樹脂、3・・・マスク、
4・・・紫外線、5・・・露光線、6・・・シリル化域
、7・・・5i02域
Figure 1, Figure 2, Figure 3, jf! FIG. 4 is a sectional view of an embodiment of the present invention. 1... Base material, 2... Photosensitive resin, 3... Mask,
4... Ultraviolet rays, 5... Exposure rays, 6... Silylation region, 7... 5i02 region

Claims (2)

【特許請求の範囲】[Claims] (1)感光性樹脂層を基材に塗布したものを、選択的に
露光し、ガラス転位点を変化せしめて未露光部と相違を
つける工程と、露光部と未露光部のガラス転位点間の温
度で露光部に珪素化合物を吸収させシリル化する工程と
、感光性樹脂層を酸素プラズマを用いてドライ現象して
シリル化処理のなされていない部分を選択的に除去し、
所望のパターンを得ることを特徴とするパターン形成方
法。
(1) A process in which a photosensitive resin layer coated on a base material is selectively exposed to light to change the glass transition point to make it different from the unexposed area, and between the glass transition points in the exposed area and the unexposed area. A step of absorbing a silicon compound into the exposed area at a temperature of
A pattern forming method characterized by obtaining a desired pattern.
(2)前記のポリマーが露光ないしシリル化処理の加熱
時に、架橋ないし、主鎖切断を起こし、ガラス転移点が
変化することを特徴とする請求項記載のパターン形成方
法。
(2) The pattern forming method according to claim 1, wherein the polymer undergoes crosslinking or main chain scission during exposure or heating during silylation treatment, resulting in a change in glass transition point.
JP961488A 1988-01-21 1988-01-21 Pattern forming method Pending JPH01186934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP961488A JPH01186934A (en) 1988-01-21 1988-01-21 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP961488A JPH01186934A (en) 1988-01-21 1988-01-21 Pattern forming method

Publications (1)

Publication Number Publication Date
JPH01186934A true JPH01186934A (en) 1989-07-26

Family

ID=11725171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP961488A Pending JPH01186934A (en) 1988-01-21 1988-01-21 Pattern forming method

Country Status (1)

Country Link
JP (1) JPH01186934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252121A (en) * 1990-02-28 1991-11-11 Sharp Corp Detecting method for shape of resist silanized layer pattern

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085526A (en) * 1983-09-16 1985-05-15 アメリカン テレフオン アンド テレグラフ カムパニ− Method of producing product including at least one pattern drawing step
JPS60501777A (en) * 1983-11-02 1985-10-17 ヒユ−ズ・エアクラフト・カンパニ− Silicon dioxide based graft polymerization lithography mask
JPS61107346A (en) * 1984-10-26 1986-05-26 ユセベ エレクトロニックス,ソシエテ アノニム Formation of negative graphic in photoresist and integrated semiconductor circuit thereby
JPS6371843A (en) * 1986-06-30 1988-04-01 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Treatment of polymer resist
JPS63253356A (en) * 1987-02-20 1988-10-20 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Manufacture of semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085526A (en) * 1983-09-16 1985-05-15 アメリカン テレフオン アンド テレグラフ カムパニ− Method of producing product including at least one pattern drawing step
JPS60501777A (en) * 1983-11-02 1985-10-17 ヒユ−ズ・エアクラフト・カンパニ− Silicon dioxide based graft polymerization lithography mask
JPS61107346A (en) * 1984-10-26 1986-05-26 ユセベ エレクトロニックス,ソシエテ アノニム Formation of negative graphic in photoresist and integrated semiconductor circuit thereby
JPS6371843A (en) * 1986-06-30 1988-04-01 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Treatment of polymer resist
JPS63253356A (en) * 1987-02-20 1988-10-20 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252121A (en) * 1990-02-28 1991-11-11 Sharp Corp Detecting method for shape of resist silanized layer pattern

Similar Documents

Publication Publication Date Title
JPH0340936B2 (en)
EP0161256B1 (en) Graft polymerized sio 2? lithographic masks
US4596761A (en) Graft polymerized SiO2 lithographic masks
JPH0210362A (en) Fine pattern forming method
JPH0722156B2 (en) Method for forming pattern of semiconductor device
JPH01186934A (en) Pattern forming method
JPH01186935A (en) Pattern forming method
JP2585676B2 (en) Pattern formation method
JP2848625B2 (en) Pattern formation method
JPS5828571B2 (en) Resist formation method for microfabrication
JP2766268B2 (en) Pattern formation method
JPH01142721A (en) Positive type photosensitive pattern forming material and pattern forming method
JPH04176123A (en) Manufacture of semiconductor device
KR940007054B1 (en) Patterning method
JPH0247660A (en) Pattern forming method
JPH0293463A (en) Resist pattern forming method
JP2583988B2 (en) Method for manufacturing semiconductor device
JPS6256947A (en) Composition for flattened layer for resist having two-layered structure
JPH03283418A (en) Resist pattern forming method
JPH0219852A (en) Resist processing method
JPH0477899B2 (en)
US20030027087A1 (en) Process for structuring a photoresist layer on a semiconductor substrate
JPH01244447A (en) Pattern forming method and resist material used therefor
JPS6047419A (en) Multilayer level patterning method
JPS5884429A (en) Pattern formation