JPH01186600A - Faraday shield for high frequency heating device - Google Patents

Faraday shield for high frequency heating device

Info

Publication number
JPH01186600A
JPH01186600A JP63005133A JP513388A JPH01186600A JP H01186600 A JPH01186600 A JP H01186600A JP 63005133 A JP63005133 A JP 63005133A JP 513388 A JP513388 A JP 513388A JP H01186600 A JPH01186600 A JP H01186600A
Authority
JP
Japan
Prior art keywords
plasma
pipe
atomic number
substance
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63005133A
Other languages
Japanese (ja)
Inventor
Haruyuki Kimura
晴行 木村
Yoshitaka Ikeda
池田 佳隆
Tsuneyuki Fujii
藤井 常幸
Hitoshi Odagiri
小田桐 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Atomic Energy Agency
Original Assignee
Toshiba Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Energy Research Institute filed Critical Toshiba Corp
Priority to JP63005133A priority Critical patent/JPH01186600A/en
Publication of JPH01186600A publication Critical patent/JPH01186600A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve heating efficiency by forming a pipe with a high melting point material, coating the good conductive substance having a low electricity ratio resistance on the pipe surface, and moreover coating the substance having low atomic number on the surface of the side directly facing a plasma. CONSTITUTION:The good conductive substance 2 such as copper, etc., having a low electricity ratio resistance is coated with the thickness of a skin depth degree for a high frequency on the surface of a pipe 1 having a circular cross section and composed of a high melting point material having a thickness of 3mm or more such as inconel 625, etc. Moreover a substance 3 having a low atomic number such as TiC, etc., is coated on the surface of the coated part mentioned above. The coating thickness of the low atomic number substance 3 is made thicker at the side facing a plasma and thinner at the reverse side, and the maximum thickness is 20mum degree. And a cooling medium such as water or nitrogen gas, etc., is made to flow within the pipe 1. This enables the lowering of heating efficiency to be restrained with the mixture of a substance having a high atomic number into a plasma prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は例えば核融合装置のプラズマを追加熱する高周
波加熱法fjjtにおいて、特にイオンサイクロトロン
周波数帯(以下、ICRFと略称する)高周波加熱装置
に使用される7アラデーシールドの改良に関するもので
ある。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is particularly applicable to the ion cyclotron frequency band (hereinafter abbreviated as ICRF) in the radio frequency heating method fjjt for additionally heating the plasma of a nuclear fusion device, for example. ) This relates to an improvement of the 7 Alladay shield used in high frequency heating equipment.

(従来の技術) 従来から、例えば核融合装置のプラズマを加熱する方法
には、プラズマ中に電流を通して加熱するジュール加熱
法の他に、第2段加熱方法として中性粒子入射加熱法や
高周波加熱法等がある。高周波加熱法は、高周波電磁エ
ネルギーをプラズマに吸収させてプラズマの温度を上げ
る方法で、使用する周波数によって各種の方式がめり、
その1つにICRF’高周波加熱装置がある。
(Prior art) Conventionally, methods for heating the plasma of, for example, nuclear fusion devices include Joule heating, which heats the plasma by passing an electric current through it, as well as neutral particle injection heating and high-frequency heating as second-stage heating methods. There are laws etc. The high-frequency heating method is a method of increasing the temperature of the plasma by absorbing high-frequency electromagnetic energy into the plasma, and there are various methods available depending on the frequency used.
One of them is ICRF' high frequency heating device.

第4図は、との櫨のICRF高周波加熱装置の概略構成
を示すものである。本装置は図示のように、高出力であ
る1 00 MHz @の高周波を発生して増幅する高
周波発信器4と、この高周波発信器4で発生した高周波
出力を伝送する同軸管6と、この同軸管6に接続され上
記高周波出力を核融合装置のプラズマ7に放出するアン
テナに相当する結合系8とから構成されている。
FIG. 4 shows the schematic configuration of Tonohaji's ICRF high frequency heating device. As shown in the figure, this device consists of a high-frequency oscillator 4 that generates and amplifies a high-power high-frequency wave of 100 MHz @, a coaxial tube 6 that transmits the high-frequency output generated by this high-frequency oscillator 4, and this coaxial The coupling system 8 is connected to the tube 6 and corresponds to an antenna that emits the high frequency output to the plasma 7 of the fusion device.

一方、結合系8には、トカマク装置本体5との整合性の
面からT型すッジ導波管方式やルーグアンテナ方式があ
るが、ここではループアンテナ方式について説明する。
On the other hand, the coupling system 8 includes a T-shaped waveguide system and a Loog antenna system from the viewpoint of compatibility with the tokamak device main body 5, but the loop antenna system will be explained here.

このルーグアンテナ方式の結合系8は、同軸管6の外周
に設けられた7ランゾ9.がトカマク装置本体5に直接
接続される。また、同軸管6の先端部にはループアンテ
ナ導体10が取付けられ、さらKこのループアンテナ導
体10のプラズマ7側に7アラデーシールド11が装着
されている。この7アラデーシールド1ノは、ループア
ンテナ導体10をプラズマ粒子の衝突から防止すると共
に、ループアンテナ導体10を流れる高Ml波電流の形
成する磁場を外部へ通過させ、しかも静電的にループア
ンテナ導体10を外界からシールドする役目を担うもの
である。−方、トカマク装置本体2は高真空であるため
、同軸管3の外導管61と内導管6b間は7アールドス
ルー12で真空シールサレル。
This Roog antenna type coupling system 8 consists of 7 lanterns 9. is directly connected to the tokamak device main body 5. Further, a loop antenna conductor 10 is attached to the tip of the coaxial tube 6, and a 7-array shield 11 is attached to the plasma 7 side of the loop antenna conductor 10. This 7Araday shield 1 protects the loop antenna conductor 10 from collision with plasma particles, allows the magnetic field formed by the high Ml wave current flowing through the loop antenna conductor 10 to pass to the outside, and electrostatically protects the loop antenna conductor 10 from collisions with plasma particles. It plays the role of shielding the conductor 10 from the outside world. - On the other hand, since the tokamak device main body 2 is in a high vacuum, the space between the outer conduit 61 and the inner conduit 6b of the coaxial tube 3 is vacuum-sealed with a 7-round through 12.

一般に高周波を用いたプラズマ加熱では、効率の良い加
熱を行なうためにできるだけアンテナ導体10をプラズ
マ7に近づけること、およびできるだけ1つのループア
ンテナ導体10に大電力を加えることができることが必
要である。ところで、最近核融合の研究が進むにつれて
、プラズマ7が高温高密度になると共に、高周波加熱装
置も大容量長時間運転になシ、ファラデーシールド1ノ
には高周波損失およびプラズマ7からの熱負荷の問題と
、プラズマ粒子によって削り取られた表面の原子、分子
がプラズマ7内に侵入して、プラズマ温度を下げること
Kよる加熱効率の低下の問題が生じてきてhる。
Generally, in plasma heating using high frequency, it is necessary to bring the antenna conductor 10 as close to the plasma 7 as possible and to be able to apply as much power as possible to one loop antenna conductor 10 in order to perform efficient heating. By the way, as research on nuclear fusion has progressed recently, plasma 7 has become higher in temperature and density, and high-frequency heating equipment cannot operate at large capacity for long periods of time. Another problem arises: atoms and molecules on the surface scraped off by plasma particles enter the plasma 7, resulting in a decrease in heating efficiency due to lowering the plasma temperature.

そこで、かかる熱負荷の問題に対処するため、従来の7
アラデーシールド1ノは、第5図にその斜視図を示すよ
うに上記高熱負荷を除去するためにアンテナクーシング
13の側面にジャケット14を設け、さらにこのジャケ
ット14と多数本のパイf1゛5を接続して、冷却媒体
をパイfzs内に通して冷却するようになっている。
Therefore, in order to deal with this heat load problem, the conventional 7
As shown in a perspective view in FIG. 5, the Allade Shield 1 is provided with a jacket 14 on the side surface of the antenna cushioning 13 in order to remove the high heat load, and is further equipped with a jacket 14 and a large number of pipes f1'5. is connected so that the cooling medium is passed through the pi fzs for cooling.

(発明が解決しようとする課題] しかし、パイプ15の機械的強度等との兼ね合いで、冷
却流路面積や冷却材流速には限度があるため、冷却可能
な熱負荷には限界がある。一方、プラズマ粒子によって
削シ取られた表面の原子、分子がf−)ズマ内に侵入す
る場合、原子番号の2乗に比例してプラズマ7のエネル
ギーが失われる。
(Problem to be Solved by the Invention) However, there is a limit to the cooling flow path area and the coolant flow rate due to the mechanical strength of the pipe 15, etc., so there is a limit to the heat load that can be cooled. When atoms and molecules on the surface that have been scraped off by the plasma particles invade f-) zuma, the energy of the plasma 7 is lost in proportion to the square of the atomic number.

一般に、構造材として用いられる物質は原子番号の大き
い金属類である。しかし、7アラデーシールド11のよ
うにプラズマ2に直接面するような場所でこの櫨の金属
を用いると、前述の理由によってプラズマ7が冷却され
、高周波加熱装置の加熱効率を低下させる危険性がある
Generally, substances used as structural materials are metals with large atomic numbers. However, if this oak metal is used in a place that directly faces the plasma 2, such as in the 7Araday shield 11, there is a risk that the plasma 7 will be cooled for the reasons mentioned above, reducing the heating efficiency of the high-frequency heating device. be.

本発明は上記のような間Mt−解決するために成された
もので、その目的は高熱負荷に耐え、高周波遺失を低減
させると共に加熱効率を高めることが可能な信頼性の高
い高周波加熱装置用7アラデーシールドを提供すること
にある。
The present invention has been made to solve the above-mentioned problem, and its purpose is to provide a highly reliable high-frequency heating device that can withstand high heat loads, reduce high-frequency loss, and increase heating efficiency. 7 Alladay Shield.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明では、高絢波発信器で
発生した高周波出力を同軸管により伝送し、かつこの同
軸管の先端部に取付けられたアンテナを介してプラズマ
に放出するイオンサイクロトロン周波数帯高周波加熱装
置で、複数本のパイプを接続して成ると共にアンテナの
プラズマ側に装着して設けられ、当該アンテナを流れる
高周波電流により形成される電界をシールドするファラ
デーシールドにおいて、パイプを高融点材料で形成し、
かつ当該ノ4イグの表面に電気比抵抗の小さい良電導性
物質を被接し、さらに少なくともプラズマに直接面する
側の表面に低原子番号の物質を複機するようにしている
(Means for Solving the Problems) In order to achieve the above object, the present invention transmits high frequency output generated by a high frequency wave oscillator through a coaxial tube, and an antenna attached to the tip of the coaxial tube. A high-frequency heating device in the ion cyclotron frequency band that emits energy into the plasma through the antenna.It is made up of multiple pipes connected and is installed on the plasma side of the antenna to shield the electric field formed by the high-frequency current flowing through the antenna. In a Faraday shield, the pipe is made of a high melting point material,
In addition, a highly conductive material with low electrical resistivity is coated on the surface of the No. 4 Ig, and a low atomic number material is coated on at least the surface directly facing the plasma.

(作用ン 従って本発明においては、ICRF、llili周波加
熱装置が大容量長時間運転を行なった場合においても、
高部gJL損失を低く抑えることができ、ま九高熱負荷
に対しても溶融、破断等の危険性が減り、さらに加熱効
率を高めることが可能となる。
(Accordingly, in the present invention, even when the ICRF and llilli frequency heating devices operate at a large capacity for a long time,
The gJL loss at the high part can be suppressed to a low level, and the risk of melting, breakage, etc. is reduced even under high heat loads, and it is possible to further improve heating efficiency.

(実施例] 以下、図面を参照して本発明の一実施例について説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明によるI CRF高周波加熱装置用フ
ァラデーシールドの構成例を断面図にて示すものである
。本実施例によるファラデーシールドは、図示の如く3
■以上の肉厚を有するインコネル625等の高融点材料
からなる断面円形状のパイf1の表面に、電気比抵抗の
小さい銅等の良電導性物質2を高周波に対する表皮深さ
程度の厚さで被覆し、さらにその表面にTic等の低原
子番号の物質3t−被覆するようにしたものである。こ
こで、低原子番号物質3の被覆厚さはプラズマに面する
側を厚く、またその反対側を薄くしておル、最大で20
μm程度の厚さでらる。また、パイfl内には水や窒素
ガス等の冷却媒体を流すようになっている。
FIG. 1 is a sectional view showing an example of the configuration of a Faraday shield for an ICRF high-frequency heating device according to the present invention. The Faraday shield according to this embodiment has three
■ On the surface of Pi f1, which has a circular cross section and is made of a high melting point material such as Inconel 625, which has a wall thickness of more than The surface is further coated with a low atomic number substance such as Tic. Here, the coating thickness of the low atomic number substance 3 is thicker on the side facing the plasma and thinner on the opposite side, so that the coating thickness is at most 20
The thickness is about μm. Further, a cooling medium such as water or nitrogen gas is allowed to flow inside the pipe fl.

かかる構成の7アラデーシールドにおhては、高周波に
よる電流は表面にしか流れない・その厚さをδとし、物
質の比抵抗をρ、角周波数をω、透磁率をμとすると、
厚さδは次式で与えられる。
In the 7Araday shield h with such a configuration, current due to high frequency flows only on the surface.If the thickness is δ, the specific resistance of the material is ρ, the angular frequency is ω, and the magnetic permeability is μ, then
The thickness δ is given by the following formula.

δ=メ丁フ7τ7 例えば、lX10Hzの周波数に対して銅を用いる場合
、δは20tim程度となる。パイf1にインコネル6
25を用い、良電導性物質2として銅を用いる場合、被
覆がある時とそうでない時では高周波損失が5倍以上も
異なり、被覆によって高周波損失による熱負荷が低くな
る。また、良電導性物質2の表面に低原子番号物質3を
被覆すると、低原子番号物質3の比抵抗の分だけ高周波
損失は増加するが、被覆の厚さを低原子番号物質δ以下
にすることKよシ高周波損失の増加を少なくすることが
できる。この場合、良電導性物質2の電気比抵抗をρ凰
、被覆厚さをdl、低原子番号物質3の比抵抗をρ暑、
被覆厚さをdos低原子番号物質3の高周波に対する表
皮深さをδとすると、低原子番号物質3の被覆かある時
とそうでない時の高周波損失の比には次式で与えられる
δ=meter f7τ7 For example, when using copper for a frequency of 1×10 Hz, δ is about 20 tim. Inconel 6 on pi f1
25 and copper is used as the conductive material 2, the high frequency loss differs by more than 5 times with and without the coating, and the thermal load due to the high frequency loss is reduced by the coating. In addition, when the surface of the conductive material 2 is coated with the low atomic number material 3, the high frequency loss increases by the specific resistance of the low atomic number material 3, but the thickness of the coating is set to be less than or equal to the low atomic number material δ. In particular, the increase in high frequency loss can be reduced. In this case, the electrical resistivity of the conductive substance 2 is ρ, the coating thickness is dl, and the specific resistance of the low atomic number substance 3 is ρ,
If the coating thickness is DOS and the skin depth for high frequencies of the low atomic number material 3 is δ, then the ratio of high frequency loss when the low atomic number material 3 is coated and when it is not is given by the following equation.

2h 但し、[、=[t9   δ ここで、ρエ 、ρme’は温度の関数であシ、したが
ってKも温度の関数となるが、良電導性物質2として銅
を用い、低原子番号物質3としてTic t−用い、被
覆の厚さを共に20鞠とした場合、温度100℃の時に
Kは約2となる。パイプ1にインコネル625を用いた
素材のiまの高周波損失に比べると、銅ならびにTic
を被覆し友もの鉱、高周波損失が約3分の1になる。
2h However, [,=[t9 δ Here, ρe and ρme' are functions of temperature, so K is also a function of temperature, but copper is used as the good conductive material 2, and low atomic number material 3 When Tic t- is used as a material and the thickness of the coating is 20 mm, K becomes about 2 at a temperature of 100°C. Compared to the high frequency loss of the material using Inconel 625 for pipe 1, copper and Tic
The high frequency loss is reduced to about one-third by covering the tomomonite.

一方、プラズマ粒子が物質に入射すると、表面から原子
、分子がはじき飛ばされてプラズマ中に侵入して荷電粒
子となる。この荷電粒子は、制動輻射によりグラズマ中
のエネルギーを外部に放出する。そして、この制動輻射
が起きる割合は原子番号の2乗に比例する。例えば、 
Ticと鉄とでは原子番号の比は約3であり、制動輻射
が起きる割合はTlC0方が約8分の1小さい。従って
、プラズマを冷却する割合もTicの方が小さい。
On the other hand, when plasma particles enter a substance, atoms and molecules are repelled from the surface, enter the plasma, and become charged particles. These charged particles release energy in the glazma to the outside by bremsstrahlung radiation. The rate at which this bremsstrahlung radiation occurs is proportional to the square of the atomic number. for example,
The ratio of atomic numbers between Tic and iron is about 3, and the rate at which bremsstrahlung radiation occurs is about 1/8 smaller in TlC0. Therefore, Tic also has a smaller rate of cooling the plasma.

上述したように本実施例による7アラデーシールドにお
いては、肉厚3m以上の高融点材料からなるパイf)を
吊いることにより、冷却可能とすると共に高温での機械
的強度を強くすることができ、またパイプ1の表面に電
気伝導性の良い物質2を被覆することにより、高周波損
失による熱負荷を減少させ、さらに少なくともプラズマ
に直接面する側には電気伝導性の良す物質20表面から
低原子番号の物質3を被覆することにより、原子番号の
大きい物質がプラズマ中に混入するのを防止して加熱効
率の低下を抑えることができる。
As mentioned above, in the 7 Alladay shield according to this embodiment, by suspending the pie f) made of a high melting point material with a wall thickness of 3 m or more, it is possible to cool the shield and increase its mechanical strength at high temperatures. In addition, by coating the surface of the pipe 1 with a material 2 with good electrical conductivity, the heat load due to high frequency loss is reduced, and at least on the side directly facing the plasma, a material 20 with good electrical conductivity is coated from the surface of the material 20 with good electrical conductivity. By coating the material 3 with a low atomic number, it is possible to prevent a material with a high atomic number from entering the plasma, thereby suppressing a decrease in heating efficiency.

従って、ICfLF高周波加熱装置が大容量長時間運転
を行なった場合においても、高周波損失を低く抑えるこ
とが可能とlkシ、また高熱負荷に対しても溶融、破断
等の危険性が@プ、さらに加熱効率を高めることができ
る。
Therefore, even when the ICfLF high-frequency heating device operates at a large capacity for a long time, it is possible to keep the high-frequency loss low, and there is also a risk of melting or breaking even under high heat loads. Heating efficiency can be increased.

尚、上記実施例ではi4イfノとして断面円形状のもの
を用いたが、これに限らず例えば第2図の如く非円形断
面のバイア″1を用りて、プラズマに面する側を平坦に
することKよシ、プラズマ粒子に対するシールド効果を
高めることができる。また、第3図に示す如く断面が楕
円形のパイプ1を用いることにより、断面長軸方向の曲
げに対する剛性を高めることができるものである。
In the above embodiment, a circular cross-section was used as the i4 if, but the invention is not limited to this. For example, a via "1" with a non-circular cross-section as shown in FIG. In addition, by using the pipe 1 having an elliptical cross section as shown in Fig. 3, the rigidity against bending in the long axis direction of the cross section can be increased. It is possible.

その他、本発明はその要旨を変更しない範囲で種々に変
形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、パイプを高融点材
料で形成し、かつ当該パイプの表面に電気比抵抗の小さ
い良電導性物質を被覆し、さらに少なくともプラズマに
直接面する側の表面に低原子番号の物質を被覆す4よう
にし九ので、高熱負荷に耐え、高周波損失を低減させる
と共KjII熟効軍を高めることが可能な極めて信頼性
の高い高周波加熱装置用7アラデーシールドが提供でき
る。
As explained above, according to the present invention, the pipe is formed of a high melting point material, the surface of the pipe is coated with a highly conductive material having low electrical resistivity, and furthermore, at least the surface directly facing the plasma is 7 Alladay shield for high frequency heating equipment is extremely reliable because it coats low atomic number materials, can withstand high heat loads, reduce high frequency losses and increase KjII effectiveness. Can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図および
第3図は本発明の他の実施例を示す断面図、第4図はI
CRF高周波加熱装置の概略を示す構成図、第5図は従
来の7アラデーシールドを示す斜視図である。 1・・・高融点材料パイプ、2・・・良電導性物質、3
・・・低原子番号物質、4・・・高周波発信器、6・・
・同軸管、2・・・グーyxマ、8・・・結合系、10
・・・ループアンテナ導体、11°°・7アラデーシー
ルド、13・・・アンテナケーシング、14・・・ジャ
ケット、15・・・ファラデーシールドのパイプ。 出願人代塊人  弁理士 鈴 江 武 彦第1図 第3図 ■ 第4 図 旦 Q5閏 1、事件の表示 特願昭63−005133号 2、発明の名称 高周波加熱装置用ファラデーシールド 3、補正をする者 事件との関係   特許出願人 (409)日本原子力研究所 (ほか1名) 4、代理人 東京都千代田区霞が関3丁目7番2号 UBEビル7、
補正の内容 明細書第10頁第4行目にrTicの方が約8分の1小
さい。」とあるを「Ticが鉄の約8分である。」と訂
正する。
FIG. 1 is a sectional view showing one embodiment of the present invention, FIGS. 2 and 3 are sectional views showing other embodiments of the invention, and FIG. 4 is an I
FIG. 5 is a block diagram schematically showing a CRF high-frequency heating device, and a perspective view showing a conventional 7 Allade shield. 1... High melting point material pipe, 2... Good conductive substance, 3
...Low atomic number substance, 4...High frequency oscillator, 6...
・Coaxial tube, 2... Goo yxma, 8... Coupling system, 10
...Loop antenna conductor, 11°°/7 Alladay shield, 13...Antenna casing, 14...Jacket, 15...Faraday shield pipe. Applicant: Takehiko Suzue, Patent Attorney Figure 1 Figure 3 ■ Figure 4 Figure 1 Q5 Leap 1, Case Description Japanese Patent Application No. 63-005133 2, Title of Invention Faraday Shield 3 for High Frequency Heating Device, Amendment Patent applicant (409) Japan Atomic Energy Research Institute (and 1 other person) 4. Agent UBE Building 7, 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo.
On page 10, line 4 of the specification of contents of correction, rTic is about 1/8 smaller. " is corrected to "Tic is about 8 minutes of iron."

Claims (1)

【特許請求の範囲】 高周波発信器で発生した高周波出力を同軸管により伝送
し、かつこの同軸管の先端部に取付けられたアンテナを
介してプラズマに放出するイオンサイクロトロン周波数
帯高周波加熱装置で、複数本のパイプを接続して成ると
共に前記アンテナのプラズマ側に装着して設けられ、当
該アンテナを流れる高周波電流により形成される電界を
シールドするファラデーシールドにおいて、 パイプを高融点材料で形成し、かつ当該パイプの表面に
電気比抵抗の小さい良電導性物質を被覆し、さらに少な
くとも前記プラズマに直接面する側の表面に低原子番号
の物質を被覆して成ることを特徴とする高周波加熱装置
用ファラデーシールド。
[Claims] An ion cyclotron frequency band high-frequency heating device that transmits high-frequency output generated by a high-frequency oscillator through a coaxial tube and emits it into plasma via an antenna attached to the tip of the coaxial tube. In the Faraday shield, which is formed by connecting two pipes and is installed on the plasma side of the antenna to shield the electric field formed by the high frequency current flowing through the antenna, the pipe is formed of a high melting point material, and the A Faraday shield for a high frequency heating device, characterized in that the surface of the pipe is coated with a good conductive material having low electrical resistivity, and further, at least the surface directly facing the plasma is coated with a low atomic number material. .
JP63005133A 1988-01-13 1988-01-13 Faraday shield for high frequency heating device Pending JPH01186600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63005133A JPH01186600A (en) 1988-01-13 1988-01-13 Faraday shield for high frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63005133A JPH01186600A (en) 1988-01-13 1988-01-13 Faraday shield for high frequency heating device

Publications (1)

Publication Number Publication Date
JPH01186600A true JPH01186600A (en) 1989-07-26

Family

ID=11602813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63005133A Pending JPH01186600A (en) 1988-01-13 1988-01-13 Faraday shield for high frequency heating device

Country Status (1)

Country Link
JP (1) JPH01186600A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166400A (en) * 1984-09-07 1986-04-05 日本原子力研究所 Plasma heating antenna
JPS6185799A (en) * 1984-10-02 1986-05-01 株式会社東芝 Faraday shield
JPS61206199A (en) * 1985-03-08 1986-09-12 株式会社日立製作所 Antenna for nuclear fuser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166400A (en) * 1984-09-07 1986-04-05 日本原子力研究所 Plasma heating antenna
JPS6185799A (en) * 1984-10-02 1986-05-01 株式会社東芝 Faraday shield
JPS61206199A (en) * 1985-03-08 1986-09-12 株式会社日立製作所 Antenna for nuclear fuser

Similar Documents

Publication Publication Date Title
JP5481070B2 (en) Magnetic field generation method for particle acceleration, magnet structure, and manufacturing method thereof
TW201233254A (en) Compact, cold, weak-focusing, superconducting cyclotron
US20020172316A1 (en) Divertor filtering element for a tokamak nuclear fusion reactor; divertor employing the filtering element; and tokamak nuclear fusion reactor employing the divertor
JP5700536B2 (en) Composite type target
TWI458397B (en) Magnet structure for particle acceleration
JPH01186600A (en) Faraday shield for high frequency heating device
Van Nieuwenhove et al. Ion cyclotron resonance heating of a tokamak plasma using an antenna without a Faraday shield
US1971195A (en) Vacuum induction apparatus
CA1058335A (en) Beam limiter for thermonuclear fusion devices
JPS63193497A (en) Faraday shield
Tkachenko et al. Development of wide-aperture quadrupole magnets for plasma experiments in the FAIR project
JPH0234799Y2 (en)
JPH0544995B2 (en)
JP3553031B2 (en) Electromagnetic coil and method of manufacturing the same
JP2509648B2 (en) High frequency heating equipment
Takahashi et al. Development of indirect-cooling radiation-resistant magnets
JP2003068151A (en) Shield cable
Ono et al. Ion Bernstein wave heating experiments on PBX‐M
JPS6230600B2 (en)
JPS6212099A (en) High frequency heater
Padamsee Heat transfer and models for breakdown
JPS58184775A (en) Heat insulating container for superconductive magnet
JPS62163300A (en) Coaxial feeder
JPS6337600A (en) Radio frequency heater
JPH01186598A (en) Faraday shield for high frequency heating device