JPH01186566A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH01186566A
JPH01186566A JP63004772A JP477288A JPH01186566A JP H01186566 A JPH01186566 A JP H01186566A JP 63004772 A JP63004772 A JP 63004772A JP 477288 A JP477288 A JP 477288A JP H01186566 A JPH01186566 A JP H01186566A
Authority
JP
Japan
Prior art keywords
gas
cathode
anode
electrodes
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63004772A
Other languages
Japanese (ja)
Inventor
Nobuyuki Arima
信之 在間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP63004772A priority Critical patent/JPH01186566A/en
Publication of JPH01186566A publication Critical patent/JPH01186566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To sufficiently support electrodes and bring the gas into contact with the whole surfaces of the electrodes by arranging foaming metal plates with high porosity and small gas cavities all over the surfaces of the electrodes and inserting the foaming metal plates into gas passage forming recesses on the electrode side. CONSTITUTION:When the oxidation gas is fed to a cathode 2 side and the fuel gas is fed to an anode 3 side, the gas entering the gas passage 7 of a separator 4 is brought into contact with the cathode 2 and the anode 3 through foaming metal plates 8 because both the cathode 2 and the anode 3 are supported by the separator 4 via the plates 8 made of a foaming metal. At this time the foaming metal plates 8 have high porosity and generate a uniform gas flow on the whole surfaces, they have a sufficient size to be in contact with the whole surfaces of the cathode 2 and anode 3 electrodes, thereby the gas can be brought into uniform contact with the whole surfaces of the electrodes.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換させるエネルギ一部門で用いる燃料電池に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel cell used in the energy sector, which directly converts the chemical energy of fuel into electrical energy.

[従来の技術] 現在まで提案されている燃料電池のうち、溶融炭酸塩型
燃料電池は、第2図に一例を示す如く、溶融炭酸塩を多
孔質物質にしみ込ませてなる電解質板(タイル)1の両
面をカソード(酸素極)2とアノード(燃料極)3で挟
み、カソード2側には酸化ガスを供給すると共に、アノ
ード3側に燃料ガスを供給することによりカソード2と
アノード3との間で発生する電位差により発電が行われ
るようにしたものを1セル■とし、各セルをセパレータ
4を介して多層に積層したものが知られている。
[Prior Art] Among the fuel cells that have been proposed to date, the molten carbonate fuel cell uses an electrolyte plate (tile) made by impregnating a porous material with molten carbonate, as shown in an example in Fig. 2. 1 is sandwiched between a cathode (oxygen electrode) 2 and an anode (fuel electrode) 3, and by supplying oxidizing gas to the cathode 2 side and supplying fuel gas to the anode 3 side, the connection between the cathode 2 and anode 3 is achieved. It is known that one cell (2) is configured to generate electricity by the potential difference generated between the cells, and each cell is laminated in multiple layers with a separator 4 in between.

上記セパレータ4には、その周辺部を除く中央部分の表
裏両面に、カソード2側及びアノード3側へ各々異なる
ガスを流すようにするためのガス流路5が凹凸により形
成しており、該ガス流路5に電極が位置するように燃料
電池セルを積層させ、セパレータ4の両面に異なるガス
を流すことにより上記ガス流路5によりカソード2側及
びアノード3側へガスが流されるようにしである。
In the separator 4, gas flow paths 5 are formed by recesses and recesses on both the front and back surfaces of the central portion excluding the peripheral portion, to allow different gases to flow to the cathode 2 side and the anode 3 side, respectively. The fuel cells are stacked so that the electrodes are located in the flow path 5, and different gases are flowed on both sides of the separator 4, so that the gas flows through the gas flow path 5 toward the cathode 2 side and the anode 3 side. .

上記セパレータ4の表裏両面に形成される凹凸によるガ
ス流路5は、小さい溝を多数設けてなる構成とすれば電
極の支持が充分に行われて有利であるが、小ざい溝のた
めにガス流路の確保が問題であると共に製作が大変とな
る。そのため、従来は、第3図に示す如く、広幅の溝を
広いピッチで形成し、且つ8溝は断面矩形状をなす流路
5aとすることが採用されている。
It is advantageous if the gas flow path 5 formed by the unevenness formed on both the front and back surfaces of the separator 4 is formed by providing a large number of small grooves, since the electrodes will be supported sufficiently. Securing a flow path is a problem and manufacturing is difficult. Therefore, conventionally, as shown in FIG. 3, wide grooves are formed at a wide pitch, and eight grooves are formed into flow paths 5a having a rectangular cross section.

しかし、セパレータ4のガス流路の溝幅を大きくすると
、電極の一部がガス流路部で垂れて来る現象が生じて電
極の支持が不完全になる。
However, if the groove width of the gas flow path of the separator 4 is increased, a part of the electrode may sag in the gas flow path, resulting in incomplete support of the electrode.

そのために従来ではパンチ板6を用いてカソード2、ア
ノード3の各電極とセパレータ4との間に介在させるよ
うにしている。
For this purpose, conventionally, a punch plate 6 is used to be interposed between each of the cathode 2 and anode 3 electrodes and the separator 4.

[発明が解決しようとする問題点] ところが、上記従来の燃料電池では、流路の確保及び製
作性の面から、セパレータ4の両面に形成する流路を大
きくしてパンチ板6を使用するようにしているため、パ
ンチ板6を介してセパレータ4のガス流路5aが電極に
接触することになって、電極にガスが触れない部分がで
き、燃料電池としての性能を落している。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional fuel cell, from the viewpoint of securing a flow path and manufacturing efficiency, the flow paths formed on both sides of the separator 4 are enlarged and the punch plate 6 is used. As a result, the gas flow path 5a of the separator 4 comes into contact with the electrode via the punch plate 6, creating a portion where the gas does not come into contact with the electrode, degrading the performance of the fuel cell.

そこで、本発明は、電極の支持は充分にでき且つガスが
電極全面に触れることができるようにしようとするもの
である。
Therefore, the present invention aims to provide sufficient support for the electrode and to allow gas to come in contact with the entire surface of the electrode.

[問題点を解決するための手段] 本発明は、上記目的を達成するために、電解質板をカソ
ードとアノードとで両面から挟み、カソード側に酸化ガ
スを、又、アノード側に燃料ガスをそれぞれ供給するよ
うにしてある燃料電池セルの各電極表面に、気孔率が高
ぐ且つ気孔の小さい発泡金属の板を全面にわたり配し、
且つ上記発泡金属板を各電極側のガス流路形成用凹部に
嵌入させた構成とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention sandwiches an electrolyte plate between a cathode and an anode from both sides, and supplies oxidizing gas to the cathode side and fuel gas to the anode side. A foamed metal plate with high porosity and small pores is placed over the entire surface of each electrode of the fuel cell to be supplied.
Further, the foamed metal plate is fitted into a gas flow path forming recess on each electrode side.

[作  用] 発泡金属は、通気性があるのでガスを流し易く、又、気
孔が小さいので全面で電極を支持することができる。こ
れにより電極の全面で均一なガスの流れが実現でき、電
極に均一にガスが触れることになって性能を良くするこ
とができる。
[Function] Foamed metal has air permeability, allowing gas to flow through it easily, and has small pores, so it can support electrodes over its entire surface. This makes it possible to realize a uniform flow of gas over the entire surface of the electrode, allowing the gas to come into uniform contact with the electrode, thereby improving performance.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例を示すもので、電解質板1の両
面をカソード2とアノード3とで挟んでなるセルをセパ
レータ4を介して積層して燃料電池スタックとするよう
にした燃料電池において、上記セパレータ4の上記カソ
ード2やアノード3の位置である中央部分の両面にガス
流路7となる凹部を形成し、該両面のガス流路7となる
凹部に、気孔率が高く且つ気孔が小さい、たとえば、軽
石のような発泡金属板8を嵌入して、カソード2、アノ
ード3の電極に直接接触させるようにし、電極は発泡金
属板8を介して電解質板1に押し付けられているように
する。
FIG. 1 shows an embodiment of the present invention, in which a fuel cell stack is constructed by stacking cells in which both sides of an electrolyte plate 1 are sandwiched between a cathode 2 and an anode 3 with a separator 4 in between. In this method, recesses that will become the gas flow paths 7 are formed on both sides of the center portion of the separator 4 where the cathode 2 and the anode 3 are located, and the recesses that will become the gas flow paths 7 on both sides have high porosity and pores. For example, a foamed metal plate 8 such as pumice with a small diameter is inserted so that it is in direct contact with the cathode 2 and anode 3 electrodes, and the electrodes are pressed against the electrolyte plate 1 through the foamed metal plate 8. Make it.

セパレータ4で仕切られた燃料電池のセルにおけるカソ
ード2側に酸化ガスを流し、又、アノード3側に燃料ガ
スを流すと、カソード2もアノード3もともに発泡金属
よりなる板8を介してセパレータ4に支持されているた
め、セパレータ4のガス流路7に入って来たガスは、上
記発泡金属板8を通してカソード2やアノード3に触れ
ることになる。この際、発泡金属板8は、気孔率が高く
全面で均一なガス°の流れを生じさせるようになってお
り、しかも該発泡金属板8はカソード2やアノード3の
各電極の表面に全面にわたって接する大きざとしである
ことから、ガスが電極全面に均一に触れることができる
。これにより電極全面で発電が可能゛となり、燃料電池
性能を良くすることができる。
When oxidizing gas is flowed to the cathode 2 side of a fuel cell partitioned by a separator 4, and fuel gas is flowed to the anode 3 side, both the cathode 2 and the anode 3 pass through the separator 4 through the plate 8 made of foam metal. Therefore, the gas entering the gas flow path 7 of the separator 4 comes into contact with the cathode 2 and the anode 3 through the foamed metal plate 8. At this time, the foamed metal plate 8 has a high porosity and is designed to generate a uniform gas flow over the entire surface, and the foamed metal plate 8 covers the entire surface of each electrode of the cathode 2 and anode 3. Since the electrodes are large enough to touch each other, the gas can uniformly touch the entire surface of the electrode. This makes it possible to generate electricity over the entire surface of the electrode, improving fuel cell performance.

なお、上記実施例では、燃料電池セルをセパレータを介
し積層させてスタックとしたものを対象としたが、ガス
流路部がセパレータ以外のもの、たとえば、上下のホル
ダーで形成される場合でも同様に適用できる。
In addition, in the above embodiment, the fuel cells were stacked with separators in between, but the same applies even if the gas flow path is formed of something other than separators, for example, upper and lower holders. Applicable.

[発明の効果1 以上述べた如く、本発明の燃料電池によれば、カソード
、アノードの各電極に供給するガスの流路部に、気孔率
が高く且つ各気孔が小さい発泡金属の板を配置し、且つ
該発泡金属の板を電極全面にわたる大きさとし、上記ガ
ス流路部は発泡金属板を嵌入する凹部を形成するだけで
よいようにしであるので、ガス流路部の製作が容易にな
ると共に、発泡金属板の気孔が小さいことから全面で電
極を受けているのと同じ状態になって、電極の支持が完
全となり、又、発泡金属の気孔率が高いことから全面で
均一なガスの流れが実現できて電極が均一にガスに触れ
ることができる、等の優れた効果を奏し得る。
[Effects of the Invention 1] As described above, according to the fuel cell of the present invention, a foamed metal plate with high porosity and small pores is arranged in the flow path of gas supplied to each of the cathode and anode electrodes. In addition, since the foamed metal plate is sized to cover the entire surface of the electrode, and the gas flow path portion only needs to be formed with a recess into which the foamed metal plate is inserted, manufacturing of the gas flow path portion is facilitated. At the same time, since the pores of the foam metal plate are small, the entire surface is in the same state as receiving the electrode, and the electrode is completely supported.Also, the high porosity of the foam metal plate allows for uniform gas flow over the entire surface. Excellent effects such as flow can be realized and the electrode can come into contact with the gas uniformly can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料電池の実施例を承り断面図、第2
図は従来の燃料電池の一例を示す断面図、第3図は従来
の燃料電池においてガス流路が大きい場合の電極支持状
態を示す断面図である。 1・・・電解質板、2・・・カソード、3・・・アノー
ド、4・・・セパレータ、5.5a、T・・・ガス流路
、8・・・発泡金属板。 第1図 第2図 第3図
Fig. 1 is a sectional view of an embodiment of the fuel cell of the present invention;
The figure is a sectional view showing an example of a conventional fuel cell, and FIG. 3 is a sectional view showing an electrode support state in a conventional fuel cell when the gas flow path is large. DESCRIPTION OF SYMBOLS 1... Electrolyte plate, 2... Cathode, 3... Anode, 4... Separator, 5.5a, T... Gas flow path, 8... Foamed metal plate. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)電解質板をカソードとアノードの両電極で両面から
挟み、カソード側に酸化ガスを、又、アノード側に燃料
ガスをそれぞれ供給するようにしてある燃料電池セルの
各電極表面に、気孔率が高く且つ気孔の小さい軽石状の
発泡金属の板を全面にわたり接触させて配し、且つ上記
発泡金属の板を各電極側のガス流路形成用凹部に嵌入さ
せてなることを特徴とする燃料電池。
1) An electrolyte plate is sandwiched between the cathode and anode electrodes, and oxidation gas is supplied to the cathode side, and fuel gas is supplied to the anode side.The porosity of each electrode surface is adjusted to A fuel cell characterized in that tall pumice-like foamed metal plates with small pores are arranged in contact with each other over the entire surface, and the foamed metal plates are fitted into gas flow path forming recesses on each electrode side. .
JP63004772A 1988-01-14 1988-01-14 Fuel cell Pending JPH01186566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004772A JPH01186566A (en) 1988-01-14 1988-01-14 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004772A JPH01186566A (en) 1988-01-14 1988-01-14 Fuel cell

Publications (1)

Publication Number Publication Date
JPH01186566A true JPH01186566A (en) 1989-07-26

Family

ID=11593132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004772A Pending JPH01186566A (en) 1988-01-14 1988-01-14 Fuel cell

Country Status (1)

Country Link
JP (1) JPH01186566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044889A1 (en) * 2001-11-21 2003-05-30 Kuk Il Inntot Ltd. Metal structure plate for fuel cell
JP2004186116A (en) * 2002-12-06 2004-07-02 Mitsubishi Materials Corp Separator of solid polymer fuel cell and method for manufacturing the separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044889A1 (en) * 2001-11-21 2003-05-30 Kuk Il Inntot Ltd. Metal structure plate for fuel cell
JP2004186116A (en) * 2002-12-06 2004-07-02 Mitsubishi Materials Corp Separator of solid polymer fuel cell and method for manufacturing the separator
JP4501342B2 (en) * 2002-12-06 2010-07-14 三菱マテリアル株式会社 Method for producing separator of polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
US7531265B2 (en) Fuel cell
EP1821357B1 (en) Unit cell for solid polymer electrolyte fuel cell
JPH08222237A (en) Separator for fuel cell
EP1454374B1 (en) Fuel cell with polymer electrolyte
JP5227543B2 (en) Fuel cell
JPS6047702B2 (en) Fuel cell assembly and its manufacturing method
JP5502615B2 (en) Fuel cell
CA2567754C (en) Method of manufacturing a hydrogen separation substrate
JPH04118862A (en) Fuel cell
JPH02168564A (en) Fuel battery
JPH0443566A (en) Solid electrolyte type fuel cell
JP2007217209A (en) Oxygen enrichment device
JPH08148178A (en) Cylindrical fuel cell
JPH01186566A (en) Fuel cell
KR101703575B1 (en) Separator and fuel cell with the same
JP2022125885A (en) Fuel battery cell and fuel battery stack
JP2003331871A (en) Flat solid oxide fuel cell and separator
JP4417136B2 (en) Fuel cell
JP2000077083A (en) Fuel cell
CA3026996C (en) Fuel cell stack and separator for fuel cell stack
JPH11283636A (en) Fuel cell
US3492166A (en) Fuel cell device
JPH06333582A (en) Solid polyelectrolyte fuel cell
JPH10154519A (en) Fuel cell separator
JPH08185884A (en) Solid electrolytic fuel cell