JPH01186559A - Formation of sealed type lead-acid battery - Google Patents

Formation of sealed type lead-acid battery

Info

Publication number
JPH01186559A
JPH01186559A JP63005141A JP514188A JPH01186559A JP H01186559 A JPH01186559 A JP H01186559A JP 63005141 A JP63005141 A JP 63005141A JP 514188 A JP514188 A JP 514188A JP H01186559 A JPH01186559 A JP H01186559A
Authority
JP
Japan
Prior art keywords
electrolyte
formation
battery
concentration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63005141A
Other languages
Japanese (ja)
Other versions
JPH0815075B2 (en
Inventor
Kenji Kobayashi
健二 小林
Yoichi Kikuchi
洋一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63005141A priority Critical patent/JPH0815075B2/en
Publication of JPH01186559A publication Critical patent/JPH01186559A/en
Publication of JPH0815075B2 publication Critical patent/JPH0815075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/128Processes for forming or storing electrodes in the battery container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To allow the formation of the battery jar of a sealed type lead-acid battery to which no excessive electrolyte can be added by pouring the electrolyte quantity not reaching the preset quantity after the completion of formation, performing formation, and supplementing the electrolyte to attain the preset electrolyte quantity and concentration. CONSTITUTION:A quantity of dilute sulfuric acid not reaching the preset quantity after the completion of formation is poured in a battery jar storing an electrode plate group, the battery is charged, then the electrolyte is supplemented to attain the preset electrolyte quantity and concentration. After the electrolyte is supplemented, the battery is recharged to attain the preset electrolyte quantity and concentration. The battery jar formation is performed with unformed electrode plates for a positive electrode and a negative electrode, thereby the battery jar formation of a sealed type lead-acid battery, to which no excessive electrolyte can be added, can be performed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電解液が少なく制限され、遊離したフリーな
電解液のない密閉形鉛蓄電池の電槽内化成方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming a sealed lead-acid battery in a cell, in which the amount of electrolyte is limited and there is no free electrolyte.

従来の技術 密閉形鉛蓄電池は、充電時に正極より発生する酸素ガス
を負極に吸収させることで電解液の減少を防いでいる。
Conventional sealed lead-acid batteries prevent the electrolyte from depleting by having the negative electrode absorb oxygen gas generated from the positive electrode during charging.

そこで負極は酸素を吸収できる様に、気層(酸素)およ
び液層(電解液)が同時に接触しなければならない。こ
の状態では負極は充電と同時に放電しているため、未化
成極板を化成することはできない。そのため、一般に密
閉形鉛蓄電池は正極活物質を二酸化鉛に、負極活物質を
鉛にそれぞれ変化させる化成工程を電池組立以前に電槽
外で行なっている。
Therefore, the gas layer (oxygen) and the liquid layer (electrolyte) must be in contact at the same time so that the negative electrode can absorb oxygen. In this state, the negative electrode is being charged and discharged at the same time, so that the unformed electrode plate cannot be chemically formed. Therefore, in sealed lead-acid batteries, a chemical conversion process is generally performed to change the positive electrode active material to lead dioxide and the negative electrode active material to lead, respectively, outside the battery case before the battery is assembled.

しかし、電槽外で化成をすることは、負極活物質の酸化
劣化を防止する即用乾燥処理をともなうこと、さらに電
池組立後に活性化のための充電を必要とするなど電池製
造工程が煩雑となり、コスト高となっていた。
However, performing chemical formation outside the battery case requires an immediate drying process to prevent oxidative deterioration of the negative electrode active material, and also requires charging for activation after battery assembly, making the battery manufacturing process complicated. , the cost was high.

これらの問題を解決する方法として電槽内で極板を化成
することが提案された。
As a way to solve these problems, it has been proposed to chemically form the electrode plates inside the battery case.

すなわち、未化成の正極板と負極板および電解液を保持
吸収できるガラスマットセパレータからなる極板群を電
槽内に収容するとともに、過剰の希硫酸を極板群が温液
状態になる様に加えて、充電し化成完了時に電解液を所
定の濃度と液量にする方法である。
That is, a group of electrode plates consisting of an unformed positive electrode plate, a negative electrode plate, and a glass mat separator capable of holding and absorbing electrolyte was housed in a battery case, and excess dilute sulfuric acid was poured into the electrode group so that the electrode group became a hot liquid state. In addition, there is a method in which the electrolyte is charged to a predetermined concentration and volume upon completion of chemical formation.

発明が解決しようとする課題 この様な従来の構成は、電解液を多量に収容できる電池
は可能であるが、容積効率を高め、多量の希硫酸を加え
ると溢れてしまう電池には適用できないものである。
Problems to be Solved by the Invention Although conventional configurations like this are possible for batteries that can accommodate a large amount of electrolyte, they cannot be applied to batteries that increase volumetric efficiency and would overflow if a large amount of dilute sulfuric acid was added. It is.

本発明は正極、負極とも未化成極板を用いて電槽化成を
行ない、過剰の電解液を加えることができない密閉形鉛
蓄電池の電槽化成を可能にしだも −のである。
The present invention performs battery cell formation using unformed plates for both the positive and negative electrodes, thereby making it possible to form a battery case for a sealed lead-acid battery in which it is not possible to add an excess electrolyte.

課題を解決するための手段 本発明は極板群を収容した電槽内に、化成終了後所定量
に満たない液量の希硫酸を加え、充電した後、所定の電
解液量と濃度になる様に補液をするか、又は補液した後
、さらに再充電して所定の液量と濃度となる様にした化
成方法である。
Means for Solving the Problems The present invention involves adding dilute sulfuric acid in an amount less than a predetermined amount after completion of chemical formation into a battery container housing a group of electrode plates, and after charging, a predetermined electrolyte amount and concentration is achieved. This is a chemical conversion method in which the liquid is replenished, or after the liquid is replenished, it is further recharged to reach a predetermined liquid volume and concentration.

作  用 このような本発明の化成方法では、大別して次の2通り
の作用がなされる。
Function The chemical conversion method of the present invention has two main functions as follows.

(8)液量が比較的多い場合 充電効率の良い負極板は正極板より早く化成が完了する
ため、希硫酸に囲まれて正極板よりの酸素ガス吸収が少
ない状態で化成が完了する。しかし正極板を化成するた
めにさらに充電すると、電解液が分解減少し、所定の電
解液量に満たなくなるため電池としての容量が充分に得
られ°ない。これを防ぐためには補液をなせばよく、補
液により所定の電解液量および濃度にすることにより解
決できる。
(8) When the amount of liquid is relatively large, the negative electrode plate with good charging efficiency completes formation earlier than the positive electrode plate, so the formation is completed in a state where the negative electrode plate is surrounded by dilute sulfuric acid and absorbs less oxygen gas than the positive electrode plate. However, if the battery is further charged to chemically form the positive electrode plate, the electrolytic solution decomposes and decreases, and the amount of electrolytic solution is less than the predetermined amount, so that a sufficient capacity as a battery cannot be obtained. In order to prevent this, it is sufficient to replace the electrolyte, and this problem can be solved by adjusting the amount and concentration of the electrolyte to a predetermined level by replacing the fluid.

(B)  液量が少ない場合 液量が少ない電池はガス吸収が良いため正極板から酸素
が発生し、それを負極板が吸収するため、負極板は充電
しながら放電するため、液量に見合った割合しか化成し
ない。この場合補液しただけでは、負極板は化成が完了
していないために容量は充分でない。しかし所定の電解
液量よりも多く補液し、充電することにより、負極板は
希硫酸に囲まれて正極板よりの酸素ガス吸収がなくなり
放電状態が解消されて化成が完了できる。
(B) When the amount of liquid is small Batteries with a small amount of liquid have good gas absorption, so oxygen is generated from the positive electrode plate, which is absorbed by the negative electrode plate, so the negative electrode plate discharges while charging, so that the battery with a small amount of liquid has good gas absorption. Only a small proportion of the amount is converted. In this case, the capacity of the negative electrode plate is not sufficient even if only the liquid is replaced because the formation of the negative electrode plate is not completed. However, by replacing the electrolyte in an amount larger than a predetermined amount and charging the battery, the negative electrode plate is surrounded by dilute sulfuric acid, oxygen gas absorption from the positive electrode plate is eliminated, the discharge state is resolved, and the formation can be completed.

実施例 未化成の正極板と負極板および電解液を吸収保持するガ
ラスマットセパレータからなる極板群を電槽内に収容し
た10時間率容量sAhの電池の電槽化成方法の具体例
を以下に述べる。この電池は前もって29rn1以上注
液をした場合、充電中に液が電池外に排出されることが
確認されている。
EXAMPLE A specific example of a method for forming a battery case for a battery with a 10 hour rate capacity sAh in which a group of electrode plates consisting of an unformed positive electrode plate, a negative electrode plate, and a glass mat separator for absorbing and retaining electrolyte is housed in a battery case is as follows. state It has been confirmed that if more than 29rn1 liquid is injected into this battery in advance, the liquid will be discharged outside the battery during charging.

濃度30重量%の希硫酸29m/を電槽内に注入し、電
池内に外部より酸素が入らないように弁をした後、0.
3Aで40時間充電をしだ後、濃度41.5重量%の希
硫酸3dを加え、希硫酸電解液を濃度が41.5重量%
、液量が27−となるよう調整する。この本発明の化成
方法による電池(ト)と、補液をしない化成方法による
電池(ロ)とする。
After pouring 29 ml of dilute sulfuric acid with a concentration of 30% by weight into the battery container and closing a valve to prevent oxygen from entering the battery from the outside, the temperature was 0.
After charging at 3A for 40 hours, 3d of dilute sulfuric acid with a concentration of 41.5% by weight was added, and the dilute sulfuric acid electrolyte with a concentration of 41.5% by weight was added.
, adjust the liquid volume to 27-. A battery produced by the chemical synthesis method of the present invention (g) and a battery produced by the chemical synthesis method without fluid replacement (b).

さらに注液量を多くできない電池を想定し、濃度28重
量%の希硫酸26プを加え前記と同じく弁をした後、0
.3Aで40時間充電した後濃度41.5重量%の希硫
酸4.5rttlを加え、さらに0.3Aで6時間充電
することにより、前記と同じ所定の濃度と液量となった
。この本発明による電池(qと補液を行なわない電池p
とする。
Furthermore, assuming a battery that cannot increase the amount of liquid injected, add 26 ml of dilute sulfuric acid with a concentration of 28% by weight, close the valve as above, and then
.. After charging at 3 A for 40 hours, 4.5 rttl of dilute sulfuric acid with a concentration of 41.5% by weight was added, and further charging at 0.3 A for 6 hours resulted in the same predetermined concentration and liquid volume as above. This battery according to the present invention (q and battery p without fluid replacement)
shall be.

次に本発明の化成方法による電池(A)、(C1と従来
の化成方法による電池(B) 、 (D)の放電容量結
果を次表に示す。
Next, the following table shows the discharge capacity results of batteries (A) and (C1) produced by the chemical synthesis method of the present invention and batteries (B) and (D) produced by the conventional chemical synthesis method.

発明の効果 本発明の化成方法によれば、従来電槽内化成では不可能
であった、電解液を多量に収納できない電池にも適用で
きるため、容量効率が非常に高い密閉形鉛蓄電池が製造
工程の簡素化によシ、低コスト化できるものである。
Effects of the Invention According to the chemical formation method of the present invention, it can be applied to batteries that cannot store a large amount of electrolyte, which was not possible with conventional chemical formation in a battery case, and therefore a sealed lead-acid battery with extremely high capacity efficiency can be manufactured. By simplifying the process, costs can be reduced.

Claims (2)

【特許請求の範囲】[Claims] (1)電解液の吸収保持体をなすセパレータで正負極板
間を隔離し、かつ電解液量が少なく制限された密閉形鉛
蓄電池の化成方法であって、極板群を収容した電槽内に
、化成終了後所定量に満たない液量を注入する注液工程
と、充電電流を流し化成する工程と、次に所定の電解液
量および濃度とする補液工程を有することを特徴とする
密閉形鉛蓄電池の化成方法。
(1) A method for forming a sealed lead-acid battery in which the positive and negative electrode plates are separated by a separator that serves as an electrolyte absorbing and holding body, and the amount of electrolyte is limited to a small amount, in which a battery containing a group of electrode plates is placed. The sealing method is characterized by having a liquid injection step of injecting an amount of liquid less than a predetermined amount after completion of chemical formation, a step of applying a charging current to conduct chemical formation, and then a liquid replacement step of bringing the electrolyte to a predetermined amount and concentration. Formation method for lead-acid batteries.
(2)補液した後、負極板の化成を完了させる充電し、
所定の電解液および濃度とする請求項1記載の密閉形鉛
蓄電池の化成方法。
(2) After replenishing the fluid, charge to complete the formation of the negative electrode plate,
2. The method for chemically forming a sealed lead-acid battery according to claim 1, wherein the electrolytic solution and concentration are predetermined.
JP63005141A 1988-01-13 1988-01-13 Method for forming sealed lead-acid battery Expired - Lifetime JPH0815075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63005141A JPH0815075B2 (en) 1988-01-13 1988-01-13 Method for forming sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63005141A JPH0815075B2 (en) 1988-01-13 1988-01-13 Method for forming sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH01186559A true JPH01186559A (en) 1989-07-26
JPH0815075B2 JPH0815075B2 (en) 1996-02-14

Family

ID=11603027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63005141A Expired - Lifetime JPH0815075B2 (en) 1988-01-13 1988-01-13 Method for forming sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0815075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216839A (en) * 2001-01-17 2002-08-02 Furukawa Battery Co Ltd:The Battery container chemical treatment method of lead storage battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153663A (en) * 1980-04-30 1981-11-27 Shin Kobe Electric Mach Co Ltd Formation of lead acid battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153663A (en) * 1980-04-30 1981-11-27 Shin Kobe Electric Mach Co Ltd Formation of lead acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216839A (en) * 2001-01-17 2002-08-02 Furukawa Battery Co Ltd:The Battery container chemical treatment method of lead storage battery
JP4601834B2 (en) * 2001-01-17 2010-12-22 古河電池株式会社 Battery case formation method for lead acid battery

Also Published As

Publication number Publication date
JPH0815075B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
EP2960978B1 (en) Flooded lead-acid battery
US3839089A (en) Water activated lead acid storage battery cell having dry discharged electrodes
JPH01186559A (en) Formation of sealed type lead-acid battery
JPS6030063A (en) Sealed type lead-acid battery
JPH0193066A (en) Manufacture of sealed lead-acid battery
JPH0472352B2 (en)
JPS6293858A (en) Manufacture of enclosed lead storage battery
JPH0480511B2 (en)
JPH03145067A (en) Manufacture of sealed lead-acid battery
JPH0479111B2 (en)
JPH01186572A (en) Sealed type lead-acid battery
JPS59151772A (en) Manufacture of sealed lead-acid battery
JPS60207262A (en) Sealed lead storage battery
JPS635866B2 (en)
JPS6280964A (en) Sealed lead-acid battery
JPS59157966A (en) Sealed type lead storage battery
JPS63187566A (en) Manufacture of lead acid battery
JPS6030064A (en) Manufacture of sealed type lead-acid battery
JPS603858A (en) Manufacture of negative plate for sealed lead storage battery
JPS6047376A (en) Lead storage battery
JPH04264361A (en) Battery jar forming method for enclosed lead-acid battery
JPS59180970A (en) Manufacture of nickel cadmium storage battery
JPS5882471A (en) Sealed lead storage battery
JPH0992270A (en) Formation of sealed lead-acid battery
JPH03163755A (en) Clad type sealed lead-acid battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term