JPH0118639B2 - - Google Patents

Info

Publication number
JPH0118639B2
JPH0118639B2 JP60014282A JP1428285A JPH0118639B2 JP H0118639 B2 JPH0118639 B2 JP H0118639B2 JP 60014282 A JP60014282 A JP 60014282A JP 1428285 A JP1428285 A JP 1428285A JP H0118639 B2 JPH0118639 B2 JP H0118639B2
Authority
JP
Japan
Prior art keywords
electrodes
electrode
ceramics
probe
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60014282A
Other languages
Japanese (ja)
Other versions
JPS60198453A (en
Inventor
Etsuji Yamamoto
Hiroyuki Takeuchi
Hiroshi Kanda
Kageyoshi Katakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP1428285A priority Critical patent/JPS60198453A/en
Publication of JPS60198453A publication Critical patent/JPS60198453A/en
Publication of JPH0118639B2 publication Critical patent/JPH0118639B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は被測定物体に超音波を送信し、反射波
あるいは透過波を受信して、被測定物体内部の構
造・物性を計測する装置に用いられる超音波探触
子の構成に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is applicable to a device that transmits ultrasonic waves to an object to be measured, receives reflected waves or transmitted waves, and measures the internal structure and physical properties of the object to be measured. The present invention relates to the configuration of an ultrasonic probe.

〔発明の背景〕[Background of the invention]

最近、医用超音波診断装置や超音波顕微鏡など
数MHzから数100MHzの超音波を用いて生体ある
いは物体の内部を詳細に調べることができるよう
になつた。このうち、前者の診断装置に従来まで
用いられている探触子は、PZT(チタン酸ジルコ
ン酸鉛)系、PbTiO3(チタン酸鉛)系セラミツ
クスなどの厚み伸縮振動を利用するため、共振周
波数は圧電体の厚みによりほぼ決まり、その上限
は10MHz程度と言われている。しかしながら、周
波数を高めより高分解能で生体を診断したいとい
う要望は強く、その改善が必須であつた。一方、
後者の超音波顕微鏡に於ては逆に、ZnOなどの圧
電性半導体をスパツタリングにより、サフアイア
などでできたレンズ母材に成長させるため、極め
て薄いものしかできず、従つてその周波数も
100MHz程度以上が広く用いられているにすぎな
い。しかし数10MHz〜200MHz程度の超音波を用
いれば、試料内部の減衰も比較的小さく、装置の
構成も簡単になるため、生物試料など分解能をあ
まり必要としない分野への幅広い応用が可能とな
る。
Recently, it has become possible to examine the inside of living organisms or objects in detail using ultrasonic waves of several MHz to several 100 MHz using medical ultrasound diagnostic equipment and ultrasound microscopes. Among these, the probes conventionally used in the former type of diagnostic equipment use thickness stretching vibrations of PZT (lead zirconate titanate) ceramics, PbTiO 3 (lead titanate) ceramics, etc., so the resonant frequency is low. is almost determined by the thickness of the piezoelectric material, and its upper limit is said to be around 10MHz. However, there is a strong desire to increase the frequency and diagnose living organisms with higher resolution, and improvements have been essential. on the other hand,
In the latter type of ultrasound microscope, on the other hand, piezoelectric semiconductors such as ZnO are grown on a lens base material made of sapphire or the like by sputtering, so only extremely thin products can be produced, and the frequency is also low.
Only frequencies above 100MHz are widely used. However, if ultrasonic waves of several tens of MHz to 200 MHz are used, the attenuation inside the sample is relatively small and the configuration of the device is simple, making it possible to apply it to a wide range of fields that do not require high resolution, such as biological samples.

〔発明の目的〕[Purpose of the invention]

本発明はこれらの点を鑑みてなされたもので、
その目的は、10数KHzから数100MHz程度の超音
波帯で利用でき、圧電体自身が音響レンズを兼ね
た高性能探触子を提供することにある。
The present invention has been made in view of these points,
The purpose is to provide a high-performance probe that can be used in the ultrasonic band from about 10 KHz to several 100 MHz, and in which the piezoelectric body itself doubles as an acoustic lens.

〔発明の概要〕[Summary of the invention]

第1図はセラミツクスと、一例としてその上に
形成されたインターデイジタル形電極の断面を示
す。リード線1,2はセラミツクス3上の電極4
に交互に接続されている。このセラミツクスは、
通常の表面弾性波素子とは異なり、リード線1,
2間に電圧を印加して分極されるため、分極の程
度は電極下で最も強く、電極から離れるに従つて
弱くなつている。その方向は矢印A1で示す向き
となつている。そのため、隣接する電極下の分極
の向きは、電極に垂直で互いに逆向きになり、一
方電極間に於ては電極に平行に分極され、これも
分極下と同様互いに逆向きになつている。このよ
うな圧電体のリード線1,2間電圧を印加する
と、電極下の領域に対しては、分極の向きと印加
電圧の向きが丁度一致するため、全て同位相で伸
縮し、厚み振動を生じる。ところが電極間の領域
に対しては、分極の向きと印加電圧の向きが同じ
で、かつ分極の向きが互いに逆であるため、隣接
する領域の横方向振動は互いに相殺し、極めて小
さくなる。
FIG. 1 shows a cross section of a ceramic and, by way of example, an interdigital electrode formed thereon. Lead wires 1 and 2 are connected to electrodes 4 on ceramics 3.
are connected alternately. This ceramics is
Unlike ordinary surface acoustic wave elements, lead wires 1,
Since polarization is achieved by applying a voltage between the electrodes, the degree of polarization is strongest below the electrodes and becomes weaker as the distance from the electrodes increases. Its direction is indicated by arrow A1 . Therefore, the directions of polarization under adjacent electrodes are perpendicular to the electrodes and opposite to each other, while those between the electrodes are polarized parallel to the electrodes, and these are also in opposite directions like the under polarization. When a voltage is applied between the lead wires 1 and 2 of such a piezoelectric material, the direction of polarization and the direction of the applied voltage match exactly in the region under the electrode, so they all expand and contract in the same phase, causing thickness vibration. arise. However, in the region between the electrodes, the direction of polarization and the direction of the applied voltage are the same, and the directions of polarization are opposite to each other, so the lateral vibrations of adjacent regions cancel each other out and become extremely small.

以上の理由により、主として厚み振動(図の矢
印A2で示す)が発生することがわかる。なお、
分極された領域は明確に仕切られたものでないた
め、厚み振動に対し、非共振特性を示す。従つ
て、このような探触子の共振周波数は、厚み方法
の機械的固有振動により決まるのではなく、横方
向の振動(図の矢印A3で示す)に伴なう電気的
インピーダンスの変化に依存するため、本質的に
厚み方向に対し優れたパルス応答特性を有する。
共振周波数は、電極の周期l、横方向の音速v
として=v/lで表わされる。セラミツクスの
場合、v=4000m/s程度である。現在のところ
電極の周期はフオトリソグラフイやX線リソグラ
フイを使えば1μm程度にまで微細化できるが、
セラミツクスの粒径も同程度であるため、均一な
電極を得るには5μm程度の周期が限界である。
この時の共振周波数は400MHzとなる。しかし、
粒径をより細かくすれば、さらに高周波帯で用い
ることができる。
It can be seen that for the above reasons, mainly thickness vibration (indicated by arrow A2 in the figure) occurs. In addition,
Since the polarized region is not clearly partitioned, it exhibits non-resonant characteristics with respect to thickness vibration. Therefore, the resonant frequency of such a probe is determined not by the mechanical natural vibration of the thickness method, but by the change in electrical impedance associated with lateral vibration (indicated by arrow A 3 in the figure). Therefore, it essentially has excellent pulse response characteristics in the thickness direction.
The resonance frequency is determined by the period l of the electrode and the velocity of sound in the lateral direction v
It is expressed as =v/l. In the case of ceramics, v=4000 m/s. Currently, the electrode period can be reduced to about 1 μm using photolithography or X-ray lithography, but
Since the particle size of ceramics is also about the same, a period of about 5 μm is the limit for obtaining uniform electrodes.
The resonant frequency at this time is 400MHz. but,
If the particle size is made finer, it can be used in even higher frequency bands.

このように優れた特性を有する探触子も、従来
までのセラミツクスのように前面に音響レンズを
貼つたのでは、その特性を十分には生かすことが
できない。
Even if a probe has such excellent characteristics, if an acoustic lens is attached to the front surface like conventional ceramics, the characteristics cannot be fully utilized.

例えば、セラミツクスが被測定体に接する側に
音響レンズを貼ることを考えよう。周波数15M
Hz、接着剤としてエマーソン・アンド・カミング
社製のエポキシ系低粘度接着剤ECCOBOND24を
用いたとする。その音速は2000m/s程度である
ので接着層が十分に無視できるためには、1/10波
長すなわち13μm以下でなければならない。この
ような接着層を均一に、しかも気泡が残留しない
ように作製するのは容易ではない。さらに周波数
が高まれば、ますます困難さが増すことは言うま
でもない。
For example, consider attaching an acoustic lens to the side of ceramics that contacts the object to be measured. Frequency 15M
Hz, and ECCOBOND24, a low-viscosity epoxy adhesive manufactured by Emerson & Cumming, was used as the adhesive. Since the speed of sound is approximately 2000 m/s, in order for the adhesive layer to be sufficiently ignored, it must be less than 1/10 wavelength, that is, 13 μm. It is not easy to produce such an adhesive layer uniformly and without leaving any bubbles. Needless to say, as the frequency increases, the difficulty increases.

しかしながら、セラミツクス自身を音響レンズ
とすれば、このような問題点を解消でき、先に述
べた特性を十分に引き出せる構成法になることを
見出した。すなわち、超音波を発生する領域と、
その超音波を集束するレンズとを同一セラミツク
スの母体に形成すれば探触子内部の音響的不整合
は存在しないので、優れたパルス応答特性を得る
ことができる。
However, it has been discovered that if ceramics itself is used as an acoustic lens, these problems can be resolved and a construction method that can fully bring out the above-mentioned characteristics can be achieved. That is, an area that generates ultrasonic waves,
If the lens that focuses the ultrasonic waves is formed in the same ceramic matrix, there will be no acoustic mismatch inside the probe, and excellent pulse response characteristics can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例を参照しながら説明する。 This will be explained below with reference to Examples.

第2図は本発明の一実施例として、超音波顕微
鏡用探触子を構成した例を示す。セラミツクス圧
電体5上に、Cr,Au,Alなどの金属電極6を蒸
着あるいはメツキなどで形成し、電極間に電圧を
印加して分極した。分極電圧は40〜70kV/cm、
分極温度は100〜170℃程度が適する。なお、レン
ズ7と電極6との距離は通常a2/λ程度に選ぶ。
FIG. 2 shows an example of a probe for an ultrasonic microscope as an embodiment of the present invention. A metal electrode 6 made of Cr, Au, Al, or the like was formed on the ceramic piezoelectric body 5 by vapor deposition or plating, and a voltage was applied between the electrodes to polarize the electrode. Polarization voltage is 40-70kV/cm,
A suitable polarization temperature is about 100 to 170°C. Note that the distance between the lens 7 and the electrode 6 is usually selected to be approximately a 2 /λ.

ただし、λは波長、aは電極領域の実効的半径
を表わす。探触子の側面8は、この面からの不要
な反射波が生じないように、粗面にすることが好
ましい。このように構成すると、電極6に電圧を
印加したとき、その直下の分極した領域で発生し
た超音波は、セラミツクス5を伝播し、レンズ7
により集束されて、第2図点線に示すように焦点
を結ぶ。受波時に於てはその逆に、超音波が入射
すると電極6に電圧を生じる。
Here, λ represents the wavelength, and a represents the effective radius of the electrode region. The side surface 8 of the probe is preferably roughened to avoid unnecessary reflected waves from this surface. With this configuration, when a voltage is applied to the electrode 6, the ultrasonic waves generated in the polarized region immediately below the electrode 6 propagate through the ceramics 5 and reach the lens 7.
The light is focused by the dotted line in FIG. 2 to form a focal point. During wave reception, on the contrary, when an ultrasonic wave is incident, a voltage is generated in the electrode 6.

電極の形状としては第3図a,b,cの他、こ
れらを種々組合せた配置が考えられる。ただし、
セラミツクス3上に電極9,10が形成されてい
る図である。
As for the shape of the electrode, in addition to the shapes shown in FIG. 3a, b, and c, various combinations of these shapes can be considered. however,
3 is a diagram showing electrodes 9 and 10 formed on ceramics 3. FIG.

第4図は本発明の他の実施例であり、診断装置
等に用いられる探触子の例を示す。セラミツクス
11上に、電極12を形成し、第2図の実施例と
同様な処理を行なつた。胃や直腸などの体腔内に
挿入し、体内臓器を高分解能で撮像する目的で、
従来まで用いられている探触子の周波数は高々
10MHz程度であるが、第4図に示す構成例の場合
更に周波数を高めることができる。しかも、バツ
キングが不要であるため、小型・軽量な探触子が
得られ、体腔挿入用に適する。勿論、レンズ13
の前面に、通常のセラミツクス振動子と同様、1/
4波長音響整合層を形成することもできる。この
探触子は体腔挿入用に限らず、通常の診断装置に
も用いることができる。
FIG. 4 shows another embodiment of the present invention, and shows an example of a probe used in a diagnostic device or the like. An electrode 12 was formed on the ceramic 11, and the same treatment as in the embodiment shown in FIG. 2 was performed. It is inserted into body cavities such as the stomach or rectum for the purpose of taking high-resolution images of internal organs.
The frequency of the probes used until now is at most
Although the frequency is approximately 10 MHz, the frequency can be further increased in the configuration example shown in FIG. Furthermore, since backing is not required, a small and lightweight probe is obtained, which is suitable for insertion into body cavities. Of course, lens 13
On the front of the oscillator, 1/
A four-wavelength acoustic matching layer can also be formed. This probe can be used not only for insertion into a body cavity but also for ordinary diagnostic equipment.

第5図は本発明の他の実施例である。セラミツ
クス14上に複数個のレンズ16を作成し、その
直下に電極15を形成したものである。このよう
な探触子を超音波顕微鏡に用いれば、広い測定領
域を各レンズに分担して受け持たせることがで
き、測定時間を極めて短縮できる。しかも、従来
まで用いられているZnOでは広い面積に渡り均質
な性能を有する振動子を作成するのが困難である
のに対し、セラミツクスの場合数cmの大きなもの
でも0.1%以下のばらつきに押さえることは、さ
ほど困難ではない。そのため試料を広範囲に測定
することが可能になつてくる。
FIG. 5 shows another embodiment of the invention. A plurality of lenses 16 are formed on ceramics 14, and electrodes 15 are formed directly below them. If such a probe is used in an ultrasonic microscope, a wide measurement area can be assigned to each lens, and the measurement time can be extremely shortened. Moreover, with ZnO, which has been used up until now, it is difficult to create resonators with uniform performance over a wide area, whereas with ceramics, it is possible to suppress the variation to less than 0.1% even in large areas of several centimeters. is not very difficult. Therefore, it becomes possible to measure a wide range of samples.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、10数KHzか
ら数100MHz帯に渡つて、パルス応答特性に優れ、
安定した特性を有する探触子を製作することがで
きる。
As described above, according to the present invention, the pulse response characteristics are excellent over the band from 10 KHz to several 100 MHz, and
A probe with stable characteristics can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を説明するための電極および
その直下の分極状態を示す図、第2図は、本発明
の一実施例を示す図、第3図は本発明に係る探触
子に用いる電極の形状を示す図、第4図は診断装
置に用いる本発明の他の実施例を示す図、第5図
は本発明の他の実施例を示す面である。
FIG. 1 is a diagram showing an electrode and the polarization state immediately below the electrode for explaining the present invention, FIG. 2 is a diagram showing an embodiment of the present invention, and FIG. 3 is a diagram showing a probe according to the present invention. FIG. 4 is a diagram showing the shape of the electrode used, FIG. 4 is a diagram showing another embodiment of the present invention used in a diagnostic device, and FIG. 5 is a diagram showing another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 一方の面にインター・デイジタル形電極ある
いは複数個の同心環状電極あるいはこれらを組合
せた電極が設けられ、その隣接する電極間に電圧
を印加することにより分極した領域を有する圧電
体を有し、該圧電体の他方の面の少なくとも1部
が曲面をなすことにより該圧電体自身が音響レン
ズとして機能することを特徴とする超音波探触
子。 2 前記圧電体の側面が粗面にされていること特
徴とする特許請求の範囲第1項に記載の超音波探
触子。
[Claims] 1. An inter-digital electrode, a plurality of concentric annular electrodes, or a combination of these electrodes are provided on one surface, and a region is polarized by applying a voltage between adjacent electrodes. An ultrasonic probe comprising a piezoelectric material, wherein at least a portion of the other surface of the piezoelectric material is curved so that the piezoelectric material itself functions as an acoustic lens. 2. The ultrasonic probe according to claim 1, wherein the piezoelectric body has a roughened side surface.
JP1428285A 1985-01-30 1985-01-30 Ultrasonic probe Granted JPS60198453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1428285A JPS60198453A (en) 1985-01-30 1985-01-30 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1428285A JPS60198453A (en) 1985-01-30 1985-01-30 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS60198453A JPS60198453A (en) 1985-10-07
JPH0118639B2 true JPH0118639B2 (en) 1989-04-06

Family

ID=11856733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1428285A Granted JPS60198453A (en) 1985-01-30 1985-01-30 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS60198453A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131675A (en) * 1976-04-27 1977-11-04 Tokyo Shibaura Electric Co Probe for ultrasonic diagnostic device
JPS545823A (en) * 1977-06-15 1979-01-17 Mogirefusukii Fuiriaru Fuijiko Method and apparatus for continous casting of hollow ingot
JPS54161315A (en) * 1977-03-24 1979-12-20 Koji Toda Ultrasonic transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131675A (en) * 1976-04-27 1977-11-04 Tokyo Shibaura Electric Co Probe for ultrasonic diagnostic device
JPS54161315A (en) * 1977-03-24 1979-12-20 Koji Toda Ultrasonic transducer
JPS545823A (en) * 1977-06-15 1979-01-17 Mogirefusukii Fuiriaru Fuijiko Method and apparatus for continous casting of hollow ingot

Also Published As

Publication number Publication date
JPS60198453A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
Shung et al. Piezoelectric materials for high frequency medical imaging applications: A review
Snook et al. Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials
Wong et al. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer
CN101524682B (en) High-frequency ultrasonic transducer made of piezoelectric monocrystalline composite material as well as manufacturing method and application thereof
Taghaddos et al. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging
JPH02253798A (en) Piezoelectric converting element
JPH06209930A (en) Curvilinear interleave type longitudinal mode ultrasonic wave converter
JP2001258879A (en) Ultrasonic transducer system and ultrasonic transducer
Zhang et al. Miniature transducer using PNN-PZT-based ceramic for intravascular ultrasound
Roy et al. Towards the development of backing layer for piezoelectric micromachined ultrasound transducers
Lau et al. Ferroelectric lead magnesium niobate–lead titanate single crystals for ultrasonic hydrophone applications
JPH0118639B2 (en)
Guan et al. Enhancement of 10 MHz single element ultrasonic transducers based on alternating current polarized PIN-PMN-PT single crystals
JPH03274899A (en) Ultrasonic converter
Peng et al. PMN-PT single crystal thick films on silicon substrate for high-frequency micromachined ultrasonic transducers
Snook et al. High-frequency transducers for medical ultrasonic imaging
JP2682342B2 (en) Composite piezoelectric
CN216094664U (en) Novel medical detection probe
JP3819315B2 (en) Ultrasonic transducer
Cui et al. Design and fabrication of cylindrical transducer based on 2–2 piezoelectric composite
JP2720731B2 (en) Composite piezoelectric
Peng et al. PMN-PT single crystal thick films on silicon substrate for high-frequency micromachined ultrasonic transducers
JPH0118640B2 (en)
Snook et al. Design of a high frequency annular array for medical ultrasound
Zhou High frequency single crystal ultrasonic transducers for high resolution ophthalmic imaging applications