JPH01186166A - Power distribution control device - Google Patents

Power distribution control device

Info

Publication number
JPH01186166A
JPH01186166A JP826088A JP826088A JPH01186166A JP H01186166 A JPH01186166 A JP H01186166A JP 826088 A JP826088 A JP 826088A JP 826088 A JP826088 A JP 826088A JP H01186166 A JPH01186166 A JP H01186166A
Authority
JP
Japan
Prior art keywords
power
load
phase
value
reactive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP826088A
Other languages
Japanese (ja)
Inventor
Kazutoshi Miura
三浦 和敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP826088A priority Critical patent/JPH01186166A/en
Publication of JPH01186166A publication Critical patent/JPH01186166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ac-Ac Conversion (AREA)

Abstract

PURPOSE:To control loaded power constantly at all times, by comparing the affective power command value of an FC (standstill type frequency conversion) device with the effective power value and by adding the deviation to the phase of a reference frequency of the FC device obtained from the output voltage of an M-G (rotation type frequency conversion) device. CONSTITUTION:Through a three-phase line 2, an M-G device 3 and an FC device 4 are connected in parallel to a three-phase power source 1, while a load terminal is connected to an output terminal 4 of the FC device 4 through a switch 5 and the other load terminal is connected to the output terminal 4 of the FC device 4 through an AC reactor 6 to supply the current to a load 7. A control circuit is composed of power detectors 11-12, an effective power setter 14, shorting switches 15-16 at the input and output terminals of above setters 13-14, control compensation circuits 17-18, a PLL circuit 19, etc. The reactive power command value of the FC device 4 is thereby compared with the reactive power value and the deviation is added to the voltagecommand value of the FC device 4, which is then given as a crest value command of the output voltage of the FC device 4.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、回転形周波数変換装置f(以下M−G装置と
略す、)と静止形周波数変換装置(以下FC装置と略す
、)とを並列運転し、負荷に電力供給する電力供給シス
テムに係り、特に、負荷の消費する電力に応じて、FC
装置が負担すべき有効・無効電力を配分する電力配分制
御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a rotary frequency converter f (hereinafter referred to as MG device) and a static frequency converter (hereinafter referred to as FC device). (abbreviated)) is operated in parallel to supply power to the load, and in particular, depending on the power consumed by the load, the FC
The present invention relates to a power distribution control device that distributes active and reactive power to be borne by devices.

(従来の技術) 従来、M−G装置の容量を増加する場合、同容量のM−
G装置を増設して並列運転を行なっていた。
(Prior art) Conventionally, when increasing the capacity of an M-G device, an M-G device of the same capacity is used.
A G device was added and parallel operation was performed.

しかし、近年M−G装置の容量増加を行なう場合、M−
G装置とFC装置との並列運転により、それを行なう技
術がある0例えば、特開昭62−28815号公報には
、M−G装置と電流制御型FC装置との並列運転に関す
る技術が開示されている。
However, in recent years, when increasing the capacity of M-G equipment,
There is a technique to do this by running the G device and the FC device in parallel. For example, Japanese Patent Application Laid-Open No. 62-28815 discloses a technique regarding the parallel operation of the MG device and the current-controlled FC device. ing.

この技術は、電流制御で運転するFC装置をM−G装置
と並列運転し、M−G装置からは有効電力だけを供給し
、FC装置からは負荷が要求する無効電力を含む電力を
供給することにより、M−G装置の運転効率を向上させ
ると共に、負荷変動に対する応答を改善する合、理的な
ものである。
This technology operates an FC device that operates under current control in parallel with an MG device, with the MG device supplying only active power and the FC device supplying power including reactive power required by the load. This is a logical way to improve the operating efficiency of the MG device and improve the response to load fluctuations.

(発明が解決しようとする課題) しかし、上記従来の技術については、以下の問照点を有
する。
(Problems to be Solved by the Invention) However, the above conventional technology has the following points of inquiry.

■ FC@置による単独運転が困難である。■ It is difficult to operate independently with FC @ installation.

■ 負荷の有効電力と無効電力を任意に分担させること
が困難である。
■ It is difficult to arbitrarily allocate the active power and reactive power of the load.

そこで、本発明の目的は、負荷の有効電力と無効電力を
任意にFC装置に分担させ、かつFC装置による負荷の
単独運転ができるよう負荷電力を任意にM−G装置とF
C装置に配分可能な電力配分制御装置を提供する。
Therefore, an object of the present invention is to arbitrarily allocate the active power and reactive power of the load to the FC device, and to arbitrarily divide the load power between the M-G device and the FC device so that the load can be operated independently by the FC device.
Provided is a power distribution control device that can allocate power to C devices.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) したがって、上記目的を達成するために、本発明は、F
C装置の出力電圧の位相を制御して、有効電力を制御す
る有効電力制御手段と、上記出力電圧の波高値を制御し
て、無効電力を制御する無効電力制御手段とを備えた電
力配分制御装置を提供する。
(Means for Solving the Problem) Therefore, in order to achieve the above object, the present invention provides F.
Power distribution control comprising active power control means for controlling the active power by controlling the phase of the output voltage of the C device, and reactive power control means for controlling the reactive power by controlling the peak value of the output voltage. Provide equipment.

(作用) このように構成されたものにおいては、負荷の有効電力
値より得られるFC装置の有効電力指令値と、FC装置
の有効電力値を比較し、その偏差をM−G装置の出力電
圧より得られるFC装置の基準周波数の位相に加えるこ
とによって、FC装置の負担する有効電力を制御し、ま
た、負荷の無効電力値より得られるFC装れの無効電力
指令値と、FC装置の無効電力値を比較し、その偏差を
FC装置の電圧指令値に加算し、その加算値をFC装置
の出力電圧の波高値措置として与えることによって、F
C装置の負担する無効電力を制御する。これら有効電力
制御と無効電力制御により、負荷電力の大きさに関係な
く、M−G装置とFC装置の負担する電力を常に一定に
なるように制御する。
(Function) In the device configured in this way, the active power command value of the FC device obtained from the active power value of the load is compared with the active power value of the FC device, and the deviation is calculated as the output voltage of the MG device. By adding it to the phase of the reference frequency of the FC device obtained from the above, the active power borne by the FC device is controlled. F
Control the reactive power borne by the C device. Through these active power control and reactive power control, the power borne by the MG device and the FC device is always controlled to be constant, regardless of the magnitude of the load power.

(実施例) 以下、本発明の一実施例を図面を用いて説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図に示すように、三相電源1に三相電線路2を介し
て、M−G装置3およびFC装置4が並列接続され、負
荷端子はスイッチ5を介してM−G装置3の出力端子に
接続される。
As shown in FIG. 1, an M-G device 3 and an FC device 4 are connected in parallel to a three-phase power supply 1 via a three-phase electric line 2, and a load terminal of the M-G device 3 is connected via a switch 5. Connected to the output terminal.

もう一方は、交流リアクトル6を介して、FC装置4の
出力端子4の出力端子に接続されて、周波数変換された
交流電力を負荷7に供給している。
The other end is connected to the output terminal 4 of the FC device 4 via the AC reactor 6, and supplies frequency-converted AC power to the load 7.

なお、FC装置4としては、入力無効電力制御が可能な
循環電流式サイクロコンバータを用いている。
Note that as the FC device 4, a circulating current type cycloconverter capable of controlling input reactive power is used.

制御回路としては、負荷7の有効電流PLと無効電流Q
Lを検出する゛電力検出器11、FC装M4の有効電力
Pcと無効電力Qcを検出する電力検出器12゜負荷7
の有効電力pLを入力とする有効電力設定器13、負荷
lOの無効電力QLを入力とする無効電力設定器14、
有効、無効電力設定器13.14の入出力端を短絡する
スイッチ15.16と、制御補償回路17.1g、PL
L回路19、乗算器20、FC@置装の電圧指令回路2
1、比較器22.23および加算器24で構成している
As a control circuit, the active current PL and reactive current Q of the load 7
power detector 11 for detecting L; power detector 12 for detecting active power Pc and reactive power Qc of FC device M4; load 7;
an active power setting device 13 that receives as input the active power pL of the load IO; a reactive power setting device 14 that receives the reactive power QL of the load IO as the input;
A switch 15.16 that shorts the input and output terminals of the active and reactive power setting device 13.14, and a control compensation circuit 17.1g, PL.
L circuit 19, multiplier 20, FC@equipment voltage command circuit 2
1, comparators 22 and 23, and an adder 24.

次に、制御動作について説明する。Next, the control operation will be explained.

この場合スイッチ5は閉じ、スイッチ15.16は開き
、並列運転について行う。
In this case, switch 5 is closed and switches 15, 16 are opened for parallel operation.

負荷7の電力検出器11によって検出された有効電力値
PLは有効電力設定器13に入力し、その設定器13は
FC装置!i4が分担する有効電力Pcの指令値Pc’
を出力する。指令値Pc’t±FC装置4の有効電力検
出値Pcと比較器22で比較され、その偏差ε。
The active power value PL detected by the power detector 11 of the load 7 is input to the active power setting device 13, and the setting device 13 is an FC device! Command value Pc' of active power Pc shared by i4
Output. Command value Pc't±compared with active power detection value Pc of FC device 4 by comparator 22, and its deviation ε.

は制御補償回路17に入力する。is input to the control compensation circuit 17.

その場合、制御補償回路17は単なる増幅器とし、ゲイ
ンをKとすると、その出力値はΔθ=K・ε。
In that case, the control compensation circuit 17 is simply an amplifier, and if the gain is K, the output value is Δθ=K·ε.

となり、PLL回路19に入力する。このPLL回路1
9は、三相単位正弦波e0υ、ecv、ecvを出力す
るもので、その出力は、入力するM−G装置3の出力電
圧V(1υ*VCIV*VOvの位相に制御補償回路1
7の出力値Δθを加わったものである(特許登録第13
14945号参照)。
and is input to the PLL circuit 19. This PLL circuit 1
Reference numeral 9 outputs a three-phase unit sine wave e0υ, ecv, ecv.
(Patent Registration No. 13)
14945).

ecυ= sin (ωt+Δθ)      ■51
eV = sin (ωt−2π/3+Δθ)   ■
ecy=sin(ωt+2π/3+Δθ)   ■この
三相単位正弦波ecυe a 6 V t e CI#
は乗算器2oに入力される。
ecυ= sin (ωt+Δθ) ■51
eV = sin (ωt-2π/3+Δθ) ■
ecy=sin(ωt+2π/3+Δθ) ■This three-phase unit sine wave ecυe a 6 V te CI#
is input to the multiplier 2o.

一方電力検出器11によって検出された無効電力値QL
は無効電力設定器14に入力し、FC装置4が分担する
無効電力Qcの指令値QC14を出力する。指令値Qc
Xは、比較器23でFCV&!!4の無効電力検出値Q
cと比較し、制御補償回路18を介して加算器24で、
電圧指令値VL)IIに加算される。その加算値はFC
装置4の電圧波高値指令Vcにとして、乗算器20に入
力される。
On the other hand, the reactive power value QL detected by the power detector 11
is input to the reactive power setter 14, and outputs a command value QC14 of the reactive power Qc shared by the FC device 4. Command value Qc
X is FCV&! by comparator 23. ! 4 reactive power detection value Q
c, and in the adder 24 via the control compensation circuit 18,
It is added to the voltage command value VL)II. The added value is FC
It is input to the multiplier 20 as the voltage peak value command Vc of the device 4.

乗算器20は、三相単位正弦波e0υe6eV*6ev
と、波高値指令Vc’を各々に乗算し、FC装置4の電
圧指令VeU’*VeV’*6em’を出力する。
The multiplier 20 generates a three-phase unit sine wave e0υe6eV*6ev
and the peak value command Vc', and output the voltage command VeU'*VeV'*6em' for the FC device 4.

Vcu’=Vc 5in(ωt+Δθ)      (
へ)ecvに=Vc ain(ωt−2π/3+Δθ)
  ■ec−=Vc 5in(ωt+’2c/3+Δθ
)  0これによって、FC装置4の出力電圧Vcは制
御される。
Vcu'=Vc 5in(ωt+Δθ) (
to) ecv = Vc ain (ωt-2π/3+Δθ)
■ec-=Vc 5in(ωt+'2c/3+Δθ
) 0 Thus, the output voltage Vc of the FC device 4 is controlled.

次に、上記FC装置4の具体的な構成の一例を第2図に
示す。
Next, an example of a specific configuration of the FC device 4 is shown in FIG. 2.

第2図に示すFC装置4は、電圧制御形循環電流式サイ
クロコンバータであり、入力周波数よりも出力周波数を
高くできると共に、受電端に進相コンデンサを設けるこ
とによって入力無効電力制御が可能となっている。
The FC device 4 shown in Fig. 2 is a voltage-controlled circulating current type cycloconverter, which can make the output frequency higher than the input frequency, and can control the input reactive power by providing a phase advance capacitor at the receiving end. ing.

第2図において、30は三相電線路、31は進相コンデ
ンサ、32はサイクロコンバータの1相分、33は負荷
(1相分)を示している。
In FIG. 2, 30 is a three-phase electric line, 31 is a phase advancing capacitor, 32 is one phase of a cycloconverter, and 33 is a load (one phase).

1相分のサイクロコンバータ32の主回路は電源トラン
ス34、正群コンバータ35、負群コンバータ36、直
流リアクトル37.39からなり、コンバータ35.3
6は電源トランス34によって、絶縁されている。
The main circuit of the cycloconverter 32 for one phase consists of a power transformer 34, a positive group converter 35, a negative group converter 36, a DC reactor 37.39, and a converter 35.3.
6 is insulated by a power transformer 34.

他の2相も同様な構成である。The other two phases have similar configurations.

サイクロコンバータ32の負荷電圧制御では、その電圧
指令値vcu’と実負荷電圧VCυとの偏差に応じて、
正群コンバータ35の正群電圧VPと負群コンバータ3
6の負群電圧VNが等しくなるように負群コンバータ3
6への位相信号を反転して与える。
In the load voltage control of the cycloconverter 32, depending on the deviation between the voltage command value vcu' and the actual load voltage VCυ,
Positive group voltage VP of positive group converter 35 and negative group converter 3
Negative group converter 3
The phase signal to 6 is inverted and given.

その結果、循環電流工0に関係なく、平均電圧が負荷電
圧となって制御される。
As a result, the average voltage becomes the load voltage and is controlled regardless of the circulating current factor 0.

また、循環電流制御は、正群コンバータ35の正群電圧
Vpと、負群コンバータ36の負群電圧VNの平均電圧
を変えず、その差を制御する。
Further, the circulating current control controls the difference between the positive group voltage Vp of the positive group converter 35 and the negative group voltage VN of the negative group converter 36 without changing their average voltage.

すなわち、循環電流指令Io’と演算によって求めた実
循環電流Ioとの偏差に応じてVPを増加させると同時
に、VNを等量だけ減少させるように位相信号を与える
That is, a phase signal is given so that VP is increased according to the deviation between the circulating current command Io' and the actual circulating current Io obtained by calculation, and at the same time, VN is decreased by the same amount.

さらに、無効電力制御では、受電端に電流検出器39お
よび電圧検出器40を設け、無効電力演算回路41によ
って入力無効電力Qを検出し、設定された無効電力指令
値t)Iと比較して、その偏差E1に応じて循環電流指
令ニーを与えている。
Furthermore, in reactive power control, a current detector 39 and a voltage detector 40 are provided at the receiving end, and a reactive power calculation circuit 41 detects input reactive power Q, and compares it with a set reactive power command value t)I. , a circulating current command knee is given according to the deviation E1.

また、制御補償回路42には積分要素を含ませ、定常偏
差の発生を抑制している。
Furthermore, the control compensation circuit 42 includes an integral element to suppress the occurrence of steady-state deviation.

従って、無効電力指令Q%を零に設定すると、進相コン
デンサ31の進み無効電力と、サイクロコンバータ32
の遅れ無効電力とが互いに打消し合うように循環電流I
oが制御され、受電端の入力基本波力率が1になる。
Therefore, when the reactive power command Q% is set to zero, the leading reactive power of the phase leading capacitor 31 and the cycloconverter 32
The circulating current I
o is controlled, and the input fundamental wave power factor at the receiving end becomes 1.

次に、第1図に示した一実施例の動作を第3図、第4図
を用いてさらに詳細に説明する。
Next, the operation of the embodiment shown in FIG. 1 will be explained in more detail using FIGS. 3 and 4.

第3図は、M−C装置50とFC装置51とを並列運転
したときの各部の電圧、電流を示しており、負荷52は
Re + SLeであたえられる。
FIG. 3 shows the voltage and current of each part when the MC device 50 and the FC device 51 are operated in parallel, and the load 52 is given by Re + SLe.

また、並列運転条件として、M−C装置50の出力電圧
VL(=VG)は発電機界磁電流制御で一定に制御され
るものとする。
Further, as a parallel operation condition, it is assumed that the output voltage VL (=VG) of the MC device 50 is controlled to be constant by generator field current control.

上記の条件で並列運転が行なわれると電圧、電流は下記
の関係が成立する。
When parallel operation is performed under the above conditions, the following relationship holds true between voltage and current.

Ve= (Re+5−Le)It         ■
vx=S−Lc・1cc           ■Vc
=VL+Vx            (9)IL=I
OC+IQ           (10)ここで v
L:負荷電圧 Vc:FC装置の出力電圧 Io:M−C装置の出力電流 Icc=IcR+I(Hx: F C装置の出力電流I
盲4:負荷電流 第4図(A) 、 (B) 、 (C)は上記■〜(1
0)式に基づく各都電圧電流のベクトル図の一例である
Ve= (Re+5-Le)It ■
vx=S-Lc・1cc ■Vc
=VL+Vx (9)IL=I
OC+IQ (10) where v
L: Load voltage Vc: Output voltage of the FC device Io: Output current of the MC device Icc=IcR+I (Hx: Output current I of the FC device
Blind 4: Load current Figure 4 (A), (B), and (C) are the above ■~(1
0) is an example of a vector diagram of voltage and current in each city based on formula.

第4図(A)はM−C装置とFC装置が負荷の有効電力
Pと無効電力Qを等分に負担した場合の電圧電流のベク
トル図である。
FIG. 4(A) is a vector diagram of voltage and current when the MC device and the FC device bear the active power P and reactive power Q of the load equally.

負荷電流I+4はM−C装置の出力電流工0シとFC装
置の出力電流ICI、の和で、負荷電圧V、に対して位
相遅れθ□になる。
The load current I+4 is the sum of the output current of the MC device and the output current ICI of the FC device, and has a phase delay θ□ with respect to the load voltage V.

この場合有効電流Icp = IGP、無効電流I(:
Q = I(Ililで、そのトータルはIp = I
cp + IapとIQ = Ice + Iaeであ
る。
In this case, active current Icp = IGP, reactive current I(:
Q = I (Ilil, the total is Ip = I
cp + Iap and IQ = Ice + Iae.

一方FC装置の出力電圧Vcは出力電流ICLより90
°位相の進んだりアクドルLcの電圧Vxとの和であり
、VcはV、よりθ2だけ進み位相となる。
On the other hand, the output voltage Vc of the FC device is 90% lower than the output current ICL.
It is the sum of the phase lead and the voltage Vx of the accelerator Lc, and Vc has a phase lead by θ2 from V.

(B)は第1図に示した有効電力設定器13によって、
FC装置の負担する有効電力だけを増加させた場合の定
常状態の電圧電流ベクトル図である。
(B) is determined by the active power setting device 13 shown in FIG.
FIG. 7 is a voltage and current vector diagram in a steady state when only the active power borne by the FC device is increased.

FC装置の出力電圧Vcの位相θ2は、さらに進み(A
と比較して)、有効電流Icpが増加し、M −G装置
の有効電流IGPが減少する。
The phase θ2 of the output voltage Vc of the FC device further advances (A
), the effective current Icp increases and the effective current IGP of the M-G device decreases.

その結果、負荷電流ILはICLとIOLの和となり、
大きさと位相は変わらない。
As a result, the load current IL is the sum of ICL and IOL,
The size and phase remain unchanged.

この場合、無効電流xcoを一定に保つために、出力電
圧Vcを大きくするように無効電力制御回路が働き、I
CQ ” IGQとなる。(C)は第1図に示した無効
電力設定器14によって、FCM置の負担する無効電圧
だけを増加させた場合の定常状態の電圧電流ベクトル図
である。
In this case, in order to keep the reactive current xco constant, the reactive power control circuit works to increase the output voltage Vc, and the I
CQ'' IGQ. (C) is a voltage-current vector diagram in a steady state when only the reactive voltage borne by the FCM device is increased by the reactive power setter 14 shown in FIG.

出力電圧Vcの波高値は大きくなり(Aと比較して)、
無効電流ICQが増加し、 IOQが減少する。
The peak value of the output voltage Vc becomes larger (compared to A),
Reactive current ICQ increases and IOQ decreases.

その結果、負荷電流II、はIC!、とIGLの和とな
り、CB)と同様1.。の大きさと位相は変わらない。
As a result, the load current II, is IC! , and IGL, and as in CB), 1. . The magnitude and phase of are unchanged.

この場合、FC装置の有効電流ICPを一定に保つため
に、位相02 を小さくするように、有効電力制御回路
が働き、ICr’ ” IOPとなる。
In this case, in order to keep the active current ICP of the FC device constant, the active power control circuit operates to reduce phase 02, resulting in ICr'''IOP.

以上のように、FC装置の出力電圧の大きさと位相02
 を制御することによって、負荷電力を任意にM−G装
置とFC装置に配分することができる。
As mentioned above, the magnitude of the output voltage of the FC device and the phase 02
By controlling the above, load power can be arbitrarily distributed to the MG device and the FC device.

次に、単独運転について説明する。Next, independent operation will be explained.

第1図において、スイッチ6を開き、制御回路のスイッ
チ15.16を閉じて運転すると、FC装置4の単独運
転ができる。
In FIG. 1, the FC device 4 can be operated independently by opening the switch 6 and closing the switches 15 and 16 of the control circuit.

この場合、偏差εCと(Qは零となり、負荷電圧vLは
負特電圧波高値指令yL%に比例した電圧をFC装置4
から与えられる。
In this case, the deviation εC and (Q become zero, and the load voltage vL is set to
given from.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば以下の効果を奏す
る。
As explained above, the present invention provides the following effects.

ω FC1i!i[の出力電圧の大きさと位相を制御す
ることができるので、負荷の有効電力と無効電力を任意
に分担させることが容易である。
ωFC1i! Since the magnitude and phase of the output voltage of i[ can be controlled, it is easy to arbitrarily share the active power and reactive power of the load.

■ 保守点検のために、M−G装置を停止させた場合で
も、FC装置を単独運転することによって、負荷へ電力
を供給できる。
■ Even when the MG device is stopped for maintenance inspection, power can be supplied to the load by operating the FC device independently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概要構成図、第2図は
第1図で用いたFC装置の回路構成図、第3図は本発明
の詳細な説明するための主回路ブロック図、第4図は本
発明の詳細な説明するための電圧電流ベクトル図である
。 3.50・・・回転形周波数変換装置(M−G装置)4
.32.51・・・静止形周波数変換装置(FC装置)
?、33.52・・・負荷    11,12・・・電
力検出器13・・・有効電力設定器  14・・・無効
電力設定器15.16・・・スイ、ツチ   17.1
8・・・制御補償回路19・・・PLL回路    2
0・・・乗算器21・・・電圧指令回路   22.2
3・・・比較器24・・・加算器 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第3図
Fig. 1 is a schematic configuration diagram showing one embodiment of the present invention, Fig. 2 is a circuit configuration diagram of the FC device used in Fig. 1, and Fig. 3 is a main circuit block diagram for explaining the present invention in detail. , FIG. 4 is a voltage-current vector diagram for explaining the present invention in detail. 3.50...Rotary frequency converter (MG device) 4
.. 32.51...Static frequency converter (FC device)
? , 33.52... Load 11, 12... Power detector 13... Active power setting device 14... Reactive power setting device 15.16... Sui, Tsuchi 17.1
8...Control compensation circuit 19...PLL circuit 2
0... Multiplier 21... Voltage command circuit 22.2
3... Comparator 24... Adder Agent Patent attorney Rule Ken Chika Yudo Ken Daishimaru Figure 3

Claims (1)

【特許請求の範囲】[Claims] 回転形周波数変換装置と静止形周波数変換装置との単独
或いは、並列運転により、負荷に所定周波数の電力を供
給する電力供給システムにおいて、前記負荷の有効電力
及び無効電力に応じて、前記静止形周波数変換装置の出
力電圧の位相を制御して、前記有効電力を制御する有効
電力制御手段と、前記出力電圧の波高値を制御して、前
記無効電力を制御する無効電力制御手段とを具備し、前
記負荷の有効電力及び無効電力を任意に配分制御するこ
とを特徴とする電力配分制御装置。
In a power supply system that supplies power at a predetermined frequency to a load by operating a rotary frequency converter and a stationary frequency converter individually or in parallel, the static frequency is adjusted according to the active power and reactive power of the load. comprising active power control means for controlling the active power by controlling the phase of the output voltage of the conversion device; and reactive power control means for controlling the reactive power by controlling the peak value of the output voltage; A power distribution control device that arbitrarily controls the distribution of active power and reactive power of the load.
JP826088A 1988-01-20 1988-01-20 Power distribution control device Pending JPH01186166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP826088A JPH01186166A (en) 1988-01-20 1988-01-20 Power distribution control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP826088A JPH01186166A (en) 1988-01-20 1988-01-20 Power distribution control device

Publications (1)

Publication Number Publication Date
JPH01186166A true JPH01186166A (en) 1989-07-25

Family

ID=11688178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP826088A Pending JPH01186166A (en) 1988-01-20 1988-01-20 Power distribution control device

Country Status (1)

Country Link
JP (1) JPH01186166A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198953A (en) * 1991-11-20 1993-08-06 Mitsubishi Electric Corp Multilayer interconnection board and its manufacture
JPH06125158A (en) * 1992-10-13 1994-05-06 Nec Corp Printed-circuit board
JPH08330734A (en) * 1995-05-31 1996-12-13 Mitsubishi Gas Chem Co Inc Manufacture of multilayered printed-board having blind via hole

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198953A (en) * 1991-11-20 1993-08-06 Mitsubishi Electric Corp Multilayer interconnection board and its manufacture
JPH06125158A (en) * 1992-10-13 1994-05-06 Nec Corp Printed-circuit board
JPH08330734A (en) * 1995-05-31 1996-12-13 Mitsubishi Gas Chem Co Inc Manufacture of multilayered printed-board having blind via hole

Similar Documents

Publication Publication Date Title
KR900008391B1 (en) Power conversion system
CA2354426C (en) Method and system for connecting and synchronizing a supplemental power source to a power grid
US3896348A (en) Circuit for supplying a dc load from an ac source through a rectifier
JPS6353565B2 (en)
JP2002101575A (en) Uninterruptive power supply device
JPH04229023A (en) Controller for current source converter for supplying to ac bus
US6549440B2 (en) AC power supply apparatus and methods providing output control based on estimated instantaneous reactive power
KR20170089354A (en) Controlling apparatus in static var compensator system and controlling method thereof
JP2002325465A (en) Ac power supply device
JPH01186166A (en) Power distribution control device
KR101899767B1 (en) Uninterruptible power supply and controlling method for the same
EP3700075A1 (en) Power supply system
JP3488320B2 (en) Inverter synchronous switching circuit
JPH05227762A (en) Inverter unit and uninterruptible power supply employing same
Wu et al. Control of delta-connected cascaded converter in the railway power conditioner application
JPH0515069A (en) Parallel operation control device of three-phase ac output converter
JP3762240B2 (en) Control device for self-excited inverter
JP3269515B2 (en) Inverter parallel operation device
Sun et al. Control strategy of voltage source inverter parallel seamless switching based on droop control
JPH0284029A (en) Inverter control method
JP2592930B2 (en) Auxiliary power supply
JPH01255475A (en) Parallel operation control device for constant voltage constant frequency power source device
Naidu et al. Optimal Sizing and Minimizing the Volt Ampere Loading on UPQC Converters for Distributed Generation Applications
Liu et al. Research on the Control Method of UPS Inverter Circuit Considering Additional Filtering Branch
CN117916994A (en) Power conversion device