JPH01185926A - Manufacture of silicon nitride film - Google Patents

Manufacture of silicon nitride film

Info

Publication number
JPH01185926A
JPH01185926A JP1111088A JP1111088A JPH01185926A JP H01185926 A JPH01185926 A JP H01185926A JP 1111088 A JP1111088 A JP 1111088A JP 1111088 A JP1111088 A JP 1111088A JP H01185926 A JPH01185926 A JP H01185926A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
film
silicon
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1111088A
Other languages
Japanese (ja)
Inventor
Akiyoshi Maeda
明寿 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1111088A priority Critical patent/JPH01185926A/en
Publication of JPH01185926A publication Critical patent/JPH01185926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To make the life of an aluminum wiring part long by a method wherein the ratio of a bond density value between silicon and hydrogen to a bond density value between nitrogen and hydrogen inside a silicon nitride film is set to be 5 or less. CONSTITUTION:A silicon oxide film 12 is formed on a silicon substrate 11 by thermal oxidation; an aluminum film is applied to the film; in addition, an aluminum wiring part 13 is formed; a silicon nitride film 14 is formed on the aluminum wiring part 13 by a plasma CVD method. During this process, a temperature, a pressure, a flow rate and the like of three kinds ot reaction gases of silane, ammonia and nitrogen are adjusted in such a way that a composition of the silicon nitride film 14 to be formed is set to be (bond density value between silicon and hydrogen):(bond density value between nitrogen and hydrogen) <=5. By this setup, the life of the aluminum wiring part can be made long.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路の保護膜や、居間絶縁膜等と
してプラズマCVD法によって形成する窒化シリコン膜
の製造方法、特に膜質の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a silicon nitride film formed by plasma CVD as a protective film for a semiconductor integrated circuit, a living room insulating film, etc., and particularly to improvement in film quality.

〔従来の技術〕[Conventional technology]

従来、半導体集積回路の導電膜配線後の保護膜や居間絶
縁膜として、プラズマCVD法によって形成した窒化シ
リコン膜が広く用いられている。
Conventionally, silicon nitride films formed by plasma CVD have been widely used as protective films and living room insulating films after conductive film wiring of semiconductor integrated circuits.

このプラズマCVD法では、シラン(SiHJ)、アン
モニア(NH3)、窒素(N2)の低温プラズマ中で活
性化されたイオンやラジカルの反応性を利用して窒化シ
リコン膜(S i xNyHz)の薄膜が形成されてい
る。
This plasma CVD method uses the reactivity of ions and radicals activated in low-temperature plasma of silane (SiHJ), ammonia (NH3), and nitrogen (N2) to form a thin film of silicon nitride (Si x NyHz). It is formed.

この窒化シリコン膜の特性は、主に反応ガスの温度、圧
力、流量、比率によって制御されるが、通常の量産装置
では各膜成長装置毎に窒化シリコン膜の屈折率が略一定
になるように反応条件を決定している。
The characteristics of this silicon nitride film are mainly controlled by the temperature, pressure, flow rate, and ratio of the reaction gas, but in normal mass production equipment, the refractive index of the silicon nitride film is approximately constant for each film growth equipment. Determining reaction conditions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来のプラズマCVD法による窒化シリコ
ン膜の製造方法で形成した窒化シリコン膜を、アルミニ
ウム配線の保護膜として使用した場合、窒化シリコン膜
の成長装置によってアルミニウム配線の配線寿命が異な
ることが判明している。このことは、膜成長装置ごとに
プラズマCVD法による窒化シリコン膜中の組成が変っ
ているこkに起因していると考えられ、窒化シリコン膜
中の組成を制御することによってアルミニウム配線の寿
命を長くすることが可能であることを示唆するものであ
る。
When a silicon nitride film formed by the conventional plasma CVD silicon nitride film manufacturing method described above is used as a protective film for aluminum wiring, the wiring life of the aluminum wiring may vary depending on the silicon nitride film growth equipment. It's clear. This is thought to be due to the fact that the composition of the silicon nitride film produced by the plasma CVD method varies depending on the film growth apparatus, and by controlling the composition of the silicon nitride film, the lifespan of the aluminum wiring can be extended. This suggests that it is possible to make it longer.

本発明の目的は上記の問題に鑑み、プラズマCVD法に
よる窒化シリコン膜の製造方法で形成した窒化シリコン
膜をアルミニウム配線の保護膜として使用した場合に、
窒化シリコン膜中の組成を制御してアルミニウム配線の
配線寿命を長くさせることが可能な窒化シリコン膜の製
造方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to solve the following problems when using a silicon nitride film formed by a silicon nitride film manufacturing method using a plasma CVD method as a protective film for aluminum wiring.
An object of the present invention is to provide a method for manufacturing a silicon nitride film that can extend the life of aluminum wiring by controlling the composition in the silicon nitride film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、次に作用の項に述べるような実験結果にもと
づき、問題点を解決するために、プラズマCVD法によ
る窒化シリコン膜の製造方法において、前記窒化シリコ
ン膜中のシリコンと水素の結合密度と、窒素と水素の結
合密度の比を5以下にしたものである。
The present invention is based on the experimental results as described in the section on operation, and in order to solve the problems, the present invention provides a method for manufacturing a silicon nitride film by a plasma CVD method, in which the bond density of silicon and hydrogen in the silicon nitride film is and the ratio of the bond density between nitrogen and hydrogen is 5 or less.

〔作用〕[Effect]

本発明の発明者は、窒素と水素の結合密度との比が配線
寿命に相関関係にあることをつきとめ、特にその比が5
以上の場合に配線寿命が非常に悪くなっていることを確
かめた。第1図に示したデータは、所定の電流密度の電
流を流1゜た場合のアルミニウム配線の配線寿命(50
%断線時間)と、シリコンと水素の結合密度と、窒素と
水素の結合密度との比の相関関係を示すデータである0
図において、シリコンと水素の結合密度と、窒素と水素
の結合密度は、膜の赤外線吸収スペクトルで〜2160
cm1、〜3330 c m=にビークを持つ振動スペ
クトルの強度によって計算したものである。
The inventor of the present invention found that the ratio of the bond density of nitrogen and hydrogen has a correlation with the wiring life, and in particular, the ratio of the bond density of nitrogen and hydrogen is 5.
It was confirmed that the lifespan of the wiring was extremely poor in the above cases. The data shown in Figure 1 shows the wiring life (50
% disconnection time) and the ratio of the bond density of silicon and hydrogen to the bond density of nitrogen and hydrogen.
In the figure, the bond density between silicon and hydrogen and the bond density between nitrogen and hydrogen are ~2160 in the infrared absorption spectrum of the film.
It is calculated based on the intensity of the vibration spectrum having a peak at cm1, ~3330 cm=.

図からも明らかなように、シリコンと水素の結合密度と
、窒素と水素の結合密度との比が5を越える配線寿命が
急速に悪くなっていることがわかる。このことから、プ
ラズマCVD法によって形成された窒化シリコン膜では
、各装置毎に膜の屈折率をほぼ一定になるように反応条
件が決定されているので、膜の組成が装置毎に必ずしも
一定にならず、アルミニウム配線の保護膜として用いた
場合アルミニウムの配線寿命に悪影響を及ぼすというこ
とが明らかである。
As is clear from the figure, when the ratio of the silicon-hydrogen bond density to the nitrogen-hydrogen bond density exceeds 5, the life of the interconnect deteriorates rapidly. From this, for silicon nitride films formed by the plasma CVD method, the reaction conditions are determined so that the refractive index of the film is approximately constant for each device, so the composition of the film is not necessarily constant for each device. However, it is clear that when used as a protective film for aluminum wiring, it has a negative effect on the life of the aluminum wiring.

したがって従来のように窒化シリコン膜の屈折率を一定
になるように各反応ガスの成分を定めることでなくシリ
コンと水素の結合速度と窒素と水素の結合速度との比を
制御することで良好な結果を得ることができる。
Therefore, instead of determining the components of each reaction gas so that the refractive index of the silicon nitride film is constant as in the past, it is possible to achieve a good result by controlling the ratio of the bonding speed between silicon and hydrogen and the bonding speed between nitrogen and hydrogen. You can get results.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明のプラズマCVD法による窒化シリコン
膜の製造方法によって一層のアルミニウム配線の保護膜
として窒化シリコン膜を用いた場合の第1実施例の断面
図である。
FIG. 2 is a cross-sectional view of a first embodiment in which a silicon nitride film is used as a protective film for one layer of aluminum wiring by the method of manufacturing a silicon nitride film by the plasma CVD method of the present invention.

図において、11はシリコン基板で、このシリコン基板
ll上に熱酸化によって酸化シリコン膜12が形成され
ている。また、酸化シリコン膜lz上には、スパッタリ
ング等によってアルミニウム膜が被着してあり、ホトレ
ジスト工程を経て、アルミニウム配線13が形成しであ
る。そして、このアルミニウム配線13上にプラズマC
VD法によって窒化シリコン膜14が形成しである。こ
のときに、シラン(SiH4)、アンモニア(N)(3
) 、窒素(N2)の3種類の反応ガスの温度、圧力、
流量等を調整し、形成される窒化シリコン膜14の組成
が(シリコンと水素の結合密度):(窒素と水素の結合
密度)≦5となるようにしである。
In the figure, 11 is a silicon substrate, and a silicon oxide film 12 is formed on this silicon substrate 11 by thermal oxidation. Further, an aluminum film is deposited on the silicon oxide film lz by sputtering or the like, and an aluminum wiring 13 is formed through a photoresist process. Then, plasma C is placed on this aluminum wiring 13.
A silicon nitride film 14 is formed by the VD method. At this time, silane (SiH4), ammonia (N) (3
), temperature and pressure of three types of reaction gases, nitrogen (N2),
The flow rate and the like are adjusted so that the composition of the silicon nitride film 14 to be formed is (bond density of silicon and hydrogen): (bond density of nitrogen and hydrogen)≦5.

また、第3図は本発明のプラズマCVD法による窒化シ
リコン膜の製造方法によって二層のアルミニウム配線の
例で、居間絶縁膜と保護膜としてプラズマCVD法によ
って形成した窒化シリコン膜を用いた場合の第2実施例
の断面図である。
FIG. 3 shows an example of two-layer aluminum wiring produced by the method of manufacturing a silicon nitride film using the plasma CVD method of the present invention. FIG. 3 is a cross-sectional view of the second embodiment.

第1実施例と同様に、シリコン基板11上に熱酸化によ
って酸化シリコン膜12が形成されている。そして、酸
化シリコン膜12上には、スパッタリング等によってア
ルミニウム膜が被着して、ホトレジスト工程を経て、第
1アルミニウム配線21が形成しである。そして、この
第1アルミニウム配線21上にプラズマCVD法によっ
て第1窒化シリコン$22が形成しである9この第1窒
化シリコン822が平坦になるように、シリカフィルム
等の有機シリコン化合物23を塗布、熱処理を行い再び
、プラズマCVD法によって第2窒化シリコン膜24を
形成して層間絶縁膜としている。この際、第2窒化シリ
コン膜24の組成が(シリコンと水素の結合密度)=(
窒素と水素の結合密度)≦5となるようにしである。
Similar to the first embodiment, a silicon oxide film 12 is formed on a silicon substrate 11 by thermal oxidation. Then, an aluminum film is deposited on the silicon oxide film 12 by sputtering or the like, and a first aluminum wiring 21 is formed through a photoresist process. Then, a first silicon nitride layer 22 is formed on the first aluminum wiring 21 by plasma CVD, and an organic silicon compound 23 such as a silica film is applied so that the first silicon nitride layer 822 is flat. After heat treatment, a second silicon nitride film 24 is again formed by plasma CVD to serve as an interlayer insulating film. At this time, the composition of the second silicon nitride film 24 is (bond density of silicon and hydrogen) = (
The bond density between nitrogen and hydrogen) is set to be 5.

さらに、居間絶縁膜である第2窒化シリコン膜24に第
1アルミニウム配線21と第2アルミニウム配線25(
後記する)を導通させるためのスルーホール(図示せず
)を開孔した後に、第2窒化シリコン膜24上に、スパ
ッタリング等によってアルミニウム膜を被着し、ホトレ
ジスト工程を経て、第2アルミニウム配線25を形成し
ている。そして、この第2アルミニウム配線25上に保
護膜となる第3窒化シリコン膜26がプラズマCVD法
によって形成しである。この際も、第3窒化シリコン膜
26の組成が(シリコンと水素の結合密度)=(窒素と
水素の結合密度)≦5となるようにしである。
Furthermore, the first aluminum wiring 21 and the second aluminum wiring 25 (
After forming a through hole (not shown) for conducting conduction (to be described later), an aluminum film is deposited on the second silicon nitride film 24 by sputtering or the like, and a photoresist process is performed to form the second aluminum wiring 25. is formed. Then, a third silicon nitride film 26 serving as a protective film is formed on the second aluminum wiring 25 by plasma CVD. At this time as well, the composition of the third silicon nitride film 26 is set such that (bond density of silicon and hydrogen)=(bond density of nitrogen and hydrogen)≦5.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のプラズマCVD法による
窒化シリコン膜の製造方法は、窒化シリコン膜中のシリ
コンと水素の結合密度と、窒素と水素の結合密度の比を
5以下に制御しであるので、窒化シリコン膜をアルミニ
ウム配線の保護膜として使用した場合に、アルミニウム
配線の配線寿命が長くなるという優れた効果がある。
As explained above, the method of manufacturing a silicon nitride film by the plasma CVD method of the present invention controls the ratio of the bond density of silicon and hydrogen to the bond density of nitrogen and hydrogen in the silicon nitride film to 5 or less. Therefore, when a silicon nitride film is used as a protective film for aluminum wiring, it has the excellent effect of lengthening the wiring life of the aluminum wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルミニウム配線の配線寿命(50%断線時間
)と、シリコンと水素の結合密度と、窒素と水素の結合
密度との比の相関関係を示すデータグラフ、第2図は本
発明のプラズマCVD法による窒化シリコン膜の製造方
法によって一層のアルミニウム配線の保護膜として窒化
シリコン膜を用いた場合の第1実施例の断面図、第3図
は本発明のプラズマCVD法による窒化シリコン膜の製
造方法によって二層のアルミニウム配線の例で、層間絶
縁膜と保護膜としてプラズマCVD法によって形成した
窒化シリコン膜を用いた場合の第2実施例の断面図であ
る。 14・・・窒化シリコン膜、 22・・・第1窒化シリコン膜、 24・・・第2窒化シリコン膜、 26・・・第3窒化シリコン膜。 特許出願人  日本電気株式会社 代理人 弁理士   内   原    晋第2図 +a) +bl 牙3図 +2)
Figure 1 is a data graph showing the correlation between the wiring life (50% disconnection time) of aluminum wiring, the bond density of silicon and hydrogen, and the bond density of nitrogen and hydrogen. A cross-sectional view of the first embodiment in which a silicon nitride film is used as a protective film for a single layer of aluminum interconnection using a silicon nitride film manufacturing method using the CVD method, and FIG. 3 shows the manufacturing method of a silicon nitride film using the plasma CVD method of the present invention. FIG. 4 is a cross-sectional view of a second embodiment in which a silicon nitride film formed by plasma CVD is used as an interlayer insulating film and a protective film in an example of a two-layer aluminum interconnection method. 14... Silicon nitride film, 22... First silicon nitride film, 24... Second silicon nitride film, 26... Third silicon nitride film. Patent applicant: NEC Corporation Representative, Patent attorney: Susumu Uchihara Figure 2 + a) +bl Figure 3 + 2)

Claims (1)

【特許請求の範囲】[Claims]  プラズマCVD法による窒化シリコン膜の製造方法に
おいて、前記窒化シリコン膜中のシリコンと水素の結合
密度と、窒素と水素の結合密度との比を5以下にしたこ
とを特徴とするプラズマCVD法による窒化シリコン膜
の製造方法。
A method for producing a silicon nitride film by plasma CVD, characterized in that the ratio of the bond density of silicon and hydrogen to the bond density of nitrogen and hydrogen in the silicon nitride film is 5 or less. Method of manufacturing silicon film.
JP1111088A 1988-01-20 1988-01-20 Manufacture of silicon nitride film Pending JPH01185926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1111088A JPH01185926A (en) 1988-01-20 1988-01-20 Manufacture of silicon nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111088A JPH01185926A (en) 1988-01-20 1988-01-20 Manufacture of silicon nitride film

Publications (1)

Publication Number Publication Date
JPH01185926A true JPH01185926A (en) 1989-07-25

Family

ID=11768869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111088A Pending JPH01185926A (en) 1988-01-20 1988-01-20 Manufacture of silicon nitride film

Country Status (1)

Country Link
JP (1) JPH01185926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877095A (en) * 1994-09-30 1999-03-02 Nippondenso Co., Ltd. Method of fabricating a semiconductor device having a silicon nitride film made of silane, ammonia and nitrogen
WO2006071576A1 (en) * 2004-12-27 2006-07-06 Northrop Grumman Corporation Low charging dielectric for capacitive mems devices and method of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996736A (en) * 1982-11-26 1984-06-04 Hitachi Ltd Semiconductor device
JPS62204575A (en) * 1986-03-05 1987-09-09 Matsushita Electric Ind Co Ltd Thin film semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996736A (en) * 1982-11-26 1984-06-04 Hitachi Ltd Semiconductor device
JPS62204575A (en) * 1986-03-05 1987-09-09 Matsushita Electric Ind Co Ltd Thin film semiconductor device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877095A (en) * 1994-09-30 1999-03-02 Nippondenso Co., Ltd. Method of fabricating a semiconductor device having a silicon nitride film made of silane, ammonia and nitrogen
WO2006071576A1 (en) * 2004-12-27 2006-07-06 Northrop Grumman Corporation Low charging dielectric for capacitive mems devices and method of making the same

Similar Documents

Publication Publication Date Title
KR100206630B1 (en) Method for fabricating semiconductor device
KR100424969B1 (en) Manufacturing Method of Semiconductor Device
JPH0729897A (en) Manufacture of semiconductor device
JPH11251308A (en) Low dielectric constant fluorinated amorphous carbon dielectric and formation method therefor
KR100456315B1 (en) Gate electrode formation method of semiconductor device
JP3148183B2 (en) Method for manufacturing semiconductor device
JP2004523889A5 (en)
JP2000188332A (en) Semiconductor device and its manufacture
JPH01185926A (en) Manufacture of silicon nitride film
JP3125781B2 (en) Semiconductor device manufacturing method
JP3184177B2 (en) Method for forming interlayer insulating film, semiconductor manufacturing apparatus, and semiconductor device
JPH06163523A (en) Fabrication of semiconductor device
JP2001168098A (en) Semiconductor device and method of forming pattern data
US7642655B2 (en) Semiconductor device and method of manufacture thereof
JPH0410219B2 (en)
JP2834667B2 (en) Method for manufacturing semiconductor device
KR100422348B1 (en) Method for fabricating semiconductor device
JPH08321499A (en) Silicon compound film and forming method thereof
JPH01293624A (en) Manufacture of integrated circuit
JP2001168100A (en) Method of manufacturing semiconductor device
JPS56146254A (en) Manufacture of semiconductor device
US20080157372A1 (en) Metal Line of Semiconductor Device and Manufacturing Method Thereof
KR100532741B1 (en) Method for forming an etch stop layer of semiconductor device
JPH01238126A (en) Manufacture of semiconductor device
JPH09153490A (en) Semiconductor device and manufacture thereof