JPH01185393A - Dry/wet desulfurization method of high temperature gas - Google Patents

Dry/wet desulfurization method of high temperature gas

Info

Publication number
JPH01185393A
JPH01185393A JP63009150A JP915088A JPH01185393A JP H01185393 A JPH01185393 A JP H01185393A JP 63009150 A JP63009150 A JP 63009150A JP 915088 A JP915088 A JP 915088A JP H01185393 A JPH01185393 A JP H01185393A
Authority
JP
Japan
Prior art keywords
gas
desulfurization
regeneration
dry
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63009150A
Other languages
Japanese (ja)
Other versions
JP2575771B2 (en
Inventor
Tomohiko Miyamoto
知彦 宮本
Shuntaro Koyama
俊太郎 小山
Sadao Takahashi
高橋 貞夫
Eiji Kida
木田 栄次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63009150A priority Critical patent/JP2575771B2/en
Publication of JPH01185393A publication Critical patent/JPH01185393A/en
Application granted granted Critical
Publication of JP2575771B2 publication Critical patent/JP2575771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To effect stable desulfurization of high-temp. gas whatever change the amt. of a gasification-produced gas to be purified undergoes, by performing dry desulfurization of a high temp. reducing gas produced by coal gasification treatment and performing wet desulfurization of a regenerated gas produced by regeneration treatment of a dry desulfurizing agent. CONSTITUTION:Sulfur compds. contained in a high-temp. reducing gas 4 produced by coal gasification treatment (gasifier oven 2) are removed as follows. That is, the sulfur compds. contained in the high-temp. gas 4 are reacted with a desulfurizing agent to effect dry desulfurization (dry desulfurization column 7). Then, sulfur dioxide contained in the regenerated gas produced in the regeneration treatment (regenerating column 8) of the used desulfurizing agent is reacted with a desulfurizing agent 13 [e.g., aq. solns. contg. Ca(OH)2, CaCO3, etc.] and an oxidizing agent (e.g., O2 gas) to effect wet desulfurization (wet desulfurization column 11). Waste gas 12 produced by wet desulfurization of the regenerated gas is pref. returned to the gasifier oven 2, wherein the remaining SO2 is converted into H2S.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石炭ガス化炉で発生する高温ガスの脱硫方法に
係わり、特に負荷変動の対応性に好適な高温ガスの乾湿
式脱硫方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for desulfurizing high-temperature gas generated in a coal gasifier, and particularly to a wet-dry desulfurization method for high-temperature gas suitable for adaptability to load fluctuations.

〔従来の技術〕[Conventional technology]

近年、石炭を高温(800〜1600℃)、加圧下で酸
素、水蒸気、空気あるいはこれら混合ガスとの反応によ
りガス化して発電用燃料、化学工業用原料等に利用する
ことが試みられている。しかし、ガス化で発生したガス
中には原料石炭中に含まれる硫黄分が揮散し、硫化水素
(H2S)。
In recent years, attempts have been made to gasify coal by reacting it with oxygen, water vapor, air, or a mixture thereof at high temperatures (800 to 1600° C.) and under pressure to use it as a fuel for power generation, a raw material for the chemical industry, and the like. However, the sulfur contained in the raw coal volatilizes into the gas generated during gasification, producing hydrogen sulfide (H2S).

硫化カルボニル(COS)、二硫化炭素(C82)等の
硫黄化合物が数百ppmから数千ppm含まれており、
これらを除去する必要がある。
Contains several hundred ppm to several thousand ppm of sulfur compounds such as carbonyl sulfide (COS) and carbon disulfide (C82),
These need to be removed.

この硫黄化合物の除去方法には、金属酸化物を脱硫剤と
し、この脱硫剤をガス化で発生したガス(ガス化ガス)
と接触させガス中の硫黄化合物を金属酸化物と反応させ
てガス中から除去する、いわゆる乾式脱硫方法がある。
This method of removing sulfur compounds involves using a metal oxide as a desulfurization agent, and using this desulfurization agent as the gas generated by gasification (gasification gas).
There is a so-called dry desulfurization method in which the sulfur compounds in the gas are brought into contact with metal oxides and removed from the gas.

特開昭5!l1l−184291号公報に記された方式
もこれの一つで、ガス化ガスの温度をさほど低下させる
ことなくガス精製ができ、発電用燃料に用いる場合には
エネルギー利用率が高く有益な方式である。また、脱硫
剤は使い捨てるのではなく、使用済脱硫剤は酸化剤(酸
素を含有するガス)で再生して再利用するので脱硫コス
トも低減する。
Tokukai Showa 5! The method described in Publication No. 111-184291 is one such method, which allows gas purification without significantly lowering the temperature of gasified gas, and is a useful method with a high energy utilization rate when used as fuel for power generation. be. Furthermore, the desulfurization cost is also reduced because the desulfurization agent is not discarded, but the used desulfurization agent is regenerated with an oxidizing agent (oxygen-containing gas) and reused.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この方式では、ガス中の硫黄化合物を吸着する
工程(吸着工程)と脱着する工程(再生工程)を連続し
てくり返すため、精製すべきガス量が一定値で安定して
いる場合には吸着時間と再生時間がバランスして良好に
運転できるが、発電用の場合には一日の内でも精製すべ
きガス量が25%から100%にまで変化するため、再
生時間と吸着時間のバランスが大巾にくずれ、安定な運
転が困難である。特に再生工程では酸化剤と硫黄の燃焼
反応であるため、再生時の使用済脱硫剤量に対する酸素
供給量が多すぎれば高温となり脱硫剤は劣化し、酸素供
給量が少なすぎれば低温になり再生不充分となり吸着能
力が低下する。また、再生時の酸素濃度を変化させて再
生時の温度を制御したとしても、再生時に発生したガス
(再生ガス)のS02濃度が変化し、従来方法の脱硫法
では再生ガス発生量の変動に対応した再生ガスの脱硫処
理が困難である。すなわち、従来の技術では負荷変動に
対して再生工程に問題があった。
However, this method continuously repeats the process of adsorbing sulfur compounds in the gas (adsorption process) and the process of desorbing them (regeneration process), so when the amount of gas to be purified is stable at a constant value, can operate well with a balance between adsorption time and regeneration time, but in the case of power generation, the amount of gas to be purified changes from 25% to 100% within a day, so the regeneration time and adsorption time must be balanced. The balance is severely affected and stable operation is difficult. In particular, the regeneration process is a combustion reaction between the oxidizer and sulfur, so if the amount of oxygen supplied is too large relative to the amount of used desulfurizing agent during regeneration, the temperature will become high and the desulfurizing agent will deteriorate, and if the amount of oxygen supplied is too small, the temperature will become low and regenerate. This will result in insufficient adsorption capacity. Furthermore, even if the temperature during regeneration is controlled by changing the oxygen concentration during regeneration, the S02 concentration of the gas generated during regeneration (regeneration gas) will change, and the conventional desulfurization method will be affected by fluctuations in the amount of regeneration gas generated. It is difficult to desulfurize the corresponding regeneration gas. That is, in the conventional technology, there was a problem in the regeneration process in response to load fluctuations.

本発明の目的は、精製すべきガス化ガスの量がいかよう
に変化しようとも安定な高温ガス精製が可能な脱硫方法
を提供することにある。
An object of the present invention is to provide a desulfurization method that allows stable high-temperature gas purification no matter how the amount of gasified gas to be purified changes.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の目的は、石炭ガス化で発生する高温還元性ガス
に含まれる硫黄化合物を除去する高温ガスの脱硫方法に
おいて、前記硫黄化合物を脱硫剤に反応させて乾式脱硫
を行い、次いで、使用済脱硫剤の再生処理時に発生する
再生カス中のS02を脱硫剤と酸化剤とに反応させて湿
式脱硫を行なうことを特徴とする高温ガスの乾湿式脱硫
方法を提供することにより達成される。
An object of the present invention is to perform dry desulfurization by reacting the sulfur compounds with a desulfurizing agent in a high-temperature gas desulfurization method for removing sulfur compounds contained in high-temperature reducing gas generated in coal gasification, and then This is achieved by providing a dry-wet desulfurization method for high-temperature gas, which is characterized in that wet desulfurization is performed by reacting S02 in the regenerated scum generated during desulfurization agent regeneration treatment with a desulfurization agent and an oxidizing agent.

〔作用〕[Effect]

高温還元性ガス中に含まれる硫黄化合物と、脱硫剤とが
反応して前記ガス中の硫黄分が除去され、乾式脱硫が行
われる。
The sulfur compound contained in the high-temperature reducing gas and the desulfurizing agent react to remove the sulfur content in the gas, and dry desulfurization is performed.

この乾式脱硫を行なった後、高温還元性ガスの=3− 導入を停止し、酸化剤を導入して使用済脱硫剤の再生処
理を行い、その再生処理で発生した再生ガス中のSC2
が、水溶液の脱硫剤と反応するとともに供給される酸化
剤とも反応して安定な硫酸塩となることにより、再生ガ
ス中からSO2が除去されて湿式脱硫が行われる。
After performing this dry desulfurization, the introduction of high-temperature reducing gas is stopped, and an oxidizing agent is introduced to regenerate the used desulfurization agent.
The SO2 reacts with the desulfurizing agent in the aqueous solution and also with the supplied oxidizing agent to form a stable sulfate, thereby removing SO2 from the regeneration gas and performing wet desulfurization.

この脱硫方法において、使用済脱硫剤を再生するための
酸化剤供給量を調節することにより再生時間を調節し、
また湿式脱硫では、脱硫剤の水溶液注入量と酸化剤量及
び水溶液循環量とを、再生ガス中の802量に対して調
節することにより、再生ガス量変化に対処することがで
きる。
In this desulfurization method, the regeneration time is adjusted by adjusting the amount of oxidizing agent supplied to regenerate the used desulfurization agent,
Furthermore, in wet desulfurization, changes in the amount of regeneration gas can be coped with by adjusting the amount of desulfurization agent aqueous solution injected, the amount of oxidizing agent, and the amount of aqueous solution circulation relative to the amount of 802 in the regeneration gas.

〔実施例〕〔Example〕

本発明の実施例について第1図により説明する。 An embodiment of the present invention will be described with reference to FIG.

ガス化炉2内に石炭とガス化剤1を供給し、窒素ガス(
N2)、−酸化炭素(Co)、水素ガス(H7)。
Coal and gasifier 1 are supplied into gasifier 2, and nitrogen gas (
N2), -carbon oxide (Co), hydrogen gas (H7).

炭酸ガス(Co2) 、水分(H2O)及びH,S。Carbon dioxide (Co2), moisture (H2O) and H, S.

cos、cs、等の硫黄化合物を数百ppmから数千p
pm含む還元性のガス4を得る。一方、石炭中の灰分は
ガス化炉2内で溶融し、スラブ3と=4− して炉底より排出する。還元性のガス4はサイクロン5
で脱塵した後、熱交換器6で冷却し、熱回収された後、
乾式脱硫塔7に入る。乾式脱硫塔で硫黄化合物は(1)
式による反応で脱硫剤と反応し硫化物となってガス中か
ら除去され、精製ガス9となる。
Sulfur compounds such as cos, cs, etc. from several hundred ppm to several thousand ppm
A reducing gas 4 containing pm is obtained. On the other hand, the ash in the coal is melted in the gasifier 2 and discharged from the bottom of the furnace as a slab 3. Reducing gas 4 is cyclone 5
After removing dust with a heat exchanger 6 and recovering heat,
It enters the dry desulfurization tower 7. In the dry desulfurization tower, sulfur compounds are (1)
In the reaction according to the formula, it reacts with the desulfurizing agent and becomes a sulfide, which is removed from the gas and becomes purified gas 9.

ここで、Mは鉄(Fe)、亜鉛(Zn)、コバルト(C
o)、マンガン(Mn’)等の金属を、M・○は金属酸
化物を、M−8は金属硫化物を示す。
Here, M is iron (Fe), zinc (Zn), cobalt (C
o), a metal such as manganese (Mn'), M.○ indicates a metal oxide, and M-8 indicates a metal sulfide.

一方、金属硫化物となった使用済脱硫剤はもはや硫黄化
合物と反応しないので、ガス流路から切離し、(2)式
による反応で再生する。
On the other hand, since the used desulfurizing agent that has become a metal sulfide no longer reacts with the sulfur compound, it is separated from the gas flow path and regenerated by the reaction according to equation (2).

M−8+3/202=M・○+S○2・・・・・・(2
)第1図に示す再生塔8内では使用済の脱硫剤が再生さ
れている状態であり、酸素を含有した酸化剤(例えばN
2+4%02混合ガス)15を供1れ、乙02を含むガ
スを再生塔8から排出している。
M-8+3/202=M・○+S○2・・・・・・(2
) The used desulfurizing agent is being regenerated in the regeneration tower 8 shown in FIG.
2+4%02 mixed gas) 15 is provided, and the gas containing Otsu02 is discharged from the regeneration tower 8.

なお第1図のバルブ16は、白抜きが開の状態を、黒塗
りが閉の状態を示しており、脱硫と再生はバルブの切替
により交互にくり返される。
Note that the valve 16 in FIG. 1 is shown in an open state when it is outlined in white, and when it is in a closed state when it is filled in black, and desulfurization and regeneration are alternately repeated by switching the valves.

再生時に発生したガス(再生ガス)は熱交換器10で熱
回収された後、湿式脱硫塔11に導入される。この湿式
脱硫塔では、S02を含む再生ガスと水酸化カルシウム
(Ca (OH) 2)、炭酸カルシウム(Ca CO
a )等を含む水溶液13を気液接触させて、SO2を
硫酸カルシウム(CaS O,)等の無害な硫酸塩に変
換する。SO□を除去された排ガス12はガス化炉2に
戻し、残存するSO□をガス化炉内でH2Sに転換する
。一方湿式脱硫塔11内で生成したC a S O4等
の硫酸塩14はこの塔から排出され、廃棄あるいはガス
化炉に投入してスラグ中に同化して処分する。
Gas generated during regeneration (regeneration gas) is heat-recovered by a heat exchanger 10 and then introduced into a wet desulfurization tower 11 . In this wet desulfurization tower, regeneration gas containing S02, calcium hydroxide (Ca (OH) 2), calcium carbonate (Ca CO
The aqueous solution 13 containing a) and the like is brought into gas-liquid contact to convert SO2 into harmless sulfate such as calcium sulfate (CaSO,). The exhaust gas 12 from which SO□ has been removed is returned to the gasifier 2, and the remaining SO□ is converted into H2S in the gasifier. On the other hand, sulfates 14 such as C a S O 4 generated in the wet desulfurization tower 11 are discharged from this tower and are disposed of or disposed of by being thrown into a gasification furnace and assimilated into slag.

ここでガス化炉で発生した全ガスを乾式脱硫塔に導入し
脱硫して、使用済の脱硫剤を酸化剤で再生し、再生ガス
を湿式で脱硫処理することが、負荷応答性に優れるのは
次の理由による。
In this case, all the gas generated in the gasifier is introduced into a dry desulfurization tower to be desulfurized, the used desulfurization agent is regenerated with an oxidizing agent, and the regenerated gas is desulfurized using a wet method, which has excellent load response. is due to the following reason.

湿式脱硫塔では、カルシウム(Ca)系、ナトリウム(
Na)系のS02と反応する水溶液を循環しておき、再
生塔8から導入されるS02含有ガスと接触させる。S
O2はただちに水溶液中に溶解し、S○2′−等のイオ
ンとなり水溶液中のCa”、Na+イオンと反応し、亜
硫酸カルシウム(CaSO3)、亜硫酸ナトリウム(N
 a 2 S O3)となり、さらに水溶液と共に吹込
まれる02ガスと反応して安定な硫酸カルシウム(C:
 a S O4)や硫酸ナトリウム(Na2SO4)と
なる。ここで水溶液及び02ガスを再生ガス中のSO7
量に対し多量に循環しておけば、再生塔への酸化剤の供
給量をいかように変化させても、再生ガス中のS02の
処理は可能となる。すなわち、再生塔の再生時間を乾式
脱硫塔の脱硫時間と一致させることも、早めることも自
由であり、酸化剤の酸素濃度、量の変化も任意に行い、
再生塔を最適な再生温度に保つことができる。その結果
、乾式脱硫塔の脱硫時間が負荷により変化しても、再生
塔の再生時間も、それに応じて調節することができ、負
荷応答性の優れた乾式脱硫が可能となる。
In the wet desulfurization tower, calcium (Ca)-based, sodium (
An aqueous solution that reacts with Na)-based S02 is circulated and brought into contact with the S02-containing gas introduced from the regeneration tower 8. S
O2 immediately dissolves in the aqueous solution, becomes ions such as S○2'-, and reacts with Ca'' and Na+ ions in the aqueous solution, forming calcium sulfite (CaSO3) and sodium sulfite (N
a 2 SO3), and further reacts with the 02 gas blown in with the aqueous solution to form stable calcium sulfate (C:
a SO4) and sodium sulfate (Na2SO4). Here, the aqueous solution and 02 gas are mixed with SO7 in the regeneration gas.
If a large amount of oxidizing agent is circulated, S02 in the regeneration gas can be treated no matter how the amount of oxidizing agent supplied to the regeneration tower is changed. In other words, the regeneration time of the regeneration tower can be made to match or be faster than the desulfurization time of the dry desulfurization tower, and the oxygen concentration and amount of the oxidizing agent can be changed as desired.
The regeneration tower can be maintained at the optimum regeneration temperature. As a result, even if the desulfurization time of the dry desulfurization tower changes depending on the load, the regeneration time of the regeneration tower can be adjusted accordingly, making it possible to perform dry desulfurization with excellent load response.

以下に実施例の詳細について説明する。第1図に示すフ
ローからなる乾式脱硫塔7に、酸化チタン担体に酸化コ
バルトを担持した脱硫剤を充填し、450℃でガス化ガ
スを80 N rn’ / hで受は入れた。なおガス
化ガス中にはH2Sを添加し、硫黄(S)濃度を1%に
した。第1段階での実験では、ガス化ガス量を80 N
 rn’ / hと一定にし、脱硫塔7と再生塔8の操
作時間を2時間で切換え、24時間の安定な連続運転を
行なった。第2段階での実験では、ガス化ガス量を8O
Nrrr/hで1時間、40 N rn’ / hで1
時間、20 N ITI’ / hで1時間のサイクル
運転を行い、負荷の応答性を調べた。この時、再生塔へ
は脱硫塔へ流入しているS量(脱硫塔へ流入しているガ
ス化ガス量XS濃度)をオンラインで測定し、その時時
刻側の値に1.55倍した量の酸化剤を再生塔に供給し
た。すなわち、脱硫塔で補集されるS量に見合った量の
1.55倍の酸化剤(酸素量)を供給し、脱硫時間と再
生時間を一致させた。その結果、再生ガス量は最大負荷
に対し50%から25%まで変動したが(湿式脱硫塔で
の処理能力を100%に設))、SO2の処理には何ら
問題なく、安定な運転が可能であった。
The details of the embodiment will be explained below. A dry desulfurization tower 7 having the flow shown in FIG. 1 was filled with a desulfurization agent in which cobalt oxide was supported on a titanium oxide carrier, and gasification gas was fed at 450° C. at a rate of 80 Nrn'/h. Note that H2S was added to the gasification gas to make the sulfur (S) concentration 1%. In the first stage experiment, the amount of gasification gas was 80 N.
The operation time of the desulfurization tower 7 and the regeneration tower 8 was changed over every 2 hours, and stable continuous operation was performed for 24 hours. In the second stage experiment, the amount of gasification gas was 80
1 hour at Nrrr/h, 1 hour at 40 Nrn'/h
Cycle operation was performed for 1 hour at 20 N ITI'/h, and the load response was examined. At this time, the amount of S flowing into the desulfurization tower (the amount of gasified gas flowing into the desulfurization tower Oxidizing agent was fed to the regeneration tower. That is, 1.55 times the amount of oxidizing agent (oxygen amount) commensurate with the amount of S collected in the desulfurization tower was supplied, and the desulfurization time and regeneration time were matched. As a result, although the amount of regeneration gas varied from 50% to 25% of the maximum load (wet desulfurization tower processing capacity was set at 100%), there was no problem with SO2 processing and stable operation was possible. Met.

第3段階での実験では、80 N rl / hから2
5N rn’ / hまでのガス化ガスを任意の時間サ
イクルで脱硫塔に供給し、第2段階での実験と同様の操
作を行い、脱硫塔と再生塔の操作′時間を一致させた場
合もSO2の処理には何ら問題なく、安定な運転が可能
であった。
In the experiments in the third stage, from 80 N rl/h to 2
Even when gasification gas up to 5Nrn'/h was supplied to the desulfurization tower in an arbitrary time cycle, the same operation as in the second stage experiment was performed, and the operation times of the desulfurization tower and the regeneration tower were made to match. There were no problems with SO2 treatment, and stable operation was possible.

〔発明の効果〕〔Effect of the invention〕

本発明の構成によれば、湿式脱硫工程における脱硫剤の
水溶液注入量と酸化剤量及び水溶液循環量とを、再生ガ
ス中のS02量に対して調節することにより、再生ガス
量変化に対処することができる。従って、使用済脱硫剤
を再生するための酸化剤供給量を調節することにより、
再生処理に要する時間を任意に設定できることとなるの
で、ガス化ガス発生量の変動、すなわち負荷の変動に対
する応答性の優れた脱硫が可能となる。
According to the configuration of the present invention, changes in the amount of regenerated gas can be coped with by adjusting the amount of desulfurizing agent aqueous solution injected, the amount of oxidizing agent, and the amount of aqueous solution circulation in the wet desulfurization step with respect to the amount of S02 in the regenerated gas. be able to. Therefore, by adjusting the amount of oxidizing agent supplied to regenerate the used desulfurizing agent,
Since the time required for the regeneration process can be set arbitrarily, desulfurization can be performed with excellent responsiveness to fluctuations in the amount of gasified gas generated, that is, fluctuations in load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による乾湿式脱硫方法を示す説明図であ
る。 2・・・ガス化炉、4・・・高温還元性ガス、12・・
・排ガス、13・・・水溶液。
FIG. 1 is an explanatory diagram showing a dry-wet desulfurization method according to the present invention. 2... Gasifier, 4... High temperature reducing gas, 12...
・Exhaust gas, 13...Aqueous solution.

Claims (2)

【特許請求の範囲】[Claims] (1)石炭ガス化処理で発生する高温還元性ガスに含ま
れる硫黄化合物を除去する高温ガスの脱硫方法において
、前記硫黄化合物を脱硫剤に反応させて乾式脱硫を行い
、次いで、使用済脱硫剤の再生処理時に発生する再生ガ
ス中の二酸化硫黄(SO_2)を脱硫剤と酸化剤とに反
応させて湿式脱硫を行なうことを特徴とする高温ガスの
乾湿式脱硫方法。
(1) In a high-temperature gas desulfurization method for removing sulfur compounds contained in high-temperature reducing gas generated in coal gasification treatment, the sulfur compounds are reacted with a desulfurization agent to perform dry desulfurization, and then the used desulfurization agent A dry-wet desulfurization method for high-temperature gas, characterized in that wet desulfurization is performed by reacting sulfur dioxide (SO_2) in the regeneration gas generated during the regeneration process with a desulfurization agent and an oxidizing agent.
(2)前記再生ガスを湿式脱硫して生じる排ガスを高温
還元性ガス中へ戻すことを特徴とする特許請求の範囲第
1項に記載の高温ガスの乾湿式脱硫方法。
(2) The wet-dry desulfurization method for high-temperature gas according to claim 1, characterized in that the exhaust gas produced by wet desulfurization of the regeneration gas is returned to the high-temperature reducing gas.
JP63009150A 1988-01-19 1988-01-19 Dry and wet desulfurization method for high-temperature gas Expired - Fee Related JP2575771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63009150A JP2575771B2 (en) 1988-01-19 1988-01-19 Dry and wet desulfurization method for high-temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63009150A JP2575771B2 (en) 1988-01-19 1988-01-19 Dry and wet desulfurization method for high-temperature gas

Publications (2)

Publication Number Publication Date
JPH01185393A true JPH01185393A (en) 1989-07-24
JP2575771B2 JP2575771B2 (en) 1997-01-29

Family

ID=11712590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63009150A Expired - Fee Related JP2575771B2 (en) 1988-01-19 1988-01-19 Dry and wet desulfurization method for high-temperature gas

Country Status (1)

Country Link
JP (1) JP2575771B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178796A (en) * 2018-03-30 2019-10-17 Jx金属株式会社 Method for managing mercury
CN113122724A (en) * 2021-03-31 2021-07-16 衢州华友钴新材料有限公司 Treatment process for recycling waste residues generated in nickel-cobalt hydrometallurgy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123801A (en) * 1986-11-12 1988-05-27 Mitsubishi Heavy Ind Ltd Method for treating high-temperature and high-pressure reducing gas
JPS63209735A (en) * 1987-02-25 1988-08-31 Babcock Hitachi Kk Dry desulfurization installation for coal gasification composite power generation
JPS647947A (en) * 1987-02-16 1989-01-11 Hitachi Ltd Desulfurizing agent and treatment of gas containing hydrogen sulfide used therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123801A (en) * 1986-11-12 1988-05-27 Mitsubishi Heavy Ind Ltd Method for treating high-temperature and high-pressure reducing gas
JPS647947A (en) * 1987-02-16 1989-01-11 Hitachi Ltd Desulfurizing agent and treatment of gas containing hydrogen sulfide used therewith
JPS63209735A (en) * 1987-02-25 1988-08-31 Babcock Hitachi Kk Dry desulfurization installation for coal gasification composite power generation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178796A (en) * 2018-03-30 2019-10-17 Jx金属株式会社 Method for managing mercury
CN113122724A (en) * 2021-03-31 2021-07-16 衢州华友钴新材料有限公司 Treatment process for recycling waste residues generated in nickel-cobalt hydrometallurgy
CN113122724B (en) * 2021-03-31 2023-01-13 衢州华友钴新材料有限公司 Treatment process for recycling waste residues generated in nickel-cobalt hydrometallurgy

Also Published As

Publication number Publication date
JP2575771B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
CA1062883A (en) Process for removing sulfur oxides and/or nitrogen oxides from waste gas
GB2202546A (en) Desulfurizing agent, process for treating hydrogen sulfide-containing gas, coal gasification system and power generation system
US4133650A (en) Removing sulfur dioxide from exhaust air
US3524720A (en) Process for removing sulfur dioxide from gases
CN106379868A (en) Method for preparing sulfuric acid by burning sulfur-containing waste liquid
CA1193073A (en) Process for removal of sulfur oxides from hot gases
JPS5867323A (en) Separation of chlorine, fluorine and sulfur from combustible and combustion gases
US4579727A (en) Oxidative removal of hydrogen sulfide from gas streams
Ben-Slimane et al. Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 2. Regeneration and multicycle tests
US5035810A (en) Process for treating wastewater which contains sour gases
CA1047739A (en) Method of removing sulfur-containing gases from waste gas
JPH0741309A (en) Method of desulfurizing gas containing sulfur dioxide
KR20200094193A (en) System for tail gas treatment of sulfur recovery unit
RU2460690C2 (en) Method of producing ammonia and apparatus for realising said method
JPH01185393A (en) Dry/wet desulfurization method of high temperature gas
CN103877840A (en) Integral purification process of pollutants in sintering flue gas
Kwong et al. Rounding up sulfur
CA1296508C (en) Removal of water vapor diluent after regeneration of metal oxide absorbent to reduce recycle stream
CA1192022A (en) Sulfur dioxide reduction process
JP4658350B2 (en) Method and apparatus for reducing sulfur compounds
CA1146338A (en) Low sulfur content hot reducing gas production using calcium oxide desulfurization with water recycle
JPH01254226A (en) Purification of high temperature reductive gas
JPS6127645B2 (en)
JP2000015052A (en) Lime gypsum desulfurizing method
JPS61245819A (en) Method for purifying high temperature reductive gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees