JPH01185098A - Manufacture of vitreous hard carbonaceous diaphragm having compressional construction - Google Patents

Manufacture of vitreous hard carbonaceous diaphragm having compressional construction

Info

Publication number
JPH01185098A
JPH01185098A JP839588A JP839588A JPH01185098A JP H01185098 A JPH01185098 A JP H01185098A JP 839588 A JP839588 A JP 839588A JP 839588 A JP839588 A JP 839588A JP H01185098 A JPH01185098 A JP H01185098A
Authority
JP
Japan
Prior art keywords
diaphragm
dense
film
carbon
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP839588A
Other languages
Japanese (ja)
Inventor
Yoshihisa Suda
吉久 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP839588A priority Critical patent/JPH01185098A/en
Publication of JPH01185098A publication Critical patent/JPH01185098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

PURPOSE:To inexpensively obtain an excellent acoustic characteristic by constructing a carbon porous material layer which is a non-dense construction in a diaphragm composed of a dense construction carbon. CONSTITUTION:A film, in which a vitreous dense construction carbon can be obtained by a baking in an inert gas atmosphere, is formed, an organic porous material film, in which a vitreous non-dense construction carbon can be obtained by the baking in the inert gas atmosphere, is formed, and the dense construction film and the film for the non-dense construction are laminate-joined. The obtained laminated film is formed in the required shape of the diaphragm. For the formed body to be demolded, contained solvent and plasticizer are volatilized by being heated in an air oven, simultaneously, a cross-linking reaction is completed, and the body can be made into a baked precursor not to be deformed even by the heating thereafter. It is heated in the inert gas atmosphere, and a baked body can be obtained. For the vitreous hard carbonaceous diaphragm having the compressional construction to be obtained in such a way, the shape at the time of forming can be maintained with a high accuracy, and simultaneously, the functional characteristic of a vitreous carbon material can be exerted to the highest degree.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は全炭素質から成る音響機器用振動板の製造方法
に関する。詳しくは、本発明は、スピーカー用及びマイ
クロフォン用の振動板として、従来の振動板素材に比較
して軽さと弾性に冨んでおり、音の伝達速度が速く、し
かも剛性に優れているため外力による変形が少なく、音
の歪が小さく、かつ再生音域が広く、明瞭な音質を出す
ことが可能であり、ディジタルオーディオ時代に好適な
全炭素質音響機器用振動板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a diaphragm for an audio device made entirely of carbon. Specifically, the present invention can be used as a diaphragm for speakers and microphones because it is lighter and more elastic than conventional diaphragm materials, has a faster sound transmission speed, and has excellent rigidity, so it can be used as a diaphragm for speakers and microphones. The present invention relates to a method for producing an all-carbon diaphragm for audio equipment, which is suitable for the digital audio era and has little deformation, low sound distortion, a wide playback range, and can produce clear sound quality.

(従来の技術) 一般に、スピーカー等の振動板としては、次の各条件を
満たすことが望ましい。
(Prior Art) Generally, it is desirable that a diaphragm for a speaker etc. satisfy the following conditions.

(1)密度が小さいこと。(1) Low density.

(2)  ヤング係数が大きいこと。(2) Young's coefficient is large.

(3)縦波の伝播速度が大きいこと。(3) The propagation speed of longitudinal waves is high.

(4)振動の内部損失が適度に大きいこと、(5)外気
条件の変化に対して安定であり、変形や変質が無いこと
(4) The internal loss of vibration is appropriately large, and (5) it is stable against changes in outside air conditions and does not deform or change in quality.

(6)製造方法が簡単で安価であること。(6) The manufacturing method is simple and inexpensive.

すなわち、広範な周波数帯域にわたって忠実に再生でき
る音域が広く、効率的であり、明瞭な音質を発現させる
ためには高剛性であって、外部応力によるクリープ等の
歪がなく、音の伝播速度が大きいことが要求される。
In other words, it has a wide range of sound that can be faithfully reproduced over a wide range of frequency bands, is efficient, has high rigidity to produce clear sound quality, has no distortion such as creep due to external stress, and has a low sound propagation speed. Large is required.

V−(E/ρ)1″ 〔但し、■:音速;E:ヤング係数;ρ:密度〕の式か
ら音速を高めるためには、密度が小さく、ヤング率の高
い素材が求められる。従来の振動板材料としては、紙(
パルプ)、プラスチック及びそれらの素材を基材として
、これにガラス繊維や炭素繊維を複合させたもの、アル
ミニウム、チタニウム、マグネシウム、ベリリュウム、
ボロン等の金属やそれらの金属の合金及び窒化物、炭化
物、硼化物等の素材を加工したものが使用されていた。
V-(E/ρ)1'' [However, ■: velocity of sound; E: Young's modulus; ρ: density] In order to increase the sound velocity, a material with low density and high Young's modulus is required. Paper (
Pulp), plastics and their materials as base materials, composites of glass fibers and carbon fibers, aluminum, titanium, magnesium, beryllium,
Metals such as boron, alloys of these metals, and processed materials such as nitrides, carbides, and borides were used.

しかしながら、紙(パルプ)、プラスチック及びそれら
の複合素材等は、ヤング率と密度の比が小さく、従って
音速が遅(、特定のモードで分割振動を起こして、特に
高周波数帯域での周波数特性が著しく低下するので、明
瞭な音質を得ることが困難であり、その上温度、湿度等
の外的環境に左右され易く、素材の質的劣化や経時疲労
が発生して特性を低下させる等の欠点を有している。
However, paper (pulp), plastics, and their composite materials have a small ratio of Young's modulus to density, and therefore the sound velocity is slow. This makes it difficult to obtain clear sound quality, and it is also susceptible to external environments such as temperature and humidity, resulting in deterioration of the quality of the material and fatigue over time, resulting in deterioration of characteristics. have.

一方、アルミニウム、チタニウム、マグネシウム等の金
属板を用いた場合は、紙やプラスチックに比べて音速が
速く、優れた性能を有するが、なおE/ρ値が小さく、
かつ振動の内部損失が小さいので、高周波数帯域におい
て、鋭い共振現象を生じたり、材質のクリープ等の経時
疲労が発生して特性を低下させる欠点があり、またベリ
リュウム、ボロンは優れた物理定数を有する理想的な材
料であり、これらを振動板に用いたスコーカ−やトウイ
ータ−は再生限界が可聴周波数帯域以上まで伸びている
ので、可聴帯域における信号を過渡現象なく正しく再生
でき、自然な音質を発現させることができる。しかしな
がら、これらの素材は、資源的に乏しく、極めて高価で
あって、ロール圧延とプレス成形による従来の振動板製
造法では実用性に乏しく 、C,V、D、、P、V、D
、等の高度な技術が要求される蒸着法に依らざるを得な
いので、加工費も極めて高価になり、また大型のスピー
カーの製造が困難である等の欠点を有している。
On the other hand, when metal plates such as aluminum, titanium, and magnesium are used, the speed of sound is faster than that of paper or plastic, and they have excellent performance, but they still have a small E/ρ value.
In addition, since the internal loss of vibration is small, there are disadvantages such as sharp resonance phenomena in high frequency bands and degradation of characteristics due to fatigue over time such as material creep.Beryllium and boron also have excellent physical constants. Squawkers and tweeters that use these materials for their diaphragms have a reproduction limit that extends beyond the audible frequency range, allowing them to correctly reproduce signals in the audible range without transient phenomena, resulting in natural sound quality. can be expressed. However, these materials are scarce in resources and extremely expensive, making it impractical to use conventional diaphragm manufacturing methods using roll rolling and press forming.
Since the process has to rely on vapor deposition methods that require advanced techniques such as .

(発明が解決しようとする問題点) 本発明の目的は、従来の振動板材料の上記の欠点に鑑み
、炭素の持つ優れた物理特性を生かし、優れた音響特性
を有する振動板を工業的に安価に製造する方法を提供す
ることにある。
(Problems to be Solved by the Invention) In view of the above-mentioned drawbacks of conventional diaphragm materials, an object of the present invention is to utilize the excellent physical properties of carbon to industrially produce a diaphragm with excellent acoustic properties. The purpose is to provide a method of manufacturing at low cost.

(問題点を解決するための手段) 本願発明者らは、上記の目的を達成するために鋭意研究
の結果、熱硬化性樹脂を原料とし、これをフィルム状に
予備成形した後、振動板形状に賦形し、不活性ガス雰囲
気中で焼成することによって得られるガラス状硬質炭素
質音響機器用振動板の製造方法を発明し、特許出願した
(特開昭6l−65596)。この発明による振動板は
工業的にも安価に製造でき物理特性も優れたものである
が、本願発明者は、この振動板の物理特性をさらに向上
させるべく鋭意研究の結果、ヤング係数が大きいまま、
密度を小さくし、振動板の内部損失を大きくするために
は、密構造炭素からなる振動板中に疎構造である炭素多
孔体層を構築することが有益であることに着目して、疎
構造炭素層と密構造炭素層とが一体化した炭素振動板を
作成することで、ガラス状硬質炭素質音響機器用振動板
より音響特性の優れた振動板を発明するに至った。
(Means for Solving the Problems) In order to achieve the above object, the inventors of the present application have conducted extensive research and found that thermosetting resin is used as a raw material, and after preforming it into a film shape, the diaphragm shape is He invented a method for manufacturing a glass-like hard carbon diaphragm for acoustic equipment, which is obtained by shaping the diaphragm into a diaphragm and firing it in an inert gas atmosphere, and filed a patent application (Japanese Patent Laid-Open No. 61-65596). The diaphragm according to the present invention can be produced industrially at low cost and has excellent physical properties, but as a result of intensive research to further improve the physical properties of this diaphragm, the inventor of the present invention found that the Young's modulus remained large. ,
In order to reduce the density and increase the internal loss of the diaphragm, we focused on the fact that it is beneficial to construct a carbon porous layer with a loose structure in the diaphragm made of dense carbon. By creating a carbon diaphragm in which a carbon layer and a dense structure carbon layer are integrated, a diaphragm with better acoustic characteristics than glassy hard carbon diaphragms for audio equipment has been invented.

本願発明者は、高硬度、高弾性率、高精度、高加工性を
有するガラス状炭素から成る密構造炭素層と密度を小さ
くし振動の内部損失を大きくするために重要な疎構造炭
素層とが一体化した複合炭素を任意の形状に賦形させる
べく創意工夫した。
The inventor of the present application has developed a dense carbon layer made of glassy carbon that has high hardness, high elastic modulus, high precision, and high workability, and a sparse carbon layer that is important for reducing density and increasing internal loss of vibration. We ingeniously devised ways to form composite carbon into any desired shape.

次に、本発明の疎密構造を有するガラス状硬質炭素質振
動板製造方法について説明する。
Next, a method of manufacturing a glassy hard carbonaceous diaphragm having a dense and dense structure according to the present invention will be explained.

まず不活性ガス雰囲気中での焼成によりガラス状密構造
炭素が得られるフィルムを作成する。これは熱硬化性樹
脂よりなるフィルムである。ここで使用する熱硬化性樹
脂としては、フラン樹脂、フェノール樹脂、キシレン樹
脂、エポキシ樹脂、ビスマレイミド樹脂樹脂等であるが
、賦形の自由度が高く、炭化に際して煩雑な前処理を行
うことを必要としないため、フルフリルアルコール/フ
ルフラール系、フルフラール/フェノール系、フルフラ
ール/エリア系等のフラン樹脂及び、レゾール系、ノボ
ラック系のフェノール樹脂又はそれらの混合樹脂が好ま
しい。
First, a film containing glassy dense carbon is produced by firing in an inert gas atmosphere. This is a film made of thermosetting resin. The thermosetting resins used here include furan resin, phenol resin, xylene resin, epoxy resin, and bismaleimide resin, but they have a high degree of freedom in shaping and do not require complicated pretreatment during carbonization. Since this is not necessary, furan resins such as furfuryl alcohol/furfural type, furfural/phenol type, furfural/elia type, resol type, novolac type phenol resins, or mixed resins thereof are preferred.

次に、不活性ガス雰囲気中での焼成により、ガラス状疎
構造炭素が得られる打機多孔体フィルムを作成する。こ
れは有機物質粒子の粒子間に点接着を生じさせたことよ
り成る有機物質多孔体フィルムである。
Next, by firing in an inert gas atmosphere, a perforated porous film from which glassy loosely structured carbon is obtained is produced. This is an organic material porous film made of organic material particles with point adhesion between them.

ここで使用する有機物質粒子は、塩素化ビニル、ポリア
クリロニトリル、ポリジビニルアルコール、ポリフェニ
レンエーテル、ポリジビニルベンゼン等の粒子、フラン
、フェノール、ビスヤレイミド・トリアジン等のモノマ
ー又は初期縮合体を熱変形可能な程度まで硬化したもの
を粉砕した粒子、トラガントガム、アラビアガム、I!
mの如き縮合多環芳香族を分子の基本構造内に持つ天然
高分子粒子、石油アスファルト、コールタールピンチ、
合成樹脂等の乾留ピッチを300〜500℃で熱処理し
、低分子化合物を溶剤で除去したものを粉砕した粒子の
うち1種又は2種以上の混合物である粒子である。
The organic material particles used here are particles of chlorinated vinyl, polyacrylonitrile, polydivinyl alcohol, polyphenylene ether, polydivinylbenzene, etc., and monomers or initial condensates such as furan, phenol, bisyareimide/triazine, etc., to the extent that they can be thermally deformed. Particles that have been hardened to a pulp, gum tragacanth, gum arabic, I!
Natural polymer particles having fused polycyclic aromatics such as m in the basic structure of the molecule, petroleum asphalt, coal tar pinch,
These particles are one type or a mixture of two or more types of particles obtained by heat-treating carbonized pitch such as a synthetic resin at 300 to 500°C and removing low-molecular compounds with a solvent.

次に、密構造フィルムと疎構造用フィルムとを積層接合
する。これは、熱融着もしくは、不活性ガス雰囲気中で
の焼成により高い炭素残査を残す液状組成物を用いての
接着により、積層一体化フィルムを得るものである。こ
こでの液状組成物は、ポリ塩化ビニル、ポリアクリロニ
トリル等の熱可塑性樹脂、フェノール、フラン等の熱硬
化性樹脂、トラガントガム等の天然高分子物質、ピッチ
類等の組み合わせよりなり、常温で液状を呈さないもの
は、その樹脂の初期縮合物や溶剤に溶解したものを使用
する。得られた積層フィルムを熱間プレス成形法、真空
成形法、プロー成形法等により所望の振動板の形状に成
形する。
Next, the dense structure film and the sparse structure film are laminated and bonded. In this method, a laminated integrated film is obtained by thermal fusion or adhesion using a liquid composition that leaves a high carbon residue by firing in an inert gas atmosphere. The liquid composition here is composed of a combination of thermoplastic resins such as polyvinyl chloride and polyacrylonitrile, thermosetting resins such as phenol and furan, natural polymeric substances such as gum tragacanth, pitches, etc., and is in a liquid state at room temperature. If this does not occur, use an initial condensate of the resin or one dissolved in a solvent. The obtained laminated film is molded into the desired shape of a diaphragm by hot press molding, vacuum molding, blow molding, or the like.

脱型した生成形体は、エアーオーブン中で加熱すること
で含有する溶剤及び可塑剤を揮発させると同時に、架橋
反応を完了させ、その後の加熱によっても変形しない焼
成前駆体となる。これを窒素ガス又はアルゴン等の不活
性ガス雰囲気中で500℃以上、好ましくは1000〜
1500 ”Cまで加熱し、必要に応じて2500 ’
c以上に加熱して焼成体を得る。
The demolded product is heated in an air oven to volatilize the solvent and plasticizer contained therein, and at the same time, completes the crosslinking reaction, resulting in a fired precursor that does not deform even with subsequent heating. This is heated in an inert gas atmosphere such as nitrogen gas or argon at a temperature of 500°C or higher, preferably 1000°C or higher.
Heat to 1500'C, 2500' if necessary
A fired body is obtained by heating to a temperature higher than c.

このようにして得られた疎密構造を有するガラス状硬質
炭素質振動板は、賦形時の形状を精度高く維持すると共
にガラス状炭素材料の機能特性を最高度に発揮する。
The glassy hard carbonaceous diaphragm having the dense and dense structure thus obtained maintains the shape at the time of shaping with high precision and exhibits the functional characteristics of the glassy carbon material to the highest degree.

(実施例) 以下に、本発明を実施例により詳細に説明するが、本発
明は、実施例によって限定されるものではない。
(Examples) The present invention will be explained in detail below using Examples, but the present invention is not limited by the Examples.

実AI (+lI  1 フルフリルアルコール/フルフラール初期N 合物(日
立化成■製VF302)100重量%に対して硬化剤と
してP−)ルエンスルフォン950%メタノール液を4
重量%添加し、十分攪拌した後、ドクターブレードを存
するコーターにより40μm厚の可塑性を有する密構造
フィルムを作成した。一方、塩素化塩化ビニル樹脂粉末
(−日本カーバイド製)を平板容器中にパイブレーク−
を用いて投入後180°C加熱オーブン中で保持するこ
とで60μm厚の点融着により成る多孔体フィルムを得
た。
Real AI (+lI 1 Furfuryl alcohol/Furfural initial N compound (VF302 manufactured by Hitachi Chemical) 100% by weight as a curing agent P-) Luenesulfone 950% methanol solution 4
After adding % by weight and thoroughly stirring, a 40 μm thick plastic dense structured film was prepared using a coater equipped with a doctor blade. On the other hand, chlorinated vinyl chloride resin powder (manufactured by Nippon Carbide) was placed in a pie-break container.
A porous film having a thickness of 60 μm formed by point fusion was obtained by holding the film in a heating oven at 180° C. using the following method.

次に、密構造フィルム−多孔フィルム−密構造フィルム
の順に積層して積層フィルムを得た。この時、フルフリ
ルアルコール/フルフラール初期縮合物を接合剤として
用いた。得られた積層フィルムを真空成形機を用いて直
径50mmのドーム状に賦形、金型中で180℃まで加
熱し、予備硬化させた後、脱型した。次に、この成形体
をエアーオーブン中で250℃まで加熱処理し、完全硬
化した後窒素ガス雰囲気の焼成炉中で1000℃まで焼
成し、疎密構造を有するガラス状硬質炭素質振動板を得
た。得られた振動板は、膜厚70μm直径40mmであ
った。又物理特性は、密度1.10g/cm”ヤング率
74GPa、音速8200m/秒、内部損失jan δ
0.06であった。
Next, a dense structure film, a porous film, and a dense structure film were laminated in this order to obtain a laminated film. At this time, furfuryl alcohol/furfural initial condensate was used as a bonding agent. The obtained laminated film was shaped into a dome shape with a diameter of 50 mm using a vacuum forming machine, heated to 180° C. in a mold, precured, and then demolded. Next, this molded body was heat-treated to 250°C in an air oven, and after being completely cured, it was fired to 1000°C in a firing furnace in a nitrogen gas atmosphere to obtain a glass-like hard carbonaceous diaphragm having a dense and dense structure. . The obtained diaphragm had a film thickness of 70 μm and a diameter of 40 mm. Physical properties include density 1.10g/cm, Young's modulus 74GPa, sound velocity 8200m/sec, and internal loss Jan δ.
It was 0.06.

土較斑−上 実施例1での密構造フィルムのみからなる振動板を作成
焼成し得たガラス状硬質炭素質振動板の物理特性は密度
1.40 g/cm3、ヤング率75GPa、音速73
00m/秒、内部損失tan δ0.03であった。
Soil Comparison - Physical properties of the glassy hard carbonaceous diaphragm that was created and fired by creating and firing the diaphragm consisting only of the dense structure film in Example 1 were: density 1.40 g/cm3, Young's modulus 75 GPa, and sound velocity 73.
00 m/sec, and the internal loss tan δ was 0.03.

この実施例1と比較例1とから、内部に多孔層の存在す
る疎密構造を有するガラス状硬質炭素質振動板がより物
理特性の優れることが判った。
From Example 1 and Comparative Example 1, it was found that the glass-like hard carbonaceous diaphragm having a loose and dense structure with a porous layer inside had better physical properties.

災施1 ノボラック系フェノール樹脂(−群栄化学工業製PS−
137085重量%に対して、PG八−450015重
量%の混合物)を、T型ダイス使用の押し出し成形機に
投入、膜厚400μmの可塑性を有する密構造フィルム
を作成した。一方、粉砕した精製トラガントガム粉末9
6重量%、精製水4重量%をヘンシェルミキサーに投入
、分散混合した後、湿粉をパイブレーク−を用い平板容
器中に投入後、110℃オーブン中で水を蒸発後180
”Cオーブン中で加熱し、600μm厚みの多孔フィル
ムを得た。次に、密構造フィルム−多孔フィルム−密構
造フィルムの順に積層し積層フィルムを得た。ここで接
合剤として実施例1と同じ液状組成物を用いた。得られ
た積層フィルムを真空成形機を用いて、直径35cmの
ドーム状に賦形、金型中で180℃まで加熱し、硬化さ
せた後脱型した。
Disaster treatment 1 Novolac phenolic resin (-Gunei Chemical Industry PS-
A mixture of 137,085% by weight and 15% by weight of PG8-450,000 was put into an extrusion molding machine using a T-type die to produce a dense structure film having plasticity and a film thickness of 400 μm. On the other hand, crushed purified tragacanth gum powder 9
After putting 6% by weight and 4% by weight of purified water into a Henschel mixer and dispersing and mixing, put the wet powder into a flat container using a pie breaker, and after evaporating the water in a 110℃ oven, it was heated to 180℃.
"C" was heated in an oven to obtain a porous film with a thickness of 600 μm.Next, a dense structure film, a porous film, and a dense structure film were laminated in this order to obtain a laminated film.Here, the same as in Example 1 was used as a bonding agent. A liquid composition was used.The obtained laminated film was formed into a dome shape with a diameter of 35 cm using a vacuum forming machine, heated to 180° C. in a mold, cured, and then demolded.

次に、この成形体を230 ”cまで加熱処理した後、
窒素ガス雰囲気の焼成炉中で1ooo℃まで焼成し、疎
密構造を有するガラス状硬質炭素質振動板を得た。
Next, after heat-treating this molded body to 230"c,
It was fired to 100° C. in a firing furnace in a nitrogen gas atmosphere to obtain a glassy hard carbonaceous diaphragm having a dense and dense structure.

得られた振動板は、膜厚1000μm直径26cI11
であった。又物理特性は、密度1.0’ 9 g/am
3、ヤング率64GPa、音速7400m/秒、内部損
失jan 60.08であった。
The obtained diaphragm has a film thickness of 1000 μm and a diameter of 26 cI11.
Met. Also, the physical properties are density 1.0'9 g/am
3. Young's modulus was 64 GPa, sound velocity was 7400 m/sec, and internal loss JAN was 60.08.

ル較聞−又 実施例2での密構造フィルムのみからなる振動板を作成
焼成して得たガラス状硬質炭素質振動板の物理特性は、
密度1.37 g/cm3、ヤング率62GPa、音速
6700m/秒、内部損失tan δ0604であった
Comparison - Also, the physical properties of the glass-like hard carbon diaphragm obtained by preparing and firing the diaphragm made of only a dense structure film in Example 2 are as follows.
The density was 1.37 g/cm3, the Young's modulus was 62 GPa, the sound velocity was 6700 m/sec, and the internal loss tan δ was 0604.

この実施例2と比較例2とでも内部に多孔層の存在する
疎密構造を有するガラス状硬質炭素質振動板がより物理
特性の優れることが判った。
In both Example 2 and Comparative Example 2, it was found that the glass-like hard carbonaceous diaphragm having a dense structure with a porous layer inside had better physical properties.

Claims (5)

【特許請求の範囲】[Claims] (1)不活性ガス雰囲気中での焼成により高硬度不通気
性を有するガラス状密構造炭素が得られる熱硬化性樹脂
からなるフィルムと不活性ガス雰囲気中での焼成により
ガラス状疎構造炭素が得られる有機多孔体のフィルムと
を積層一体化した所望の厚さを有する複合フィルムを設
計された振動板形状に賦形した後、加熱空気中で処理し
、硬化反応を進行させ熱変形を示さない硬化体とし、不
活性ガス雰囲気中で焼成することからなる疎密構造を有
するガラス状硬質炭素質振動板の製造方法。
(1) A film made of a thermosetting resin that produces glassy dense carbon with high hardness and impermeability by firing in an inert gas atmosphere, and a glassy loose carbon that is produced by firing in an inert gas atmosphere. A composite film having a desired thickness obtained by laminating and integrating the obtained organic porous film is formed into a designed diaphragm shape, and then treated in heated air to proceed with a curing reaction and exhibit thermal deformation. A method for manufacturing a glass-like hard carbonaceous diaphragm having a dense and dense structure, which comprises curing the diaphragm in an inert gas atmosphere.
(2)該熱硬化性樹脂は、フルフリルアルコール樹脂、
フルフリルアルコール/フルフラール共縮合樹脂、フル
フラール/フェノール共縮合樹脂等のフラン樹脂、レゾ
ール系、ノボラック系等のフェノール樹脂、キシレン樹
脂、トルエン樹脂、レゾールシノール樹脂等から選ばれ
る第1項に記載の疎密構造を有するガラス状硬質炭素質
振動板の製造方法。
(2) The thermosetting resin includes furfuryl alcohol resin,
The non-condensing material according to item 1 selected from furan resins such as furfuryl alcohol/furfural co-condensed resins, furfural/phenol co-condensed resins, phenolic resins such as resol-based and novolak-based resins, xylene resins, toluene resins, resorcinol resins, etc. A method for manufacturing a glass-like hard carbonaceous diaphragm having a structure.
(3)該有機多孔体は、塩素化塩化ビニル、ポリアクリ
ロニトリル、ポリビニルアルコール、ポリフェニレンエ
ーテル、ポリジビニルベンゼン等の熱可塑性樹脂の粒子
、フラン樹脂、フェノール樹脂、ビスマレイミド・トリ
アジン樹脂等の熱硬化性樹脂のモノマー又は初期縮合体
を熱変形可能な程度まで硬化させたものを粉砕した粒子
、トラガントガム、アラビアガム、糖類の如き縮合多環
芳香族を分子の基本構造内に持つ天然高分子粒子、又は
前記には含まれない縮合多環芳香族を分子の基本構造内
に持つ合成高分子粒子のうち、直径又は最大辺が2mm
以下であり、かつ粒子の90%以上の直径又は最大辺が
30μm以上である粒子の一種又は二種以上の混合物粒
子を加熱による溶融又は溶剤による溶解によってその表
面層を溶かし点接着を生じさせて粒子同士を結合させた
のち、不融化処理を行うことよりなる第1項に記載の疎
密構造を有するガラス状硬質炭素質振動板製造方法。
(3) The organic porous body is a thermosetting resin such as particles of thermoplastic resin such as chlorinated vinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyphenylene ether, and polydivinylbenzene, furan resin, phenol resin, and bismaleimide/triazine resin. Particles obtained by pulverizing resin monomers or initial condensates cured to the extent that they can be thermally deformed, natural polymer particles having a condensed polycyclic aromatic group such as gum tragacanth, gum arabic, or saccharides in the basic structure of the molecule, or Synthetic polymer particles with a diameter or maximum side of 2 mm that have a fused polycyclic aromatic group in the basic structure of the molecule that is not included in the above.
A mixture of one or two or more particles having the following properties and in which the diameter or maximum side of 90% or more of the particles is 30 μm or more is melted by heating or melted by a solvent to melt the surface layer and cause point adhesion. 2. The method for manufacturing a glass-like hard carbonaceous diaphragm having a dense and dense structure according to item 1, which comprises performing an infusible treatment after bonding the particles.
(4)該積層一体化は、高い炭素残査を残す有機高分子
物質の一種又は2種以上の混合物に、必要に応じて、溶
剤を添加した液状組成物を用いて接着することよりなる
第1項に記載の疎密構造を有するガラス状硬質炭素質振
動板の製造方法。
(4) The lamination and integration process consists of adhering to one or a mixture of two or more organic polymeric substances that leave a high carbon residue using a liquid composition to which a solvent is added, if necessary. A method for manufacturing a glassy hard carbonaceous diaphragm having a dense and dense structure according to item 1.
(5)該焼成は500℃以上の温度で行なわれる第1項
に記載の疎密構造を有するガラス状硬質炭素質振動板の
製造方法。
(5) The method for manufacturing a glassy hard carbonaceous diaphragm having a dense and dense structure according to item 1, wherein the firing is performed at a temperature of 500° C. or higher.
JP839588A 1988-01-20 1988-01-20 Manufacture of vitreous hard carbonaceous diaphragm having compressional construction Pending JPH01185098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP839588A JPH01185098A (en) 1988-01-20 1988-01-20 Manufacture of vitreous hard carbonaceous diaphragm having compressional construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP839588A JPH01185098A (en) 1988-01-20 1988-01-20 Manufacture of vitreous hard carbonaceous diaphragm having compressional construction

Publications (1)

Publication Number Publication Date
JPH01185098A true JPH01185098A (en) 1989-07-24

Family

ID=11691999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP839588A Pending JPH01185098A (en) 1988-01-20 1988-01-20 Manufacture of vitreous hard carbonaceous diaphragm having compressional construction

Country Status (1)

Country Link
JP (1) JPH01185098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077998A (en) * 2009-10-01 2011-04-14 Mitsubishi Pencil Co Ltd Acoustic diaphragm of carbonaceous material
US8544595B2 (en) 2008-12-18 2013-10-01 Mitsubishi Pencil Company, Limited Carbonaceous acoustic diaphragm and method for manufacturing the same
WO2017175682A1 (en) * 2016-04-05 2017-10-12 旭硝子株式会社 Glass plate constituent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8544595B2 (en) 2008-12-18 2013-10-01 Mitsubishi Pencil Company, Limited Carbonaceous acoustic diaphragm and method for manufacturing the same
JP2011077998A (en) * 2009-10-01 2011-04-14 Mitsubishi Pencil Co Ltd Acoustic diaphragm of carbonaceous material
WO2017175682A1 (en) * 2016-04-05 2017-10-12 旭硝子株式会社 Glass plate constituent
CN109076288A (en) * 2016-04-05 2018-12-21 Agc株式会社 Glass-plate structure body
JPWO2017175682A1 (en) * 2016-04-05 2019-02-28 Agc株式会社 Glass plate construction
CN109076288B (en) * 2016-04-05 2020-09-22 Agc株式会社 Glass plate structure, vibration plate, opening member, and glass substrate for magnetic recording medium
US11472161B2 (en) 2016-04-05 2022-10-18 AGC Inc. Glass sheet composite

Similar Documents

Publication Publication Date Title
JP3630669B2 (en) Composite carbon diaphragm and manufacturing method thereof
US5043185A (en) Method for fabricating a graphite film for use as an electroacoustic diaphragm
US5080743A (en) Process for preparation of a wholly carbonaceous diaphragm for acoustic equipment use
US4975318A (en) Improved acoustic carbon diaphragm
JPH01185098A (en) Manufacture of vitreous hard carbonaceous diaphragm having compressional construction
EP0468524B1 (en) Method of manufacturing acoustic diaphragm
US5152938A (en) Process for preparation of a wholly carbonaceous diaphragm for acoustic equipment use
US4919859A (en) Process of making an acoustic carbon diaphragm
JPH01185099A (en) Manufacture of full carbonaceous diaphragm having compressional construction
JPS605011A (en) Preparation of porous material of carbon having high strength
JPS63138900A (en) Manufacture of diaphragm for carbon acoustic equipment subject to boron doping
US4938829A (en) Process of making a diaphragm of vitreous hard carbonaceous material for an acoustic device
JP3025542B2 (en) Diaphragm for carbonaceous acoustic equipment and method of manufacturing the same
JPS6052640B2 (en) carbon diaphragm
JPH07108035B2 (en) Manufacturing method of diaphragm for all carbonaceous audio equipment
JPH0211546B2 (en)
JPH0720312B2 (en) Manufacturing method of diaphragm for audio equipment
US5072806A (en) Diaphragm for acoustic equipment
JP2998305B2 (en) Manufacturing method of acoustic diaphragm
US4921559A (en) Process of making an acoustic carbon diaphragm
JPS63175600A (en) Manufacture of total carbonaceous diaphragm for acoustic equipment
JPS6057280B2 (en) Manufacturing method of diaphragm for audio equipment
JPS6256097A (en) Manufacture of diaphragm for all carbonaceous acoustic equipment
JP2584114B2 (en) Manufacturing method of acoustic diaphragm
JPS6256098A (en) Manufacture of diaphragm for vitreous hard carbonaceous acoustic equipment