JPH01184230A - Production of high-low pressure integral type rotor - Google Patents

Production of high-low pressure integral type rotor

Info

Publication number
JPH01184230A
JPH01184230A JP702488A JP702488A JPH01184230A JP H01184230 A JPH01184230 A JP H01184230A JP 702488 A JP702488 A JP 702488A JP 702488 A JP702488 A JP 702488A JP H01184230 A JPH01184230 A JP H01184230A
Authority
JP
Japan
Prior art keywords
low pressure
pressure side
low
rotor
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP702488A
Other languages
Japanese (ja)
Inventor
Kazunori Sato
和紀 佐藤
Yasushi Moriyama
康 森山
Ikujiro Kitagawa
北川 幾次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Casting and Forging Corp
Original Assignee
Japan Casting and Forging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Casting and Forging Corp filed Critical Japan Casting and Forging Corp
Priority to JP702488A priority Critical patent/JPH01184230A/en
Publication of JPH01184230A publication Critical patent/JPH01184230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a rotor which simultaneously has the mechanical characteristics required in both high and low pressure parts by forming the rotor in such a manner that the low pressure side part and high pressure side part have the same chemical components and changing heat treatment conditions at the time of producing the high-low pressure integral type rotor made of a low alloy steel. CONSTITUTION:The low alloy steel stock contg., by weight %, 0.15-0.30% C, <0.15% Si, <0.5% Mn, <0.015% P, 2,8-4.0% Cr, 0.4-2.0% Mo, 0.07-0.3% V, and <=0.015% in total Sb and Sn, or further 1 or >=2 kinds of 0.5-2.0% Ni and 0.01-0.1% Nb is forged to produce the rotor of the high-low pressure integral type having the high-pressure part for which high creep rupture strength is demanded and the low pressure part for which toughness is particularly demanded. The low pressure side is subjected to austenitization hardening at a relatively low temp. above the Ac3 point for the purpose of improving toughness and the high pressure side is hardened at the temp. above said temp. in order to assure the high-temp. creep rupture strength. The annealing is executed conversely at the temp. lower on the high pressure side than on the low pressure side.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高低圧一体型タービンロータシャフトの製造法
に係る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a high and low pressure integrated turbine rotor shaft.

(従来の技術) 最近出力200MW程度迄の中・小容量タービンは、高
圧部と低圧部のローターを一体構造としてコンパクト化
する傾向にある。
(Prior Art) Recently, there has been a trend for medium- and small-capacity turbines with outputs of up to about 200 MW to be made more compact by integrating the rotors of the high-pressure section and the low-pressure section.

この一体型ローターには高圧部のクリープ破断強度と低
圧部の靭性が同時に必要とされるが、従来高圧用ロータ
ーとして使用されている1%Cr−1%Mo−0,25
V鋼では、靭が不充分である他、高温における破断強度
も最近の要求設計応力からみればやや不足の感があり、
一方低圧ロークーとして使用されている3、5%N i
 −Cr−M 。
This integrated rotor requires both creep rupture strength in the high-pressure part and toughness in the low-pressure part.
In addition to insufficient toughness, V-steel has a feeling that its fracture strength at high temperatures is somewhat insufficient considering the recent design stress requirements.
On the other hand, 3.5% Ni, which is used as a low-pressure loco
-Cr-M.

−V鋼では、靭性は極めて良好であるが、クリープ破断
強度が不足であり、両性能を同時に満足することは出来
ない。
-V steel has extremely good toughness, but its creep rupture strength is insufficient, and it is not possible to satisfy both performances at the same time.

(発明が解決しようとする課題) 本発明はクリープ破断強度と靭性を同時に満足する一体
型ロークーの製造法を提供するものである。
(Problems to be Solved by the Invention) The present invention provides a method for manufacturing an integrated low-couple that satisfies creep rupture strength and toughness at the same time.

(課題を解決するための手段) 本発明者らは同一ローターの中で、特に高いクリープ破
断強度を要求される高圧部と、靭性を特に要求される低
圧部を同一の化学成分を存し、熱処理条件を変えること
により、つまり焼入れ焼戻し条件を高圧部分と低圧部分
で変えることにより、それぞれの機能を持たせることが
可能であると云う結論を得た。
(Means for Solving the Problems) The present inventors have constructed a system in which the high pressure section, which requires particularly high creep rupture strength, and the low pressure section, which requires particularly toughness, have the same chemical composition in the same rotor. It was concluded that by changing the heat treatment conditions, that is, by changing the quenching and tempering conditions for the high-pressure part and the low-pressure part, it is possible to provide each function.

即ち本発明に係るC r −M o −V系を基本とす
る化学組成を有するタービンローターは、重量%でC0
.15〜0.30%、Si0.15%以下、Mn0.5
%以下、P0.015以下、Cr2.8%超〜4.0%
、Mo0.4〜2.0%、V0.07〜0.3%、Sb
、Snの合計が0.05%以下を有し、必要に応じ0.
5〜2.0%のNiと0.01〜0.10%のNbのい
ずれか一方又は両方を添加し、残部がFe及び不可避的
不純物より成る素材を、低圧部分と高圧部分のオーステ
ナイト化温度及び焼戻温度のいずれか一方又は両方を異
なるようにした焼入焼戻工程を含む工程をとることによ
り、高圧部分に高いクリープ破断強度と、低圧部分に高
靭性を持たせた高低圧一体型ローターを製造するもので
ある。
That is, the turbine rotor according to the present invention having a chemical composition based on the C r -Mo -V system has C0
.. 15-0.30%, Si0.15% or less, Mn0.5
% or less, P0.015 or less, Cr more than 2.8% to 4.0%
, Mo0.4-2.0%, V0.07-0.3%, Sb
, the total amount of Sn is 0.05% or less, and if necessary 0.05% or less.
A material to which one or both of 5 to 2.0% Ni and 0.01 to 0.10% Nb is added, with the remainder consisting of Fe and unavoidable impurities, is heated to the austenitizing temperature of the low-pressure part and the high-pressure part. A high-low pressure integrated type with high creep rupture strength in the high-pressure part and high toughness in the low-pressure part by using a process that includes a quenching and tempering process with either or both of the temperature and tempering temperature different. It manufactures rotors.

この場合タービンローターの素材に含有せしめる基本元
素及びその他の合金元素量は、一体型ローターの使用条
件を考慮して決定される。即ち、高低圧一体型ロークー
として、その低圧側は蒸気の出口側に当り蒸気温度は低
いため、高速回転時に発生する高応力場に於ける脆性破
壊防止の観点から、当然高靭性、特に遷移温度が蒸気温
度より、低いことが要求される。
In this case, the amounts of basic elements and other alloying elements to be contained in the material of the turbine rotor are determined in consideration of the usage conditions of the integral rotor. In other words, since the low pressure side is the steam outlet side and the steam temperature is low, it is natural that high toughness, especially the transition temperature, is required to prevent brittle fracture in the high stress field that occurs during high speed rotation. is required to be lower than the steam temperature.

一方、高圧側は、蒸気の入口側に当るため、蒸気温度が
高く、従ってその高い蒸気温度でのクリープ破断強度が
高いことが必要である。この靭性と高温クリープ破断強
度は、ともすれば相反する関係にある場合が多く、クリ
ープ破断強度を大きくすれば靭性が低く、逆に靭性を良
好にする手段をとればクリープ破断強度が劣化するなど
、両特性を同時に満足することは従来の技術では困難で
ある。
On the other hand, since the high pressure side corresponds to the steam inlet side, the steam temperature is high, and therefore it is necessary that the creep rupture strength at the high steam temperature is high. Toughness and high-temperature creep rupture strength often have a contradictory relationship; increasing the creep rupture strength will result in lower toughness, and conversely, if measures are taken to improve the toughness, the creep rupture strength will deteriorate. , it is difficult with conventional technology to satisfy both characteristics at the same time.

従って、これらの対策としては、従来焼入れを複数回行
うことによって、組織の細粒化を図ったり、Nbを添加
して組織の微細化効果を利用するなどの処置がとられて
来た。
Therefore, as countermeasures against these problems, conventional measures have been taken, such as performing quenching multiple times to make the structure finer, or adding Nb to utilize the effect of making the structure finer.

又低圧高圧一体型ローターでは、1%Cr、1%Mo−
0,25V鋼にNb、Niなどを添加して、更に焼入れ
時の冷却速度を規制してローター低圧部の高靭性と高圧
部のクリープ破断強度の向上を行わしめる方法(例えば
特公昭58−11504号公報)などが散見される。
In addition, in the low-pressure high-pressure integrated rotor, 1% Cr, 1% Mo-
A method of adding Nb, Ni, etc. to 0.25V steel and further regulating the cooling rate during quenching to improve the high toughness of the low pressure part of the rotor and the creep rupture strength of the high pressure part (for example, Japanese Patent Publication No. 58-11504 Publications) etc. can be found here and there.

これらの方法はいずれも成る程度効果的であり、少くと
も現在に至る迄の各種タービンローターとしては、一応
待性を満足するものが得られているが、前述の一体型タ
ービンローターに今後要求される特性を満足することは
困難である。
All of these methods are effective to a certain extent, and at least the various turbine rotors up to now have been able to satisfy the long-term durability requirements. It is difficult to satisfy these characteristics.

又高低圧一体ローターでは、低圧側部分が高圧側部分に
比して大径であることが普通で、特に大容量発電ロータ
ーの場合は、1500m以上にも達することもあり、例
えば1500φのその中心部の焼入冷却速度は、50 
’C/ h rと極めて小さい。靭性は本発明に係る一
体型ローターに関しては、冷却速度を大きくする程向上
するが、冷却方法に関しては製造上許容される範囲で大
きくする手段を採るものの、大径のため自ら限度があり
、焼入性を充分確保するための適正成分を採用する必要
がある。
In addition, in high-low pressure integrated rotors, the low-pressure side part usually has a larger diameter than the high-pressure side part, and especially in the case of large-capacity power generation rotors, the diameter can reach more than 1500 m, for example, the center of the 1500φ The quenching cooling rate of the part is 50
'C/hr, which is extremely small. Regarding the integrated rotor according to the present invention, the toughness improves as the cooling rate increases, but although the cooling method is increased within the allowable range for manufacturing, there is a limit due to the large diameter; It is necessary to use appropriate ingredients to ensure sufficient adhesion.

そのためには焼入性に有効元素であるcr、、MOの適
正量添加と、場合によっては靭性の要求度に応じてNi
の適正量添加が必要になる。
To achieve this, it is necessary to add appropriate amounts of Cr and MO, which are effective elements for hardenability, and in some cases, add Ni according to the required degree of toughness.
It is necessary to add an appropriate amount of.

一方高圧側部分に必要な高温クリープ破断強度の確保は
、Cr、M0.V、Nb等の焼戻時及び高温で使用中に
析出する炭窒化物によるクリープ破断強度向上効果を利
用し、又更にM0.■或いは必要に応じM、Nbの固溶
強化効果を充分利用し、ローターの必要部分に特にこれ
らの効果を大きく活かせる新規な製造手段により、靭性
と高温特性のそれぞれにすぐれた部分を持つローターの
製造が可能である 又零成分において焼入焼戻後の靭性を最高に引き出すだ
めの焼入焼戻条件は、同一成分で高温クリープ破断強度
を最高に抽出するためのそれとは異なり、ローターの径
にもよるが、高温クリープ破断強度を向上させる高圧側
ロータ一部分の焼入温度を低圧側ロータ一部分のそれよ
り高くとった方が良い。
On the other hand, ensuring the high-temperature creep rupture strength necessary for the high-pressure side part is achieved by using Cr, M0. Utilizing the effect of improving creep rupture strength due to carbonitrides precipitated during tempering of V, Nb, etc. and during use at high temperatures, M0. ■Alternatively, by making full use of the solid solution strengthening effects of M and Nb as needed, we can create rotors with areas that have excellent toughness and high-temperature properties by using new manufacturing methods that can make the most of these effects, especially in the necessary areas of the rotor. In addition, the quenching and tempering conditions for maximizing the toughness after quenching and tempering with zero components are different from those for maximizing high temperature creep rupture strength with the same components. Although it depends on the diameter, it is better to set the quenching temperature of the part of the high-pressure side rotor higher than that of the part of the low-pressure side rotor to improve the high-temperature creep rupture strength.

一方焼戻温度は靭性向上のためには高い方が良好である
ため、高温クリープ破断強度確保の必要な高圧側ロータ
一部分より高くとることが好ましい。
On the other hand, since a higher tempering temperature is better for improving toughness, it is preferable to set the tempering temperature higher than the part of the high-pressure side rotor where high-temperature creep rupture strength is required.

いずれにしてもローターの径及び設計温度、設計応力に
よって確保すべき靭性、強度、高温強度、高温クリープ
破断強度が異なるが、高圧側及び低圧側のそれぞれの特
性は、本発明に規定する成分と、それぞれ異なった熱処
理条件にすることで初めて確保可能である。
In any case, the toughness, strength, high-temperature strength, and high-temperature creep rupture strength that should be ensured will differ depending on the rotor diameter, design temperature, and design stress, but the characteristics of each of the high-pressure side and low-pressure side are different from the components specified in the present invention. , can be ensured only by using different heat treatment conditions.

一方本発明の対象となる高低圧一体ロークーは、高圧側
、低圧側のそれぞれのさらされる温度が異なるとは言え
、いずれも長時間使用中に靭性の劣化を惹起する可能性
を有する。
On the other hand, although the high and low pressure integrated low-pressure joints that are the object of the present invention are exposed to different temperatures on the high-pressure side and the low-pressure side, both have the possibility of causing deterioration in toughness during long-term use.

本発明の特にこの靭性の劣化を起し易いCrやNiを含
む焼入焼戻組織にMnを0.5%以下とし、更に低P、
低Sb+Snとすることによって、この靭性劣化を極め
て小さく出来ることを見出した。
In particular, in the present invention, Mn is set to 0.5% or less in the quenched and tempered structure containing Cr and Ni, which are likely to cause deterioration of toughness, and further low P,
It has been found that by reducing Sb+Sn, this toughness deterioration can be made extremely small.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

先ず本発明の対象とするローターを構成する化学成分の
限定理由を説明する。
First, the reasons for limiting the chemical components constituting the rotor that is the object of the present invention will be explained.

Cは、引張強さやクリープ破断強さを確保するために必
要な元素であり、0.15%未満では焼入後フェライト
相の生成や焼入組織の硬さ不足等により、焼戻後の引張
強さや高温クリープ破断強度の確保が困難である。又0
.3%を超えると靭性及び延性が著しく低下する。この
ためCは0.15〜0.30%と限定した。
C is an element necessary to ensure tensile strength and creep rupture strength. If it is less than 0.15%, it may cause the formation of a ferrite phase after quenching or lack of hardness of the quenched structure, resulting in poor tensile strength after tempering. It is difficult to ensure strength and high temperature creep rupture strength. 0 again
.. If it exceeds 3%, toughness and ductility are significantly reduced. For this reason, C was limited to 0.15 to 0.30%.

Stは強度を向上せしめるが、多量に添加すると靭性の
低下を招き特に長時間の加熱脆化の原因となるため、上
限のみを規定して0.15%とした。
St improves the strength, but if added in large amounts, it reduces toughness and causes embrittlement, especially when heated over a long period of time. Therefore, only the upper limit is set at 0.15%.

Mnはマトリックス中に固溶して焼入性を高め強度、靭
性を向上させる効果がある。しかし、添加量が過多にな
ると長時間加熱脆化の原因となる。
Mn solidly dissolves in the matrix and has the effect of increasing hardenability and improving strength and toughness. However, if the amount added is too large, it may cause embrittlement due to long-term heating.

本発明では前述の強度、靭性より長時間加熱脆化対策を
重視し、上限を0.5%とした。
In the present invention, measures against long-term heat embrittlement are more important than the above-mentioned strength and toughness, and the upper limit is set at 0.5%.

Pは初期靭性のみならず長時間加熱脆化を著しく助長す
るための出来るだけ少い方が好ましいが、経済的理由も
加えて本発明では上限を0.015%とした。
P is preferably as small as possible because it significantly promotes not only initial toughness but also long-term heating embrittlement, but in the present invention the upper limit is set to 0.015% for economic reasons.

Crは本発明の対象ローターの基本的元素で、焼入性の
向上目的と焼戻後はM 7 C3、M 2 z Cb等
の炭化物のM中に入って炭化物を安定化させ、クリープ
破断強度を向上保持させる目的と、高温に於ける耐食性
を保持させるために添加するものである。
Cr is a basic element of the rotor targeted by the present invention, and its purpose is to improve hardenability and after tempering, it enters into carbide M such as M 7 C3 and M 2 z Cb, stabilizes the carbide, and improves creep rupture strength. It is added to improve and maintain corrosion resistance at high temperatures.

即ち比較的低温度約300℃から、高温度約550°C
程度迄の高圧環境で使用される高圧ロークー側部分に対
しては、高温クリープ破断強度向上のため、低圧側ロー
タ一部分に対して焼入性確保のため2.8%超のCr添
加が必要である。上限を4%と限定した理由は使用環境
温度に於けるクリープ延性不足防止のためである。
That is, from a relatively low temperature of about 300°C to a high temperature of about 550°C.
It is necessary to add more than 2.8% Cr to the high-pressure low-pressure rotor side part, which is used in high-pressure environments up to 30 degrees, to improve high-temperature creep rupture strength, and to ensure hardenability to the low-pressure side rotor part. be. The reason why the upper limit is set at 4% is to prevent insufficient creep ductility at the operating temperature.

Moは固溶体強化作用、M 23 Cbの安定化作用、
Laves相としての析出強化作用を有し、高温クリー
プ破断強度を確保する目的で添加する。下限を0.4%
としたのは、これ未満では本発明の対象ローターの高圧
側の環境温度に対するクリープ破断強度、特に長時間側
強度が保てないためであり、又上限を2.0%としたの
は、これを超える量では添加量に対する効果の期待が薄
く、経済的でないようである。
Mo has a solid solution strengthening effect, M 23 Cb has a stabilizing effect,
It has a precipitation strengthening effect as a Laves phase, and is added for the purpose of ensuring high temperature creep rupture strength. Lower limit 0.4%
The reason for setting the upper limit at 2.0% is that if it is less than 2.0%, the creep rupture strength against the environmental temperature on the high pressure side of the target rotor of the present invention, especially the long-term strength, cannot be maintained. If the amount exceeds 100%, there is little expectation of effectiveness with respect to the added amount, and it seems to be uneconomical.

■は■4G+ 、v (CN)或いはM 23 C6t
7) M中に入って析出強化作用を生じ、本発明の対象
ローターの高温クリープ破断強度を確保する意味で極め
て重要である。下限を0.07%としたのはこれ未満で
はこれらの効果が充分に期待出来ないからであり、一方
添加量が多過ぎるとこれらの効果が飽和するばかりか反
って靭性やクリープ延性が低下する。従って上限は0.
3%とした。
■■4G+, v (CN) or M23 C6t
7) It enters M and produces a precipitation strengthening effect, which is extremely important in ensuring the high temperature creep rupture strength of the target rotor of the present invention. The lower limit was set at 0.07% because if the amount is less than this, these effects cannot be fully expected. On the other hand, if the amount added is too large, not only will these effects become saturated, but the toughness and creep ductility will decrease. . Therefore, the upper limit is 0.
It was set at 3%.

Sb、Snは長時間加熱時の粒界脆化を著しく助長する
ため、出来るだけ減らさせるのが好ましいが、他の不可
避的元素と同様、減少させるのに経済的問題もあり、特
に脆化が顕著になる限界量としてSn、Sbの和を0.
015%以下とした。
Since Sb and Sn significantly promote grain boundary embrittlement during long-term heating, it is preferable to reduce them as much as possible, but like other unavoidable elements, there are economical problems in reducing them, and especially when embrittlement is The sum of Sn and Sb is set to 0.
0.015% or less.

更にこれらの基本元素の他に、必要に応じNi及びNb
を添加しても本発明の対象である一体型ローターの高圧
側、低圧側の要求される特性値に応じて確保することが
可能である。
Furthermore, in addition to these basic elements, Ni and Nb may be added as necessary.
Even if it is added, it is possible to ensure the desired characteristic values on the high-pressure side and low-pressure side of the integrated rotor, which is the object of the present invention.

即ちNiは基本的に地鉄の靭性を向上させ、変態点低下
作用によって焼入性を上げ焼入れ、焼戻し後の強度を向
上させる効果がある。これらの効果を充分に生かせる下
限量としては0.5%である。
That is, Ni basically has the effect of improving the toughness of the base iron, increasing the hardenability by lowering the transformation point, and improving the strength after quenching and tempering. The lower limit amount for fully utilizing these effects is 0.5%.

Ni量の下限量を0.5は%としたのはこのためである
。又添加量が多過ぎると析出炭化物を凝集させ、クリー
プ破断強度を低下させる危険性がある。
This is why the lower limit of the Ni content is set at 0.5%. Moreover, if the amount added is too large, there is a risk that the precipitated carbides will aggregate and the creep rupture strength will decrease.

本発明の目的とする高圧側の使用環境からみたクリープ
破断強度に対する影響及び低圧側部分の靭性向上からみ
た最大必要量は2.0%であり、上限はこの理由から決
めた。
The maximum required amount is 2.0% from the viewpoint of the effect on creep rupture strength seen from the usage environment on the high pressure side and the improvement of toughness on the low pressure side, which is the object of the present invention, and the upper limit was determined for this reason.

Nbは加熱途中のオーステナイト粒界や、粒内に炭窒化
物として微細に存在し、ピンニング効果による粒成長抑
制を行う。又単独で鋼の変態点を低下させ焼入性を高め
る。焼戻しや長時間加熱時に析出する炭窒化物は、クリ
ープ破断強度を著しく高めるなどの効果を有する。
Nb exists finely as carbonitrides at austenite grain boundaries and within grains during heating, and suppresses grain growth due to the pinning effect. Also, it alone lowers the transformation point of steel and improves hardenability. Carbonitrides that precipitate during tempering or long-term heating have the effect of significantly increasing creep rupture strength.

これらの効果を有効ならしめる下限量は、0.01%で
ある。一方添加量が多すぎるとNb炭窒化物の顕著な凝
集粗大化を生じ、クリープ破断強度を低下せしめること
がある。又、銅塊の凝固時にNbの炭化物の粗大な共析
晶を生じ、靭性の著しい低下を招く危険性がある。上限
量を0.1%としたのはこのためである。
The lower limit amount for making these effects effective is 0.01%. On the other hand, if the amount added is too large, significant agglomeration and coarsening of Nb carbonitrides may occur, which may reduce creep rupture strength. Furthermore, there is a risk that coarse eutectoid crystals of Nb carbides are formed when the copper ingot is solidified, resulting in a significant decrease in toughness. This is why the upper limit amount is set to 0.1%.

これら各種元素を含む鋼を鍜造しローター素材とするが
、これを次工程で高圧側、低圧側のロータ一部に要求さ
れるそれぞれの特性を持たせるために、焼入焼戻しを含
む熱処理を行うのであるが、焼入時のオーステナイト化
温度は、低圧側は靭性向上の目的から、Ac1点以上比
較的低い方が粒径を小さくする理由から望ましく、一方
高圧側は比較的高い方が、高温クリープ破断強度を確保
する意味で好ましい。
Steel containing these various elements is forged and used as a rotor material, but in the next process it is heat-treated including quenching and tempering in order to give it the characteristics required for the high-pressure side and low-pressure side parts of the rotor. However, the austenitizing temperature during quenching is preferably relatively low on the low pressure side for the purpose of improving toughness and at least 1 Ac point to reduce the grain size, while on the high pressure side it is desirable to have a relatively low austenitizing temperature for the purpose of improving toughness. This is preferable in terms of ensuring high-temperature creep rupture strength.

焼戻温度も高い方が靭性確保には良く、強度確保には低
い方が好ましい。従って低圧側と高圧側は、熱処理温度
の異なるいわゆる傾斜熱処理が、本発明の重要技術要素
である。本発明に規定する異なる温度と云うのは、以上
に示す意識的に設定温度を異ならしめる熱処理条件を採
用することであって、その差は工業的可能な管理限界値
、少くとも2℃以上を云う。
A higher tempering temperature is better for ensuring toughness, and a lower tempering temperature is preferable for ensuring strength. Therefore, so-called gradient heat treatment in which the heat treatment temperatures are different on the low-pressure side and the high-pressure side is an important technical element of the present invention. The different temperatures specified in the present invention refer to the adoption of heat treatment conditions that intentionally vary the set temperatures as described above, and the difference is an industrially possible control limit of at least 2°C or more. say.

(実施例) 表1に示す化学成分を有する鋼を溶製し、同表欄外に示
す方法で鋼片を作成し、それぞれ表2に示す製造条件で
軸芯位置でのシュミレート熱処理を行った。
(Example) Steel having the chemical components shown in Table 1 was melted, steel slabs were prepared by the method shown outside the table, and simulated heat treatment was performed at the shaft center position under the manufacturing conditions shown in Table 2.

焼入温度と焼戻温度は表2の欄外に示すように、高圧側
と低圧側部分で異なるようにした。焼戻処理後、常温に
於ける引張試験と各種温度に於ける衝撃試験を行い、F
ATT (破面遷移温度)を求めた。
As shown in the margin of Table 2, the quenching temperature and tempering temperature were set to be different between the high-pressure side and the low-pressure side. After tempering, a tensile test at room temperature and an impact test at various temperatures were conducted.
ATT (fracture transition temperature) was determined.

又高圧側ロータ一部に相当する熱処理条件を与えたもの
については、550℃のクリープ試験を行い、外挿法に
より105 hrのクリープラブチャー強度を求めた。
In addition, for those subjected to heat treatment conditions corresponding to a part of the high-pressure side rotor, a creep test was conducted at 550°C, and the 105 hr creep rupture strength was determined by extrapolation.

又550℃1lo00hrの加熱後のシャルピー衝撃試
験を行い、加熱処理前と比較した。
In addition, a Charpy impact test was conducted after heating at 550° C. for 1000 hours and compared with that before the heat treatment.

これらの試験結果を表2に示す。The results of these tests are shown in Table 2.

これらによると本発明によるA−1〜A−6の鋼はいず
れも本発明の目的とする高い靭性と高いクリープ破断強
度が、それぞれ低圧部分と高圧部分に得られ、所定の一
体型ローターを製造可能なことを知見した。
According to these, the steels A-1 to A-6 according to the present invention all have the high toughness and high creep rupture strength, which are the objectives of the present invention, in the low-pressure part and the high-pressure part, respectively, and can be used to manufacture the specified integrated rotor. I found out that it is possible.

これに対しB1、B2は化学成分が本発明の規定に入っ
ていなく、いずれも靭性、クリープ破断強度が劣る結果
を示し、本発明の効果による差が顕著に示されている。
On the other hand, B1 and B2 have chemical components that do not fall within the specifications of the present invention, and both exhibit inferior toughness and creep rupture strength, clearly showing the difference due to the effects of the present invention.

(以下余白、次頁へつづく) I S− (発明の効果) 以上の実施例からみても明らかな如く、本発明によれば
、従来法により得られたものに比して、クリープ破断強
度が良好な高圧部と靭性のすぐれた低圧部を持つ一体型
高低圧ローターを製造し得ることが可能となるものであ
り、産業上の効果は顕著なものがある。
(The following is a blank space, continued on the next page) IS- (Effect of the invention) As is clear from the above examples, according to the present invention, the creep rupture strength is higher than that obtained by the conventional method. It becomes possible to manufacture an integrated high and low pressure rotor having a good high pressure part and a low pressure part with excellent toughness, and the industrial effect is significant.

代理人 弁理士 茶 野 木 立 夫 手続補正書(自発) 昭和63年2月19日Agent: Patent Attorney Tatsuo Cha Noki Procedural amendment (voluntary) February 19, 1985

Claims (1)

【特許請求の範囲】 1 重量%で C0.15〜0.3%、 Si0.15%以下、 Mn0.5%以下、 P0.015以下、 Cr2.8%超〜4.0%、 Mo0.4〜2.0%、 V0.07〜0.3%、 Sb、Snの合計が0.015%以下、 残部がFe及び不可避的不純物より成る成分からなり、
低圧側部分と高圧側部分の焼入オーステナイト化温度及
び焼戻温度のいずれか一方又は両方を異なるようにした
焼入焼戻工程を含むことを特徴とする高低圧一体ロータ
ー製造法。 2 Ni0.5〜2.0%、Nb0.01〜0.10%
のいずれか一方又は両方を添加した成分から成る請求1
に記載の高低圧一体ローターの製造法。
[Claims] 1% by weight: C0.15-0.3%, Si0.15% or less, Mn0.5% or less, P0.015 or less, Cr more than 2.8%-4.0%, Mo0.4 ~2.0%, V0.07~0.3%, the total of Sb and Sn is 0.015% or less, the balance is composed of Fe and inevitable impurities,
A method for manufacturing a high-low pressure integral rotor, comprising a quenching and tempering step in which either or both of the quenching austenitizing temperature and tempering temperature of the low pressure side portion and the high pressure side portion are made different. 2 Ni0.5-2.0%, Nb0.01-0.10%
Claim 1 consisting of an ingredient added with either one or both of the following:
A method for manufacturing a high and low pressure integrated rotor described in .
JP702488A 1988-01-18 1988-01-18 Production of high-low pressure integral type rotor Pending JPH01184230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP702488A JPH01184230A (en) 1988-01-18 1988-01-18 Production of high-low pressure integral type rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP702488A JPH01184230A (en) 1988-01-18 1988-01-18 Production of high-low pressure integral type rotor

Publications (1)

Publication Number Publication Date
JPH01184230A true JPH01184230A (en) 1989-07-21

Family

ID=11654471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP702488A Pending JPH01184230A (en) 1988-01-18 1988-01-18 Production of high-low pressure integral type rotor

Country Status (1)

Country Link
JP (1) JPH01184230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2514848A1 (en) * 2011-04-18 2012-10-24 The Japan Steel Works, Ltd. Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119412A (en) * 1976-03-31 1977-10-06 Nippon Steel Corp Steel material having excellent temper brittleness resistance and high temperature strength
JPS53149117A (en) * 1977-06-01 1978-12-26 Hitachi Ltd Recovering method for embrittlement of turbine rotor
JPS5996248A (en) * 1982-11-26 1984-06-02 Toshiba Corp Integrated high, medium and low pressure rotor for steam turbine and its manufacture
JPS62192536A (en) * 1986-02-18 1987-08-24 Nippon Chiyuutankou Kk Manufacture of turbine rotor
JPS62290849A (en) * 1986-06-10 1987-12-17 Mitsubishi Heavy Ind Ltd Rotor for geothermal steam turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119412A (en) * 1976-03-31 1977-10-06 Nippon Steel Corp Steel material having excellent temper brittleness resistance and high temperature strength
JPS53149117A (en) * 1977-06-01 1978-12-26 Hitachi Ltd Recovering method for embrittlement of turbine rotor
JPS5996248A (en) * 1982-11-26 1984-06-02 Toshiba Corp Integrated high, medium and low pressure rotor for steam turbine and its manufacture
JPS62192536A (en) * 1986-02-18 1987-08-24 Nippon Chiyuutankou Kk Manufacture of turbine rotor
JPS62290849A (en) * 1986-06-10 1987-12-17 Mitsubishi Heavy Ind Ltd Rotor for geothermal steam turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2514848A1 (en) * 2011-04-18 2012-10-24 The Japan Steel Works, Ltd. Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
US9034121B2 (en) 2011-04-18 2015-05-19 The Japan Steel Works,Ltd. Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR100353300B1 (en) Manufacturing method of high and low pressure integrated turbine rotor
CN110129658B (en) High-manganese nitrogen-free high-strength high-toughness hydrogen embrittlement-resistant austenitic stainless steel and preparation method thereof
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
US6030469A (en) Fully martensitic steel alloy
KR100899801B1 (en) High chrome ferrite type heat resisting steel for forging
JPH02290950A (en) Ferritic heat resisting steel excellent in strength at high temperature
US5108699A (en) Modified 1% CrMoV rotor steel
CN103740913B (en) High temperature forging Martensite Stainless Steel heat treating method
JPS62192536A (en) Manufacture of turbine rotor
JP5318763B2 (en) Method for producing low temperature toughness steel
JPH04147948A (en) Rotary shaft for high temperature steam turbine
US6106766A (en) Material for gas turbine disk
JPS616256A (en) 12% cr heat resisting steel
JP2001073092A (en) 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE
JPH01184230A (en) Production of high-low pressure integral type rotor
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JPS6338420B2 (en)
JPH0219425A (en) Manufacture of turbine rotor
JP2001049398A (en) High toughness heat resistant steel, and manufacture of turbine rotor
JPH10237609A (en) Production of precipitation strengthening nickel-iron-base superalloy
JPH0380865B2 (en)
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPS6031898B2 (en) Turbine rotor material
JPH05345922A (en) Production of high-pressure part and low-pressure part integrated type turbine rotor
JPH1088274A (en) High strength heat resistant steel and its production