JPH01184106A - Dome-type vulcanizing apparatus - Google Patents

Dome-type vulcanizing apparatus

Info

Publication number
JPH01184106A
JPH01184106A JP804588A JP804588A JPH01184106A JP H01184106 A JPH01184106 A JP H01184106A JP 804588 A JP804588 A JP 804588A JP 804588 A JP804588 A JP 804588A JP H01184106 A JPH01184106 A JP H01184106A
Authority
JP
Japan
Prior art keywords
vulcanization
mold
vulcanizing
heating medium
dome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP804588A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Shimazaki
信好 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP804588A priority Critical patent/JPH01184106A/en
Publication of JPH01184106A publication Critical patent/JPH01184106A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0662Accessories, details or auxiliary operations
    • B29D2030/0675Controlling the vulcanization processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0662Accessories, details or auxiliary operations
    • B29D2030/0675Controlling the vulcanization processes
    • B29D2030/0677Controlling temperature differences

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To reduce difference in degrees of vulcanization in a thick part and a thin part and to attempt to improve quality of a product i.e., a tire, by providing a path for a heating medium both ends of which are only opened on the outer face of a vulcanization mold, an intermediate part of which is passed through on the neighbor of a thick part of a raw tire and wherein a heating medium is passed through, in the vulcanization mold. CONSTITUTION:A raw tire 6 is put in a vulcanization mold 27 and the whole vulcanization mold 27 is heated by feeding a heating medium for vulcanization of high temp. and high pressure in a closed space 22. If the raw tire 6 is large, a thick part, a bead part 11 and a shoulder part 35 of the raw tire 6 have large heat capacities and a large amt. of heat is therefore taken from parts of the vulcanization mold being brought into contact with them. Therefore, the temp. tends to drop more than the temp. of other parts, e.g., a side wall part 9. However, as a number of outer heating medium paths 33 and 34 and inner heating medium paths 36 and 37 are provided in the vulcanization mold 27, a heating medium in the closed space 22 is passed through them. Heat transfer area in the neighbor of the bead part 11 and the shoulder part 35 is thereby increased and the temp. becomes close to the temp. of other parts in the vulcanization mold 27. Vulcanization of the bead part 11 and the shoulder part 35 is thereby accelerated.

Description

【発明の詳細な説明】 二 −の1 この発明は、ドーム型加硫装置に関する。[Detailed description of the invention] 2-1 The present invention relates to a dome-shaped vulcanization device.

支末二且遺 一般に、ドーム型加硫装置は、大型または超大型、例え
ばトラック・バス用タイヤ、航空機用タイヤ、オフロー
ド用タイヤを加硫するのに用いられている。そして、こ
のようなドーム型加硫装置は、ドーム内の密閉空間内に
加硫熱媒を注入し、該加硫熱媒によって密閉空間内に設
けられた加硫モールドを加硫し、これにより加硫モール
ド内の生タイヤを加硫するようにしている。
In general, dome-shaped vulcanizers are used to vulcanize large or extra-large tires, such as truck and bus tires, aircraft tires, and off-road tires. In such a dome-shaped vulcanizing device, a vulcanizing heat medium is injected into the closed space inside the dome, and the vulcanizing mold provided in the closed space is vulcanized by the vulcanizing heat medium. The raw tire inside the vulcanization mold is vulcanized.

が ・ しようと る、 屯 しかしながら、前述したような大型、超大型タイヤにあ
っては、厚肉部、例えばショルダー部、ビード部の肉厚
が極めて厚くなるため、該厚肉部の熱容量が極めて大き
くなって周囲の加硫モールドから熱を多量に奪い、これ
により、該厚肉部近傍の加硫モールドの温度を他の部位
の温度より低下させてしまうのである。この結果、タイ
ヤの薄肉部、例えばサイドウオール部の加硫速度に比べ
、厚肉部の加硫速度が大幅に遅れてしまうのである。し
かしながら、製品タイヤの品質を定められた値以上にす
るためには、時間が大幅にかかっても厚肉部を適正加硫
になるまで加硫しなければならず、このため、生産能率
が悪化するとともに、薄肉部が過加硫となってタイヤの
品質低下を招くという問題点がある。
However, in large and extra-large tires such as those mentioned above, the thick wall parts, such as the shoulder and bead parts, are extremely thick, so the heat capacity of the thick wall parts is extremely large. As it becomes larger, it absorbs a large amount of heat from the surrounding vulcanizing mold, which causes the temperature of the vulcanizing mold near the thick portion to be lower than that of other parts. As a result, the vulcanization speed of thick-walled portions of the tire is significantly slower than the vulcanization speed of thin-walled portions of the tire, such as sidewall portions. However, in order to ensure the quality of the product tire exceeds the specified value, it is necessary to vulcanize the thick-walled parts until they are properly vulcanized, even if it takes a considerable amount of time, which reduces production efficiency. In addition, there is a problem in that the thin wall portion becomes over-vulcanized, leading to a deterioration in the quality of the tire.

。 占    るための このような問題点は、ドーム内の密閉空間内に加硫熱媒
を注入し、該加硫熱媒によって密閉空間内に設けられた
加硫モールドを加熱し、これにより加硫モールド内の生
タイヤを加硫するようにしたドーム型加硫装置において
、前記加硫モールドに、両端が加硫モールドの外面のみ
に開口するとともにその途中が生タイヤの厚肉部近傍を
通過し、内部をドーム内の加硫熱媒が流過する熱媒通路
を設け、前記厚肉部近傍の加硫モールドの温度を他の部
位の温度に近付けて、前記厚肉部の加硫を促進すること
により解決することができる。
. This problem is solved by injecting a vulcanizing heating medium into the sealed space inside the dome, and heating the vulcanizing mold set in the sealed space with the vulcanizing heating medium, thereby causing vulcanization. In a dome-shaped vulcanizing device for vulcanizing a green tire in a mold, the vulcanizing mold has both ends opening only to the outer surface of the vulcanizing mold, and the middle of the opening passing through the vicinity of the thick wall part of the green tire. , a heating medium passage is provided inside the dome through which a vulcanization heating medium flows, and the temperature of the vulcanization mold near the thick wall portion is brought closer to the temperature of other parts to promote vulcanization of the thick wall portion. The problem can be solved by

この発明のドーム型加硫装置を用いて生タイヤを加硫す
る場合には、ドームおよび加硫モールドを閉止して加硫
モールド内に生タイヤを収納する。次に、ドーム内の密
閉空間に加硫熱媒を注入して該加硫熱媒により加硫モー
ルドを加熱し、この加熱された加硫モールドによって生
タイヤを加硫する。このとき、生タイヤの厚肉部は熱容
量が大きいため、該厚肉部に接触している部位の加硫モ
ールドは厚肉部によって多量の熱が奪われ、他の部位の
加硫モールドより温度が低下しようとする。しかしなが
ら、この発明では、前記加硫モールドに、両端が加硫モ
ールドの外面のみに開口するとともに、即ち生タイヤに
型付けを行なう内面には開口しておらず、その途中が生
タイヤの厚肉部近傍を通路する熱媒通路を設け、該熱媒
通路にドーム内の加硫熱媒を流過させたので、厚肉部近
傍における伝熱面積が増大するとともに加硫熱媒が厚肉
部の極〈近傍まで接近し、これにより、厚肉部近傍の加
硫モールドの温度が他の部位の温度に近付く。この結果
、厚肉部の加硫が促進され、全体的な加硫時間が短縮す
るとともに厚肉部と薄肉部との加硫度の差が縮小される
When a green tire is cured using the dome-shaped vulcanization apparatus of the present invention, the dome and the vulcanization mold are closed and the green tire is housed in the vulcanization mold. Next, a vulcanizing heating medium is injected into the closed space within the dome, the vulcanizing mold is heated by the vulcanizing heating medium, and the green tire is vulcanized by the heated vulcanizing mold. At this time, since the thick wall part of the green tire has a large heat capacity, the vulcanizing mold in the part that is in contact with the thick part takes away a large amount of heat, and the temperature of the vulcanizing mold in other parts is higher than that of the vulcanizing mold in other parts. is about to decrease. However, in this invention, both ends of the vulcanization mold are opened only to the outer surface of the vulcanization mold, that is, they are not opened to the inner surface where the green tire is molded, and the middle part thereof is the thick wall part of the green tire. A heating medium passage was provided in the vicinity, and the vulcanizing heating medium inside the dome was allowed to flow through the heating medium passage, so that the heat transfer area near the thick part increased and the vulcanizing heating medium passed through the thick part. The temperature of the vulcanization mold near the thick part approaches the temperature of other parts. As a result, vulcanization of the thick wall portion is promoted, the overall vulcanization time is shortened, and the difference in degree of vulcanization between the thick wall portion and the thin wall portion is reduced.

火蓋1 以下、この発明の第1実施例を図面に基づいて説明する
Fire Lid 1 Hereinafter, a first embodiment of the present invention will be described based on the drawings.

第1.2図において、1はドーム型加硫装置であり、こ
のドーム型加硫装置1は円筒状の下部ドーム2が形成さ
れたベース3を有する。このベース 3には下部プラテ
ン4が固定され、この下部プラテン4上には略リング状
の下部モールド5が取り付けられている。この下部モー
ルド5は内端側上面に、半分の生タイヤ6の外形形状と
同一形状の加硫凹部7を有し、この加硫凹部7の内面は
加硫時に生タイヤ6のトレッド部8の外面およびサイド
ウオール部9の外面に接触してこれらに対し型付けを行
なう。lOは下部ビードリングであり、この下部ビード
リングlOは加硫時に生タイヤ8のビード部11の外面
に接触して該ビード部11に対し型付けを行なう。前記
ベース3の上方には下方に向かって開口した上部ドーム
21が設置され、この上部ドーム21は図示していない
昇降機構により昇降される。そして、この上部ドーム2
1が昇降機構の作動により下降して下部ドーム2に当接
したとき、これら下部、上部ドーム2.21は閉止し内
部に密閉空間22を形成する。また、この密閉空間22
内には図示していない供給機構から高温、高圧の加硫熱
媒、例えばスチームが注入される。上部ドーム21の内
面には上部プラテン23が固定され、この上部プラテン
23の下面には前記下部モールド5と対をなすリング状
の上部モールド24が取り付けられている。この上部モ
ールド24は内端部下面に、残り半分の生タイヤ6の外
形形状と同一形状をした加硫凹部25を有し、この加硫
四部25の内面は加硫時にトレッド部8の外面およびサ
イドウオール部8の外面に接触してこれらに対し型付け
を行なう。そして、前記上部モールド24が上部ドーム
21とともに下降して下部モールド5に当接したとき、
下部、上部モールド5.24は閉止し、内部に生タイヤ
6を収納する。26は上部ビードリングであり、この上
部ビードリング28は加硫時に生タイヤ6のビード部1
1の外面に接触して該ビード部11に対し型付けを行な
う。前述した下部モールド5、下部ビードリングlO1
上部モールド24、上部ビードリング26は全体として
、前記密閉空間22内に設けられた加硫モールド27を
構成し、また、前述した下部ドーム2、上部ドーム21
は全体としてドーム28を構成する。前記下部、上部プ
ラテン4.23の下部、上部モールド5.24に接触す
る上面、下面には、半径方向に延び互いに等角度離れた
多数の半径溝31.32がそれぞれ形成され、これらの
半径溝31.32の半径方向内外端は共に密閉空間22
に開口している。33.34は下部、上部モールド5.
24にそれぞれ形成された多数の外側熱媒通路であり、
これらの外側熱媒通路33.34は前記半径溝31.3
2の直上および直下にそれぞれ位置している。これら外
側熱媒通路33.34の外端は下部、上部モールド5.
24の外周面にそれぞれ開口し、一方、内端は下部モー
ルド5の下面、上部モールド24の上面にそれぞれ開口
して半径溝31.32にそれぞれ連通している。また、
これら外側熱媒通路33.34はその途中、この実施例
では中央部が生タイヤ6の厚肉部、この実施例ではショ
ルダ一部35の近傍を通過し、この部位において折れ曲
がっている。このように、外側熱媒通路33.34は下
部、上部モールド5.24の外面のみに開口しており、
下部、上部モールド5.24の内面、即ち型付けを行な
う加硫凹部7.25の内面には開口していないのである
。そして、密閉空間22内の加硫熱媒は、外側熱媒通路
33.34の両端が下部、上部モールド5.24の外面
に開口しているので、これらの外側熱媒通路33.34
の内部を流過する。−方、下部モールド5の内端部およ
び下部ビードリング10には略ユの字形をした多数の内
側熱媒通路36が形成され、これらの内側熱媒通路36
も半径溝31の直上に位置し互いに等角度離れている。
In FIG. 1.2, 1 is a dome type vulcanizer, and this dome type vulcanizer 1 has a base 3 on which a cylindrical lower dome 2 is formed. A lower platen 4 is fixed to the base 3, and a substantially ring-shaped lower mold 5 is mounted on the lower platen 4. This lower mold 5 has a vulcanization recess 7 on the upper surface on the inner end side, which has the same external shape as the half green tire 6. It contacts the outer surface and the outer surface of the sidewall portion 9 to form a mold thereon. 1O is a lower bead ring, and this lower bead ring 1O contacts the outer surface of the bead portion 11 of the green tire 8 during vulcanization to form a shape on the bead portion 11. An upper dome 21 opening downward is installed above the base 3, and the upper dome 21 is raised and lowered by a lifting mechanism (not shown). And this upper dome 2
When the dome 1 is lowered by the operation of the elevating mechanism and comes into contact with the lower dome 2, the lower and upper domes 2.21 close to form a sealed space 22 inside. In addition, this closed space 22
A high-temperature, high-pressure vulcanizing heating medium, such as steam, is injected into the chamber from a supply mechanism (not shown). An upper platen 23 is fixed to the inner surface of the upper dome 21, and a ring-shaped upper mold 24 that pairs with the lower mold 5 is attached to the lower surface of the upper platen 23. This upper mold 24 has a vulcanized recess 25 on the lower surface of the inner end, which has the same external shape as the remaining half of the green tire 6. It contacts the outer surface of the sidewall portion 8 and performs molding thereon. Then, when the upper mold 24 descends together with the upper dome 21 and comes into contact with the lower mold 5,
The lower and upper molds 5.24 are closed and the green tire 6 is housed inside. 26 is an upper bead ring, and this upper bead ring 28 is attached to the bead portion 1 of the green tire 6 during vulcanization.
The bead portion 11 is molded by contacting the outer surface of the bead portion 11. The lower mold 5 and lower bead ring lO1 mentioned above
The upper mold 24 and the upper bead ring 26 collectively constitute a vulcanization mold 27 provided in the sealed space 22, and the lower dome 2 and the upper dome 21 described above
constitutes a dome 28 as a whole. A number of radial grooves 31, 32 extending in the radial direction and equiangularly spaced from each other are formed in the lower part, the lower part of the upper platen 4.23, the upper surface and the lower surface in contact with the upper mold 5.24, respectively. Both the inner and outer ends in the radial direction of 31 and 32 are closed spaces 22
It is open to 33.34 are the lower and upper molds 5.
a large number of outer heat medium passages each formed in 24;
These outer heat medium passages 33.34 are connected to the radial grooves 31.3.
They are located directly above and directly below 2, respectively. The outer ends of these outer heat medium passages 33, 34 are connected to the lower and upper molds 5.
24, and the inner ends thereof are opened at the lower surface of the lower mold 5 and the upper surface of the upper mold 24, respectively, and communicate with the radial grooves 31 and 32, respectively. Also,
These outer heat medium passages 33, 34 pass through a thick wall portion of the green tire 6, in this embodiment, near the shoulder portion 35, and are bent at this location. In this way, the outer heat medium passages 33.34 are open only to the outer surfaces of the lower and upper molds 5.24,
The inner surfaces of the lower and upper molds 5.24, ie, the inner surfaces of the vulcanization recesses 7.25 in which molding is performed, are not opened. The vulcanizing heat medium in the sealed space 22 is transmitted through these outer heat medium passages 33.34 since both ends of the outer heat medium passages 33.34 are open to the outer surfaces of the lower and upper molds 5.24.
It flows through the inside of. On the other hand, a large number of substantially U-shaped inner heat medium passages 36 are formed at the inner end of the lower mold 5 and the lower bead ring 10, and these inner heat medium passages 36
are also located directly above the radial groove 31 and are equiangularly apart from each other.

−方、上部モールド24の内端部および上部ビードリン
グ26にも略ユの字形をした多数の内側熱媒通路37が
形成され、これらの内側熱媒通路37も半径溝32の直
下に位置し互いに等角度離れている。前記内側熱媒通路
38の端部は下部ビードリング10の上下面および下部
モールド5の下面に開口し、密閉空間22および半径溝
31にそれぞれ連通している。
On the other hand, a large number of substantially U-shaped inner heat medium passages 37 are also formed at the inner end of the upper mold 24 and the upper bead ring 26, and these inner heat medium passages 37 are also located directly below the radial groove 32. They are equiangularly apart from each other. Ends of the inner heat medium passage 38 are open to the upper and lower surfaces of the lower bead ring 10 and the lower surface of the lower mold 5, and communicate with the sealed space 22 and the radial groove 31, respectively.

一方、内側熱媒通路37の端部は上部ビードリング26
の上下面および上部モールド24の上面に開口し、密閉
空間22および半径溝32にそれぞれ連通している。ま
た、これら内側熱媒通路36.37はその途中が生タイ
ヤ6の厚肉部、この実施例ではビード部11の近傍を通
過している。このように内側熱媒通路36.37は下部
モールド5、下部ビードリング10、上部モールド24
、上部ビードリング26の外面のみに開口し、また、そ
の内部を密閉空間22内の加硫熱媒が流過する。前述し
た外側熱媒通路33.34、内側熱媒通路36.37は
全体として加硫モールド27に設けられた熱媒通路38
を構成する。
On the other hand, the end of the inner heat medium passage 37 is connected to the upper bead ring 26.
and the upper surface of the upper mold 24, and communicate with the sealed space 22 and the radial groove 32, respectively. In addition, the inner heat medium passages 36 and 37 pass through a thick portion of the green tire 6, in the vicinity of the bead portion 11 in this embodiment. In this way, the inner heat medium passages 36 and 37 are connected to the lower mold 5, the lower bead ring 10, and the upper mold 24.
, is open only on the outer surface of the upper bead ring 26, and the vulcanizing heat medium in the closed space 22 flows through the inside thereof. The aforementioned outer heat medium passages 33, 34 and inner heat medium passages 36, 37 are collectively a heat medium passage 38 provided in the vulcanization mold 27.
Configure.

そして、このような熱媒通路38は、内部に加硫熱媒が
滞留することがないように、その直径を5mm以上とす
ることが好ましいが、加硫モールド27の強度の低下を
招くことがあってはならない。また、熱媒通路38の断
面形状は円形、多角形のいずれでもよいが、円形の方が
強度的には優れ、−方、伝熱面積を広くする点では多角
形の方が優れている。
It is preferable that the diameter of such a heating medium passage 38 is 5 mm or more so that the vulcanizing heating medium does not accumulate inside, but this may lead to a decrease in the strength of the vulcanizing mold 27. It shouldn't be. Further, the cross-sectional shape of the heat medium passage 38 may be either circular or polygonal, but the circular shape is superior in terms of strength, and the polygonal shape is superior in terms of increasing the heat transfer area.

次に、この発明の第1実施例の作用について説明する。Next, the operation of the first embodiment of the present invention will be explained.

前述したようなドーム型加硫装置lを用いて生タイヤ6
を加硫する場合には、まず、生タイヤ6を下部モールド
5、下部ビードリングlo上に寝かせた状態で載置した
後、昇降機構を作動して上部ドーム21、上部プラテン
23、上部モールド24、上部ビードリング26を一体
的にベース3に接近するよう下降させる。この上部ドー
ム21の下降は、上部ドーム21が下部ドーム2に当接
し上部、下部ドーム21、2が閉止したとき停止するが
、このとき、上部ドーム21および下部ドーム2内には
密閉空間22が形成され、また、下部、上部モールド5
.24同士は当接して閉止し内部に生タイヤ6を収納す
る。次に、供給機構を通じて高温高圧の加硫熱媒を密閉
空間22内に注入し、該加硫熱媒によって加硫モールド
27全体を加熱する。そして、この加熱された加硫モー
ルド27によって加硫モールド27内の生タイヤ 6を
加硫する。ここで、生タイヤ6の厚肉部、例えばビード
部11、ショルダー部35は、該生タイヤ6が大型また
は超大型のタイヤであると、熱容量が極めて大きいため
、ビード部11、ショルダ一部35に接触している部位
の加硫モールド27はこれらビード部11、ショルダ一
部35によって多量の熱が奪われる。このため、ビード
部11、シ′ヨルダ一部35近傍の加硫モールド27は
他の部位、例えばサイドウオール部9近傍の加硫モール
ド27より温度が低下しようとする。しかしながら、前
述のように加硫モールド27に多数の外側熱媒通路33
.34、内側熱媒通路36.37を設け、これらの熱媒
通路38を通じて密閉空間22内の加硫熱媒を流過させ
るようにしているため、ビード部11、ショルダ一部3
5近傍における伝熱面積、即ち加硫熱媒と加硫モールド
27との接触面積が増大し、しかも、加硫熱媒がビード
部11、ショルダー部35の極〈近傍まで接近し中間の
伝達距離を短縮する。この結果、加硫時におけるビード
部11、ショルダ一部35近傍の加硫モールド27の温
度が他の部位の加硫モールド27の温度に近付き、ビー
ド部11、ショルダ一部35の加硫が促進される。この
ように厚内部において加硫が促進されることを示す実験
結果を第3図に示す。ここで、同図はこの発明を実施し
た発明モールドと従来モールドとを用い、同一の大型生
タイヤを同一条件で加硫した場合における厚肉部の温度
を時間をパラメータとして測定したものであり、発明モ
ールドを用いると温度上昇が速くなることが理解できる
。また、このようにして同−生タイヤを同一条件で一定
時間だけ加硫した場合の厚肉部における加硫度を測定し
たところ、従来モールドでは指数表示で100であった
のに対し、発明モールドでは指数表示で109となり、
加硫が促進されていることが理解できる。このように、
生タイヤ6の厚肉部における加硫が促進されるため、全
体的な加硫時間が短縮され、また、ビード部11、ショ
ルダ一部35等の厚肉部における加硫度とサイドウオー
ル部8等の薄肉部における加硫度の差も縮小し、製品タ
イヤの品質が向上する。
A green tire 6 is produced using a dome-shaped vulcanizer l as described above.
When vulcanizing, first, the green tire 6 is laid down on the lower mold 5 and the lower bead ring lo, and then the elevating mechanism is activated to vulcanize the upper dome 21, the upper platen 23, and the upper mold 24. , the upper bead ring 26 is lowered integrally to approach the base 3. The lowering of the upper dome 21 stops when the upper dome 21 contacts the lower dome 2 and the upper and lower domes 21 and 2 are closed, but at this time, a closed space 22 is created inside the upper dome 21 and the lower dome 2. Formed, also the lower and upper molds 5
.. 24 are brought into contact with each other and closed, and the green tire 6 is stored inside. Next, a high-temperature, high-pressure vulcanization heating medium is injected into the closed space 22 through the supply mechanism, and the entire vulcanization mold 27 is heated by the vulcanization heating medium. Then, the green tire 6 inside the vulcanization mold 27 is vulcanized by the heated vulcanization mold 27. Here, the thick portions of the green tire 6, such as the bead portion 11 and the shoulder portion 35, have an extremely large heat capacity when the green tire 6 is a large or extra-large tire. A large amount of heat is removed from the portion of the vulcanization mold 27 that is in contact with the bead portion 11 and the shoulder portion 35. Therefore, the temperature of the vulcanizing mold 27 near the bead portion 11 and the shoulder portion 35 tends to be lower than that of other portions, for example, the vulcanizing mold 27 near the sidewall portion 9. However, as described above, the vulcanization mold 27 has a large number of outer heat medium passages 33.
.. 34, inner heating medium passages 36 and 37 are provided, and the vulcanization heating medium in the closed space 22 is caused to flow through these heating medium passages 38, so that the bead portion 11 and the shoulder portion 3
The heat transfer area in the vicinity of 5, that is, the contact area between the vulcanizing heating medium and the vulcanizing mold 27 increases, and the vulcanizing heating medium approaches the poles of the bead portion 11 and the shoulder portion 35, and the intermediate transmission distance increases. shorten. As a result, the temperature of the vulcanization mold 27 near the bead portion 11 and the shoulder portion 35 during vulcanization approaches the temperature of the vulcanization mold 27 in other parts, promoting vulcanization of the bead portion 11 and the shoulder portion 35. be done. FIG. 3 shows experimental results showing that vulcanization is promoted in the thick interior. Here, the same figure shows the temperature of the thick part when the same large green tire was vulcanized under the same conditions using an inventive mold in which the present invention was implemented and a conventional mold, and the temperature was measured using time as a parameter. It can be seen that the temperature rise is faster when the inventive mold is used. In addition, when we measured the degree of vulcanization in the thick part when the same raw tire was cured under the same conditions for a certain period of time, it was 100 in the index display for the conventional mold, but the inventive mold Then, it becomes 109 in index display,
It can be seen that vulcanization is promoted. in this way,
Since vulcanization in the thick-walled portions of the green tire 6 is promoted, the overall vulcanization time is shortened, and the degree of vulcanization in the thick-walled portions such as the bead portion 11 and the shoulder portion 35 and the sidewall portion 8 are reduced. The difference in the degree of vulcanization in thin-walled areas such as vulcanization is also reduced, improving the quality of the product tire.

第4.5図はこの発明の第2実施例を示す図である。こ
の実施例においては、外側熱媒通路33.34の途中同
士は下部モールド5、上部モールド24内にそれぞれ形
成された熱媒通路の一部を構成する環状通路41.42
によって互いに連通され、また、内側熱媒通路36.3
7の途中同士は下部、上部ビードリング10.26にそ
れぞれ形成された熱媒通路の一部を構成する環状通路4
3.44によって互いに連通されている。この場合には
、外側熱媒通路33.34、内側熱媒通路36.37は
環状通路41.42.43.44に密閉空間22内の加
硫熱媒を給排する役割をすればよいので、外側熱媒通路
33.34、内側熱媒通路3B、37の設置個数を少な
くすることができ、製作が容易かつ安価となる。しかも
、この実施例では環状通路41.42.43.44が厚
肉部、即ちショルダ一部35、ビード部11の周囲をそ
れぞれ隙間なく囲んでいるため、伝熱面積が広くなると
ともに、厚肉部近傍に位置する加硫熱媒の量が多くなり
、厚肉部の加硫がさらに促進される。
FIG. 4.5 is a diagram showing a second embodiment of the present invention. In this embodiment, the outer heat medium passages 33 and 34 have annular passages 41 and 42 forming part of the heat medium passages formed in the lower mold 5 and the upper mold 24, respectively.
The inner heat transfer medium passage 36.3 also communicates with each other by
An annular passage 4 forming a part of the heat medium passage formed in the lower and upper bead rings 10 and 26 respectively
3.44. In this case, the outer heating medium passage 33.34 and the inner heating medium passage 36.37 may serve to supply and discharge the vulcanizing heating medium in the closed space 22 to and from the annular passage 41.42.43.44. , the number of outer heat medium passages 33, 34 and inner heat medium passages 3B, 37 can be reduced, making manufacturing easy and inexpensive. Moreover, in this embodiment, the annular passages 41, 42, 43, 44 surround the thick wall portions, that is, the shoulder portion 35 and the bead portion 11, without any gaps, so that the heat transfer area is widened and The amount of vulcanizing heating medium located near the thick portion increases, and vulcanization of the thick portion is further promoted.

第6.7図はこの発明の第3実施例を示す図である。こ
の実施例においては、外側熱媒通路51.52を略V字
形になすとともに、これらの外側熱媒通路51.52の
両端を下部、上部モールド5.24の外周面に共に開口
させ、一方、内側熱媒通路53.54の両端を下部ビー
ドリング10の上下面および上部ビードリング26の上
下面のみに開口させている。この結果、この実施例では
第1実施例における半径溝31.32が不要となり、製
作が容易かつ安価となる。
FIG. 6.7 is a diagram showing a third embodiment of the present invention. In this embodiment, the outer heat medium passages 51.52 are formed into a substantially V-shape, and both ends of these outer heat medium passages 51.52 are opened to the outer circumferential surfaces of the lower and upper molds 5.24. Both ends of the inner heat medium passages 53, 54 are opened only to the upper and lower surfaces of the lower bead ring 10 and the upper bead ring 26. As a result, this embodiment eliminates the need for the radial grooves 31, 32 in the first embodiment, making it easier and cheaper to manufacture.

先見立蓋】 以上説明したように、この発明によれば、密閉空間内に
注入された加硫熱媒を活用して生タイヤの厚肉部の加硫
を促進するようにしているので、全体的な加硫時間が短
縮するとともに、厚肉部と薄肉部の加硫度の差も減少し
、製品タイヤの品質が向上する。また、加硫モールドに
熱媒通路を形成するだけでよいため、既設加硫モールド
に対しても適用することができる。
As explained above, according to the present invention, the vulcanization heating medium injected into the sealed space is used to promote vulcanization of the thick walled part of the green tire, so that the entire In addition to shortening the curing time, the difference in the degree of vulcanization between thick and thin parts is also reduced, improving the quality of the product tire. Further, since it is only necessary to form a heat medium passage in the vulcanization mold, it can be applied to an existing vulcanization mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例を示す要部正面断面図、
第2図は第1図のI−I矢視断面図、第3図は試験結果
を示すグラフ、第4図はこの発明の第2実施例を示す要
部正面断面図、第5図は第4図のII −II矢視断面
図、第6図はこの発明の第3実施例を示す要部正面断面
図、第7図は第6図の■−■矢視断面図である。 1・・・ドーム型加硫装置 6・・・生タイヤ    11.35・・・厚肉部22
・・・密閉空M     27・・・加硫モールド28
・・・ドーム     38・・・熱媒通路特許出願人
  株式会社ブリデストン 代理人  弁理士  多 1)敏 雄 第3図 時間(分)→ 4 図 7〈さ、  第5図 第6図
FIG. 1 is a front sectional view of main parts showing a first embodiment of the present invention;
2 is a sectional view taken along the line II in FIG. 1, FIG. 3 is a graph showing the test results, FIG. 4 is a cross-sectional view taken along the line II--II in FIG. 4, FIG. 6 is a front cross-sectional view of a main part showing a third embodiment of the present invention, and FIG. 7 is a cross-sectional view taken along the line ■--■ in FIG. 1...Dome-shaped vulcanizing device 6...Green tire 11.35...Thick walled part 22
... Sealed air M 27 ... Vulcanization mold 28
...Dome 38...Heat medium passage Patent applicant Brideston Co., Ltd. Agent Patent attorney Ta 1) Toshio Figure 3 Time (minutes) → 4 Figure 7〈Sa, Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims]  ドーム内の密閉空間内に加硫熱媒を注入し、該加硫熱
媒によって密閉空間内に設けられた加硫モールドを加熱
し、これにより加硫モールド内の生タイヤを加硫するよ
うにしたドーム型加硫装置において、前記加硫モールド
に、両端が加硫モールドの外面のみに開口するとともに
その途中が生タイヤの厚肉部近傍を通過し、内部をドー
ム内の加硫熱媒が流過する熱媒通路を設け、前記厚肉部
近傍の加硫モールドの温度を他の部位の温度に近付ける
ことにより、前記厚肉部の加硫を促進するようにしたこ
とを特徴とするドーム型加硫装置。
A vulcanizing heating medium is injected into the sealed space in the dome, and the vulcanizing mold provided in the sealed space is heated by the vulcanizing heating medium, thereby vulcanizing the green tire in the vulcanizing mold. In the dome-shaped vulcanizing apparatus, both ends of the vulcanizing mold are opened only to the outer surface of the vulcanizing mold, and part of the opening passes near the thick part of the green tire, and the vulcanizing heat medium in the dome is inside the vulcanizing mold. A dome characterized in that vulcanization of the thick walled portion is promoted by providing a heat medium passage through which the heating medium flows and bringing the temperature of the vulcanization mold near the thick walled portion closer to the temperature of other parts. Mold vulcanization equipment.
JP804588A 1988-01-18 1988-01-18 Dome-type vulcanizing apparatus Pending JPH01184106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP804588A JPH01184106A (en) 1988-01-18 1988-01-18 Dome-type vulcanizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP804588A JPH01184106A (en) 1988-01-18 1988-01-18 Dome-type vulcanizing apparatus

Publications (1)

Publication Number Publication Date
JPH01184106A true JPH01184106A (en) 1989-07-21

Family

ID=11682369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP804588A Pending JPH01184106A (en) 1988-01-18 1988-01-18 Dome-type vulcanizing apparatus

Country Status (1)

Country Link
JP (1) JPH01184106A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991011310A1 (en) * 1990-01-29 1991-08-08 Sumitomo Gomu Kogyo Kabushiki Kaisha Vulcanization method and apparatus for elastomer articles
JP2003025331A (en) * 2001-07-23 2003-01-29 Sumitomo Rubber Ind Ltd Tire vulcanizing method and tire vulcanizer
JP2010260212A (en) * 2009-04-30 2010-11-18 Sumitomo Rubber Ind Ltd Method for vulcanizing tire
US20120111464A1 (en) * 2009-08-21 2012-05-10 Kabushiki Kaisha Bridgestone Method for manufacturing base tire, curing machine, and base tire
US20120263813A1 (en) * 2009-12-24 2012-10-18 Fuji Seiko Co., Ltd. Tire vulcanizing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991011310A1 (en) * 1990-01-29 1991-08-08 Sumitomo Gomu Kogyo Kabushiki Kaisha Vulcanization method and apparatus for elastomer articles
JP2003025331A (en) * 2001-07-23 2003-01-29 Sumitomo Rubber Ind Ltd Tire vulcanizing method and tire vulcanizer
JP4739590B2 (en) * 2001-07-23 2011-08-03 住友ゴム工業株式会社 Tire vulcanizing method and vulcanizing apparatus
JP2010260212A (en) * 2009-04-30 2010-11-18 Sumitomo Rubber Ind Ltd Method for vulcanizing tire
US20120111464A1 (en) * 2009-08-21 2012-05-10 Kabushiki Kaisha Bridgestone Method for manufacturing base tire, curing machine, and base tire
EP2468469B1 (en) * 2009-08-21 2018-05-09 Kabushiki Kaisha Bridgestone Base-tire manufacturing method, vulcanization device
US20120263813A1 (en) * 2009-12-24 2012-10-18 Fuji Seiko Co., Ltd. Tire vulcanizing device
US8662871B2 (en) * 2009-12-24 2014-03-04 Fuji Shoji Co., Ltd. Tire vulcanizing device
DE112010004993B4 (en) * 2009-12-24 2021-01-28 Fuji Seiko Co.,Ltd. TIRE VULCANIZER

Similar Documents

Publication Publication Date Title
US4568259A (en) Tire mold
US3153263A (en) Tire curing press
EP1629963B1 (en) Tire curing bladder
EP0850131B1 (en) Injection molding of a tire component
JPH01184106A (en) Dome-type vulcanizing apparatus
RU2618059C2 (en) Method and device for tire vulcanization
US3974018A (en) Device for making pneumatic tires
US4444612A (en) Method and apparatus for the injection molding and vulcanization of vehicle tires
JP7469603B2 (en) Tire vulcanization method
JP3599510B2 (en) Tire curing equipment
CN108340514B (en) Tyre vulcanized mould
EP1749636B1 (en) Mould and method of manufacturing an emergency support to be positioned inside a pneumatic tire.
JP2004034652A (en) Vulcanizing mold
JP7428875B2 (en) Tire vulcanization equipment and method
JPH01228807A (en) Tire mold and tire
JPH08174554A (en) Tire vulcanizing mold apparatus
RU2678266C1 (en) Method of manufacturing large-size pneumatic tires
KR200141862Y1 (en) A preheating device of mold for vulcanizing a tire
US1719218A (en) Apparatus for vulcanizing rubber articles
KR19990016045U (en) Structure of Bladder Mold for Tire Vulcanization
KR0160079B1 (en) Envelope manufacturing apparatus of a recycling tyre
KR100248634B1 (en) A tyre vulcanizing method
SU1147579A1 (en) Device for vulcanization of ring-type articles
KR102320139B1 (en) Vacuum container for curing tyre
JP2009208400A (en) Tire production method and production equipment