JPH01183191A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH01183191A
JPH01183191A JP731988A JP731988A JPH01183191A JP H01183191 A JPH01183191 A JP H01183191A JP 731988 A JP731988 A JP 731988A JP 731988 A JP731988 A JP 731988A JP H01183191 A JPH01183191 A JP H01183191A
Authority
JP
Japan
Prior art keywords
layer
type
diffused
impurity
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP731988A
Other languages
Japanese (ja)
Inventor
Hirobumi Namisaki
浪崎 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP731988A priority Critical patent/JPH01183191A/en
Publication of JPH01183191A publication Critical patent/JPH01183191A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2063Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce an operation current and to simply form electrodes by narrowing an interval between impurity diffused regions at an active layer position to be diffused with the impurity near an active layer as compared with the width of a clad layer of an electrode forming side. CONSTITUTION:A p-type impurity of Zn, Be or the like is implanted by an ion implanting method to a surface including a MQW active layer 1 of a region etched at both sides for holding a stripe, thereby forming an ion implanted region 60. Then, a mask 50 is removed, the implanted impurity is diffused and moved by heat treating so that the interval between the diffused parts becomes 2mum or less at the layer 1. In this case, the thickness of an n-type AlGaAs clad layer 2 is sufficiently increased to eliminate the influence of the diffused part to an n-type GaAs contact layer 20, and a p-type electrode 100 and an n-type electrode 101 are eventually formed. Thus, the threshold value of an operation current can be reduced, and a laser having a stable oscillation mode is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子素子との集積に適しかつ一動作電流の
小さい半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser that is suitable for integration with electronic devices and has a small operating current.

〔従来の技術] 第3図は、例えば文献「第48回応用物理学会学術講演
会予稿集(昭和62年10月) 18a −ZR−9,
Jに示された従来の半導体レーザの断面図であり、図に
おいて(1)は活性領域となる多重量子井戸(Mult
i Quantum Well、 MQW)層、(2)
はn型AlGaAsクラッド層、(3)はP型AlGa
Asクラッド層、0αは半絶縁性(Sl)GaAs基板
−(2)はn型GaAsコンタクト層、00)は不純物
拡散領域、(100)はP電極、(101)はn電極で
ある。
[Prior art] Fig. 3 is based on, for example, the document "Proceedings of the 48th Academic Conference of the Japan Society of Applied Physics (October 1986) 18a-ZR-9,
1 is a cross-sectional view of the conventional semiconductor laser shown in FIG.
i Quantum Well, MQW) layer, (2)
(3) is an n-type AlGaAs cladding layer, and (3) is a p-type AlGaAs cladding layer.
As cladding layer, 0α is a semi-insulating (Sl) GaAs substrate, (2) is an n-type GaAs contact layer, 00) is an impurity diffusion region, (100) is a P electrode, and (101) is an n electrode.

この半導体レーザは以下のような手順により作製される
This semiconductor laser is manufactured by the following procedure.

まず−半絶縁性(SI)GaAs基板00)上に、P型
A I G a A sクラッド層(3)−活性領域と
なる多重量子井戸(MQW)層(1)、n fjl A
I GaA+sクラッド層(2)、n型GaAsコンタ
クト層(20)を順次形成し−その後不純物である亜鉛
(Zn)を選択的に拡散しストライプ状にn型領域を残
した不純物拡散領域■を形成し−さらにp −n接合が
表面に現れる部分のn1cyaAsクラッド層@)を選
択エツチングしてP及びnそれぞれの表面にP電極Q[
KI及びn電極(101)を形成する。このようにする
と、活性層のMQW層(1)はZn拡散部分が無秩序化
し平均的な組成のAlGaAs層になる。
First, - on a semi-insulating (SI) GaAs substrate 00), a P-type AI GaAs cladding layer (3) - a multiple quantum well (MQW) layer (1) that will become an active region, n fjl A
I A GaA+s cladding layer (2) and an n-type GaAs contact layer (20) are sequentially formed - then impurity zinc (Zn) is selectively diffused to form an impurity diffusion region (2) leaving an n-type region in a stripe shape. Furthermore, the part where the p-n junction appears on the surface of the n1cyaAs cladding layer @) is selectively etched to form a P electrode Q [
KI and n electrodes (101) are formed. In this way, the Zn diffusion portion of the active MQW layer (1) becomes disordered and becomes an AlGaAs layer with an average composition.

次に動作について説明する。この様な構造ではNQW層
(1)の無秩序化されていない活性領域周辺のp −n
接合およびその上部n型AlGaAsクラッド層(2)
と両側の拡散部分の間に形成される2つのP−n接合を
持つことになる。前者のMQW活性領域周辺のp −n
接合は後者の2つのp −n接合に比べて拡散電位が低
いためPt n両電極間に電圧を印加すると電流は電位
の低い活性領域周辺のp −n接合に流れ−キャリアを
活性領域に注入する。
Next, the operation will be explained. In such a structure, p −n around the undisordered active region of the NQW layer (1)
Junction and its upper n-type AlGaAs cladding layer (2)
and two P-n junctions formed between the diffusion portions on both sides. p −n around the former MQW active region
Since the diffusion potential of the junction is lower than that of the latter two p-n junctions, when a voltage is applied between both Ptn electrodes, current flows to the p-n junction around the active region where the potential is low - injecting carriers into the active region. do.

活性領域は4辺を屈折率の低いAlGaAsで囲まれて
いるため光の導波路となり幅を十分に狭くできれば安定
な単一横モードで発振し、かつ低しきい値が得られる。
Since the active region is surrounded by AlGaAs with a low refractive index on all four sides, it becomes an optical waveguide, and if the width can be made sufficiently narrow, it can oscillate in a stable single transverse mode and obtain a low threshold.

電極がp −n双方とも同一主面上に形成できかつ段差
も極めて少ないので集積化に適している。
Since both p and n electrodes can be formed on the same main surface and there are very few steps, it is suitable for integration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の半導体レーザでは、n型電極を形成
するため活性領域の幅をあまり狭くできないので、しき
い値はあまり下がらず、モードも安定しない欠点があっ
た。これは通常技術では写真製版によって2μm程度の
幅の電極を形成するのか限界であり一一方単一横モード
の条件は活性層幅か2μm以下だからである。また、仮
に1μm以下の電極幅が形成されたとしてもその位置合
せは困難であり、かつ連続動作のレーザとしては1tu
iiの抵抗値が大きすぎるという問題があった。
In the conventional semiconductor laser as described above, since an n-type electrode is formed, the width of the active region cannot be made very narrow, so the threshold value does not decrease much and the mode is not stable. This is because in the conventional technology, it is possible to form an electrode with a width of about 2 μm by photolithography, and on the other hand, the condition for a single transverse mode is that the active layer width is 2 μm or less. Furthermore, even if an electrode width of 1 μm or less is formed, it is difficult to align the electrode, and as a continuous operation laser, 1 tu
There was a problem that the resistance value of ii was too large.

この発明は−かかる間匙点を解決するためになされたも
の、動作電流が小さく且つ電極の形成が簡単な半導体レ
ーザを得ることを目的とする。
The present invention has been made to solve this problem, and an object of the present invention is to provide a semiconductor laser with a small operating current and simple electrode formation.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザは、活性石近傍に不純物拡
散を行い、活性層位姐における不純物拡散領域間の間隔
か電極形成側のクラッド層の幅よりも狭くなるように構
成したものである。
In the semiconductor laser according to the present invention, impurity is diffused near the active stone so that the distance between the impurity diffusion regions in the active layer is narrower than the width of the cladding layer on the electrode formation side.

〔作用〕[Effect]

この発明においては、活性層部分で拡散領域間の間隔を
狭め、電極形成部は広く残すことにより、電極を広く、
活性領域を狭く作ることが出来るため、動作電流のしき
い値を小さく出来る。
In this invention, the distance between the diffusion regions is narrowed in the active layer portion, and the electrode formation portion is left wide, so that the electrode can be made wider.
Since the active region can be made narrower, the threshold value of the operating current can be lowered.

〔実施例〕〔Example〕

第1図は、この発明の一実施例を示す断面図であり、(
1)〜(3)、α01.(20+は上記従来素子と同一
のものである。(4)は不純物拡散領域−0頭はP電極
、(101)はn電極であり、MQW活性層(1)での
不純物拡散領域■間の間隔をクラッド層+21 +31
でのそれよりも小さい2μm以下にしている。したがっ
て電極形成側のクラッド層(2)上には不純物拡散領域
■間の  間隙よりも大きいn電極(101)を形成す
ることができる。
FIG. 1 is a sectional view showing an embodiment of the present invention.
1) to (3), α01. (20+ is the same as the above conventional element. (4) is the impurity diffusion region - 0 is the P electrode, (101) is the n electrode, and the space between the impurity diffusion region (■) in the MQW active layer (1) is Spacing between cladding layers +21 +31
It is set to 2 μm or less, which is smaller than that in the previous example. Therefore, it is possible to form an n-electrode (101) larger than the gap between the impurity diffusion regions (2) on the cladding layer (2) on the electrode formation side.

第2図は、この発明の一実施例における半導体レーザを
実現する製造方法の一例を示すものである。図中第1図
および第3図と同一符号は同一部分を示し、艶はマスク
、(FAはイオン注入領域である。まず第2図(a)に
おいて−8I −GaAs基板aα上に、P型AlGa
As り5 ”7ド層(3)、MQW活性層(1)、n
型AIGaAIIり5 ’/ド層(2)、n型GaAs
:+ンタクト層(2)を液相あるいは気相エピタキシャ
ル法により形成する。次に第2図(b)に示すように、
n型G a A sコンタクト層(イ)の一部にレジス
トなどでマスク団を形成し、表面2層までを選択的にエ
ツチングで落とし一基板(101と異なる側のn型Al
GaAsクラッド層(2)の一部をストライプ状に残す
。マスクの幅は5μm程度とする。次に第2図(C)に
示すように、Zn、Be等のP型不純物をイオン注入法
により、ストライプを挾む両側のエツチングされた領域
のMQW活性層(1)を含む表面部分に注入し、イオン
注入領域(60)を形成する。次に第2図(d)のよう
にマスク槌を除去し、熱処理することによって、注入さ
れた不純物を拡散、移動させ、MQW活性層(1)にお
いて拡散部分間の間隔が2μm以下になるようにする。
FIG. 2 shows an example of a manufacturing method for realizing a semiconductor laser according to an embodiment of the present invention. In the figure, the same reference numerals as in FIGS. 1 and 3 indicate the same parts, the gloss is a mask, (FA is an ion implantation region. First, in FIG. 2(a), a P-type AlGa
Asri5''7 layer (3), MQW active layer (1), n
Type AIGaAII layer 5'/de layer (2), n-type GaAs
:+The contact layer (2) is formed by liquid phase or vapor phase epitaxial method. Next, as shown in Figure 2(b),
A mask group is formed using a resist or the like on a part of the n-type GaAs contact layer (a), and up to two layers on the surface are selectively etched away.
A portion of the GaAs cladding layer (2) is left in a stripe shape. The width of the mask is approximately 5 μm. Next, as shown in FIG. 2(C), P-type impurities such as Zn and Be are implanted into the surface area including the MQW active layer (1) in the etched regions on both sides of the stripe by ion implantation. Then, an ion implantation region (60) is formed. Next, as shown in FIG. 2(d), the mask hammer is removed and heat treatment is performed to diffuse and move the implanted impurities, so that the distance between the diffusion parts in the MQW active layer (1) becomes 2 μm or less. Make it.

この時−n型AlGaAsクラッド層(2)の厚さを十
分厚くして拡散部分がn型GaAsコンタクト層(イ)
に及ぶことのないようにしておく。最後に第2図(e)
に示すようにP電極(9)及びn電極(101)を形成
し素子が完成する。
At this time, the thickness of the n-type AlGaAs cladding layer (2) is made sufficiently thick so that the diffusion portion becomes the n-type GaAs contact layer (a).
Make sure that it does not extend to Finally, Figure 2 (e)
As shown in the figure, a P electrode (9) and an N electrode (101) are formed to complete the device.

上記のように構成された半導体レーザにおいては、n電
極(101)は数μ(約2μm以上)の幅に形成でき、
通常の写真製版技術により容易に形成でき、かつMQW
活性領域は2μm以下と狭くすることかできる。従って
一安定な単一横モード発振が得られ、しきい値も十分低
いレーザが得られる。また、P、1両電極は同一主面上
に形成され、数μmの微小段差に抑えられ、他の電子回
路との集積に適する半導体レーザが得られる。
In the semiconductor laser configured as described above, the n-electrode (101) can be formed to have a width of several μm (approximately 2 μm or more),
It can be easily formed using ordinary photolithography technology, and MQW
The active region can be made as narrow as 2 μm or less. Therefore, a laser with stable single transverse mode oscillation and a sufficiently low threshold value can be obtained. In addition, both the P and 1 electrodes are formed on the same main surface, and the step difference is suppressed to a few micrometers, resulting in a semiconductor laser suitable for integration with other electronic circuits.

なお、上記実施例では、活性層を多重蓋子井戸(MQW
)としたが必すしも多重である必要はなく単層の量子井
戸でもよい。また、G a A s系のレーザを例にあ
げたがInP系など他の材料のレーザに適用できること
は明らかである。さらにSiなどn型不純物のイオンを
注入することもできるので、P型とn型を反転させた構
造も同様の効果を持つことは明らかである。下クラッド
層のみを反対の導電型にしてもキャリヤ注入が両側の拡
散領域のみから起こり、例のような下クラッド層からの
注入が起こらないことを除けば、効果は同様である。
Note that in the above embodiment, the active layer is made of a multi-cover well (MQW).
), but it is not necessarily necessary to have multiple quantum wells, and a single-layer quantum well may be used. Further, although a GaAs-based laser is given as an example, it is obvious that the present invention can be applied to lasers made of other materials such as InP-based lasers. Furthermore, since ions of n-type impurities such as Si can be implanted, it is clear that a structure in which the P-type and n-type are reversed has the same effect. Even if only the lower cladding layer is made of the opposite conductivity type, the effect is the same, except that carrier injection occurs only from the diffusion regions on both sides and injection from the lower cladding layer as in the example does not occur.

エツチングを途中で止めたり、また若干活性層より下ま
でエツチングしても同様の効果が得られる。
A similar effect can be obtained by stopping the etching midway or by etching slightly below the active layer.

なお、エツチングは素子全域におよばず、活性領域の両
側に溝状に行うこともできることは以上の説明から明ら
かである。なお、エツチングを行なわすに、不純物拡散
領域間の間隔を活性層部分′で狭くしてもよい。
It is clear from the above description that the etching does not have to cover the entire area of the device, but can also be performed in the form of grooves on both sides of the active region. Incidentally, when etching is performed, the interval between the impurity diffusion regions may be narrowed in the active layer portion'.

ところで上記説明では、この発明を単一のレーザに利用
する場合について述べたが、複数個のし一ザからなる半
導体レーザないしオプトエレクトロニックIC等、その
他の半導体レーザにも利用できることはいうまでもない
By the way, in the above explanation, the case where this invention is applied to a single laser is described, but it goes without saying that it can also be applied to other semiconductor lasers such as a semiconductor laser made up of a plurality of lasers or an optoelectronic IC. .

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり一電極の幅をあまり狭め
ずに、選択的に不純物拡散を行なうことにより活性層の
幅を狭めたため容易に製造でき−かつ、集積化に適した
−低しきい値、安定な発振モードのレーザが得られる効
果がある。
As explained above, this invention narrows the width of the active layer by selectively diffusing impurities without narrowing the width of one electrode too much, making it easy to manufacture and suitable for integration. This has the effect of providing a laser with a stable oscillation mode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による半導体レーザを示
す断面図、第2図はこの発明の一実施例における半導体
レーザの製造方法の一例を示す図−第3図は従来の半導
体レーザを示す断面図である。 図におイテ、(1)はMQW活性層、(2)はn −A
IGaA@クラット層、(3)はp−AlGaAsクラ
ッド層、00)は8l−GaAs基板、@)はn−Ga
As :ll :/ タクト層、■は不純物拡散領域、
■はマスク−(60)はイオン注入領域、a(ト)はP
電極−(101)はn電極である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing a semiconductor laser according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing an example of a method for manufacturing a semiconductor laser according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view showing a conventional semiconductor laser. FIG. As shown in the figure, (1) is the MQW active layer, (2) is the n-A
IGaA@crat layer, (3) is p-AlGaAs clad layer, 00) is 8l-GaAs substrate, @) is n-Ga
As :ll :/ tact layer, ■ is impurity diffusion region,
■ is the mask, (60) is the ion implantation region, a (g) is P
Electrode (101) is an n-electrode. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 活性層を両側から挾むクラッド層を有するレーザにおい
て、不純物拡散領域間の間隔が活性層よりも少くとも電
極形成側のクラッド層において拡大されていることを特
徴とする半導体レーザ。
1. A semiconductor laser having cladding layers sandwiching an active layer from both sides, characterized in that the distance between impurity diffusion regions is wider at least in the cladding layer on the electrode formation side than in the active layer.
JP731988A 1988-01-14 1988-01-14 Semiconductor laser Pending JPH01183191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP731988A JPH01183191A (en) 1988-01-14 1988-01-14 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP731988A JPH01183191A (en) 1988-01-14 1988-01-14 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01183191A true JPH01183191A (en) 1989-07-20

Family

ID=11662662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP731988A Pending JPH01183191A (en) 1988-01-14 1988-01-14 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01183191A (en)

Similar Documents

Publication Publication Date Title
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPH0221683A (en) Semiconductor laser device
JPS62130581A (en) Semiconductor laser
JP4011640B2 (en) Semiconductor laser and method for manufacturing semiconductor laser
US4888781A (en) Semiconductor laser
JPH02156692A (en) Semiconductor laser and manufacture thereof
JPH01183191A (en) Semiconductor laser
JPH0828553B2 (en) Semiconductor laser
JPH02305487A (en) Semiconductor laser
JPS637691A (en) Semiconductor laser device
JPH02174286A (en) Manufacture of semiconductor laser
JP2605478B2 (en) Method of manufacturing semiconductor laser device
JP2550711B2 (en) Semiconductor laser
JPS6373691A (en) Semiconductor laser device
JPS6118189A (en) Semiconductor laser array device and manufacture thereof
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JPH0138389B2 (en)
JPS62244167A (en) Optical, electronic semiconductor integrated circuit
JPS61135186A (en) Semiconductor laser
JPH02214185A (en) Manufacture of semiconductor laser
JPH04296081A (en) Visible beam semiconductor laser
JPS63175492A (en) Semiconductor laser device
JPH05121823A (en) Manufacture of semiconductor laser device
JPS6260285A (en) Semiconductor laser element
JPS61270886A (en) Semiconductor laser device