JPH01183169A - Manufacture of photodetector - Google Patents
Manufacture of photodetectorInfo
- Publication number
- JPH01183169A JPH01183169A JP63007309A JP730988A JPH01183169A JP H01183169 A JPH01183169 A JP H01183169A JP 63007309 A JP63007309 A JP 63007309A JP 730988 A JP730988 A JP 730988A JP H01183169 A JPH01183169 A JP H01183169A
- Authority
- JP
- Japan
- Prior art keywords
- film
- oxide film
- wafer
- anodic oxide
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000004065 semiconductor Substances 0.000 claims abstract description 19
- 150000001875 compounds Chemical class 0.000 claims abstract description 16
- 239000010407 anodic oxide Substances 0.000 claims description 40
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 239000002184 metal Substances 0.000 abstract description 13
- 230000003647 oxidation Effects 0.000 abstract description 7
- 238000007254 oxidation reaction Methods 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 7
- 238000011109 contamination Methods 0.000 abstract description 3
- 230000003449 preventive effect Effects 0.000 abstract 5
- 238000000206 photolithography Methods 0.000 description 8
- 230000003667 anti-reflective effect Effects 0.000 description 5
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 235000002906 tartaric acid Nutrition 0.000 description 4
- 239000011975 tartaric acid Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- MODGUXHMLLXODK-UHFFFAOYSA-N [Br].CO Chemical compound [Br].CO MODGUXHMLLXODK-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910001229 Pot metal Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、光検知素子の製造方法に係り、特に光導電
型赤外線検知素子等の保護膜としての陽極酸化膜を高品
位に形成できる光検知素子の製造方法に関するものであ
る。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a photodetecting element, and in particular to a method for manufacturing a photoconductive infrared detecting element, etc. The present invention relates to a method for manufacturing a sensing element.
第1図(a)は光導電型赤外線検知素子の構造の一例を
示す平面図、第1図(b)は、同図(a)に示した切断
線A−Aの断面図である。この図において、1は赤外線
検知素子用ウェハ(以下単にウェハと称す)で、高抵抗
の基板1aと化合物半導体1bとから構成されている。FIG. 1(a) is a plan view showing an example of the structure of a photoconductive infrared sensing element, and FIG. 1(b) is a sectional view taken along the cutting line AA shown in FIG. 1(a). In this figure, reference numeral 1 denotes a wafer for an infrared sensing element (hereinafter simply referred to as a wafer), which is composed of a high-resistance substrate 1a and a compound semiconductor 1b.
化合物半導体1bは、例えばn型のCd X Hg 1
−X T e等が該当し、高抵抗の基板1a上にエピタ
キシャル成長などの方法によって所定の厚さに形成され
る。ただし、XはO≦X≦1なる組成比を表す。The compound semiconductor 1b is, for example, n-type Cd x Hg 1
-X Te, etc., and is formed to a predetermined thickness on a high-resistance substrate 1a by a method such as epitaxial growth. However, X represents a composition ratio of O≦X≦1.
Cdx Hg+−x Teはバンドギャップの狭い半導
帯で、組成比x=0.3のものは3〜5μm波帯の、ま
た、組成比X=0.2のものは10μm波帯の赤外線検
知素子として広く利用されている。Cdx Hg+-x Te is a semiconductor band with a narrow bandgap, and those with a composition ratio x = 0.3 are suitable for infrared detection in the 3-5 μm waveband, and those with a composition ratio X = 0.2 are suitable for infrared detection in the 10 μm waveband. It is widely used as an element.
2は溝で、高抵抗の基板1aに達するか、それよりも深
く掘るものとする。3は金属蒸着膜、3aは電極で、金
属蒸着膜3のなかで電極として用いられる部分を示す。A groove 2 is dug to reach or be deeper than the high-resistance substrate 1a. 3 is a metal vapor deposited film, and 3a is an electrode, indicating a portion of the metal vapor deposit film 3 that is used as an electrode.
金属蒸着膜3は、例えば蒸着したCr上にざらにAuを
蒸着した(以下Cr/Auと記す)金属膜である。4は
受光面、5は陽極酸化膜で、受光面4表面の安定化のた
めに形成された膜で、その形成により直下の化合物半導
体1bがn+化される。このため、赤外線入射により発
生する過剰少数キャリアの正孔が表面に拡散しにくくな
り表面結合が防止される。6は反射防止膜で、材質は、
例えばZnSで10μm波帯の赤外線検知素子の場合そ
の厚さは11μmである。The metal vapor deposition film 3 is, for example, a metal film in which Au is roughly vapor-deposited on vapor-deposited Cr (hereinafter referred to as Cr/Au). 4 is a light-receiving surface, and 5 is an anodic oxide film, which is formed to stabilize the surface of the light-receiving surface 4. By forming this film, the compound semiconductor 1b immediately below becomes n+. Therefore, holes of excess minority carriers generated by the incidence of infrared rays are difficult to diffuse to the surface, and surface bonding is prevented. 6 is an anti-reflection film, the material is:
For example, in the case of an infrared sensing element made of ZnS and having a wave band of 10 μm, its thickness is 11 μm.
次に第2図(a)、(b)、(c)を参照しながら第1
図(a)、(b)に示した光導電型の赤外線検知素子の
従来の製造方法について説明する。なお、各図中の同一
符号は同一または相当部分を示す。Next, while referring to FIGS. 2(a), (b), and (c),
A conventional method for manufacturing the photoconductive infrared sensing element shown in FIGS. (a) and (b) will be described. Note that the same reference numerals in each figure indicate the same or corresponding parts.
まず、高抵抗の基板1a上に化合物半導体1bを形成し
、ウェハ1を作成する。次に、ウェハ1を写真製版法を
用いてエツチングし、第2図(a)に示すようなコの字
型の溝2を形成する。First, a compound semiconductor 1b is formed on a high-resistance substrate 1a, and a wafer 1 is created. Next, the wafer 1 is etched using photolithography to form a U-shaped groove 2 as shown in FIG. 2(a).
続いて、ウェハ1をブロムメタノール液を用いて軽くエ
ツチングして清浄にした後、Cr/Auを蒸着し、写真
製版法を用いて第2図(b)に示すような形状の金属蒸
着膜3を形成する。なお、金属蒸着膜3の形成は、リフ
トオフ法を用いてもおこなえる。この場合には、写真製
版法を用いて所定形状のレジスト膜を形成した後、ウェ
ハ1の露出した面をブロムメタノール液を用いてエツチ
ングし、清浄にしたうえでCr / A uを蒸着する
。Subsequently, after cleaning the wafer 1 by lightly etching it with a bromine-methanol solution, Cr/Au is deposited, and a metal deposited film 3 having a shape as shown in FIG. 2(b) is formed using photolithography. form. Note that the metal vapor deposition film 3 can also be formed using a lift-off method. In this case, after a resist film of a predetermined shape is formed using photolithography, the exposed surface of the wafer 1 is etched using a bromine methanol solution and cleaned, and then Cr/Au is deposited.
その後、不要部分のレジスト膜を剥離すると同時にレジ
スト膜上のCr / A uをも除去することにより第
2図(b)に示した金属蒸着膜3が得られる。Thereafter, unnecessary portions of the resist film are peeled off and at the same time, Cr/Au on the resist film is also removed, thereby obtaining the metal vapor deposited film 3 shown in FIG. 2(b).
次にウェハ1をプラズマ陽極酸化し、陽極酸化膜5を形
成する。この時、金属蒸着膜3がマスクとなるので、第
2図(b)に示す金属蒸着膜3以外の露出している部分
、すなわち化合物半導体15部分にのみ陽極酸化膜5が
形成される。Next, the wafer 1 is subjected to plasma anodic oxidation to form an anodic oxide film 5. At this time, since the metal vapor deposited film 3 serves as a mask, the anodic oxide film 5 is formed only on the exposed portion other than the metal vapor deposited film 3 shown in FIG. 2(b), that is, on the compound semiconductor 15 portion.
上記のように金属蒸着膜3をマスクとして陽極酸化膜5
を選択的に形成した後、反射防止膜6を蒸着、スパッタ
等の方法によりウェハ1の表面全面に形成する。As described above, the anodic oxide film 5 is formed using the metal vapor deposited film 3 as a mask.
After selectively forming the wafer 1, an antireflection film 6 is formed on the entire surface of the wafer 1 by a method such as vapor deposition or sputtering.
次に、写真製版法を用いて反射防止膜6をエツチングし
、第2図(C)に示すような電極3aを形成し、最後に
ダイシングソーを用いウェハ1を切断分割し、第1図(
a)、(b)に示したような赤外線検知素子を製造して
いた。Next, the antireflection film 6 is etched using photolithography to form the electrodes 3a as shown in FIG.
The infrared sensing elements shown in a) and (b) were manufactured.
〔発明が解決しようとする課題)
しかし、以上説明したような従来の光検知素子の製造方
法では、受光面4の反射防止膜6に剥離が起こったり、
剥離しない場合でも素子特性が劣化するという問題点が
あった。[Problems to be Solved by the Invention] However, in the conventional method of manufacturing a photodetecting element as described above, peeling may occur in the antireflection film 6 on the light receiving surface 4.
Even when no peeling occurs, there is a problem in that device characteristics deteriorate.
これは、金属蒸着膜3形成時の写真製版等によって汚染
された化合物半導体1bを直接陽極酸化して陽極酸化膜
5を形成したため、その膜質が劣っていること、あるい
は陽極酸化膜5の形成後、反射防止膜6の形成までに間
があき、陽極酸化膜5の表面が汚染されるなどの理由に
よる。This is because the anodic oxide film 5 was formed by directly anodizing the compound semiconductor 1b contaminated by photolithography during the formation of the metal vapor deposited film 3, or because the film quality was poor, or after the formation of the anodic oxide film 5. This is because there is a delay before the antireflection film 6 is formed, and the surface of the anodic oxide film 5 is contaminated.
この発明は、上記のような問題点を解決するためになさ
れたもので、膜質がよく表面が汚染されていない陽極酸
化膜の上に反射防止膜を形成することのできる光検知素
子の製造方法を提供することを目的とする。This invention was made to solve the above-mentioned problems, and provides a method for manufacturing a photodetector element in which an antireflection film can be formed on an anodic oxide film with good film quality and an uncontaminated surface. The purpose is to provide
〔課題を解決するための手段)
この発明に係る光検知素子の製造方法は、受光面となる
化合物半導体上に陽極酸化膜を形成する酸化膜形成工程
と、この酸化膜形成工程で形成された陽極酸化膜を除去
する工程と、陽極酸化膜除去後に再度陽極酸化膜を形成
する工程と、再度形成された陽極酸化膜上に反射防止膜
を形成する工程とを含むものである。[Means for Solving the Problems] A method for manufacturing a photodetecting element according to the present invention includes an oxide film formation step of forming an anodic oxide film on a compound semiconductor serving as a light-receiving surface; The method includes a step of removing the anodic oxide film, a step of forming an anodic oxide film again after removing the anodic oxide film, and a step of forming an antireflection film on the anodic oxide film formed again.
この発明においては、酸化膜形成工程で形成された陽極
酸化膜とともに素子上の汚染が除去され、素子上の汚染
を除去した後に膜質のよい陽極酸化膜が再形成され、再
形成された良質の酸化膜上に高品位の反射防止膜が形成
される。In this invention, contamination on the element is removed together with the anodic oxide film formed in the oxide film forming process, and after removing the contamination on the element, a high-quality anodic oxide film is re-formed, and the re-formed high-quality anodic oxide film is re-formed. A high quality anti-reflection film is formed on the oxide film.
〔実施例)
以下、この発明の光検知素子の製造方法の一実施例を第
1図および第2図を用いて説明する。なお、第1図およ
び第2図は従来例を説明する図とこの発明の一実施例を
説明する図とを兼ねている。[Example] Hereinafter, an example of the method for manufacturing a photodetecting element of the present invention will be described with reference to FIGS. 1 and 2. Note that FIGS. 1 and 2 serve both as a diagram for explaining a conventional example and a diagram for explaining an embodiment of the present invention.
この発明の一実施例を示す光検知素子の製造方法におい
ては、陽極酸化膜5の形成までを従来例と全く同様にし
ておこなう。すなわち、高抵抗の基板1a上に化合物半
導体1bを形成し、ウェハ1を作成する。次にウェハ1
を写真製版法を用いてエツチングし、第2図(a)に示
すようなコの字型の溝2を形成する。続いて、ウェハ1
をブロムメタノール液を用いて軽くエツチングして清浄
した後、Cr / A uを蒸着し、写真製版法を用い
て第2図(b)に示すような形状の釜属蒸着11113
を形成する。次にウェハ1をプラズマ陽極酸化し、第2
図(b)に示す化合物半導体1b部分に陽極酸化膜5を
形成する。In a method for manufacturing a photodetector element representing an embodiment of the present invention, steps up to the formation of the anodic oxide film 5 are performed in exactly the same manner as in the conventional example. That is, a compound semiconductor 1b is formed on a high-resistance substrate 1a, and a wafer 1 is created. Next, wafer 1
is etched using a photolithography method to form a U-shaped groove 2 as shown in FIG. 2(a). Next, wafer 1
After lightly etching and cleaning using a bromine methanol solution, Cr/Au was deposited, and a pot metal 11113 in the shape as shown in FIG. 2(b) was deposited using photolithography.
form. Next, wafer 1 is plasma anodized and a second
An anodic oxide film 5 is formed on the compound semiconductor 1b portion shown in FIG. 3(b).
従来例においては、その後すぐに反射防止膜6を蒸着し
ていたが、この発明においては、−皮形成した陽極酸化
膜5を除去した後、再度陽極酸化膜5の形成を行う。そ
の後、従来例と同様に反射防止膜6をウェハ1の表面全
面に形成する。In the conventional example, the antireflection film 6 was deposited immediately after that, but in the present invention, after the anodic oxide film 5 formed with a -skin is removed, the anodic oxide film 5 is formed again. Thereafter, an antireflection film 6 is formed on the entire surface of the wafer 1 as in the conventional example.
陽極酸化膜5の除去は、例えば酒石酸水溶液等の弱酸を
用いておこなうことができる。陽極酸化膜5の厚さは4
00人程度々ので、酒石酸水溶液を用い1〜2分で除去
できる。その後、充分水洗して酒石酸を除去し、イソプ
ロピルアルコールを用いて煮沸、乾燥する。The anodic oxide film 5 can be removed using, for example, a weak acid such as an aqueous tartaric acid solution. The thickness of the anodic oxide film 5 is 4
It can be removed in 1 to 2 minutes using tartaric acid aqueous solution. Thereafter, the tartaric acid is removed by thorough washing with water, followed by boiling and drying using isopropyl alcohol.
このようにして、はじめに形成した陽極酸化膜5を除去
すれば化合物半導体1b上の汚れも同時に除去され、再
度形成された陽極酸化膜5は質のよい膜となる。なお、
陽極酸化膜5の除去工程では、酒石酸を用いるので、金
属蒸着膜3等が侵されることはない。In this way, when the first formed anodic oxide film 5 is removed, the dirt on the compound semiconductor 1b is also removed at the same time, and the anodic oxide film 5 formed again becomes a film of good quality. In addition,
Since tartaric acid is used in the step of removing the anodic oxide film 5, the metal vapor deposited film 3 and the like are not attacked.
また、工程の都合上、陽極酸化膜5の形成から反射防止
膜6の形成までに間があき、陽極酸化膜5の表面が汚染
された場合にも反射防止膜6の形成の直前に上記の陽極
酸化膜5の除去と再形成の工程を行うことにより、清浄
な陽極酸化膜5上に反射防止膜6を形成することができ
る。Furthermore, if there is a gap between the formation of the anodic oxide film 5 and the formation of the anti-reflection film 6 due to process reasons, and the surface of the anodic oxide film 5 is contaminated, the above-mentioned procedure may be performed immediately before the formation of the anti-reflection film 6. By performing the steps of removing and re-forming the anodic oxide film 5, the antireflection film 6 can be formed on the clean anodic oxide film 5.
以上のようにして、陽極酸化膜5の形成、除去、再形成
1反射防止膜6の形成を行った後、従来例と同様にして
写真製版法を用いて反射防止膜6をエツチングし第2図
(C)に示すような電極3aを形成し、最後にダイシン
グソーを用いウェハ1を切断分割し、第1図(a)、(
b)に示すような赤外線検知素子を製造する。After the anodic oxide film 5 is formed, removed, and re-formed 1 and the anti-reflective film 6 is formed as described above, the anti-reflective film 6 is etched using photolithography in the same manner as in the conventional example. Electrodes 3a as shown in Figure 1(C) are formed, and finally the wafer 1 is cut and divided using a dicing saw.
An infrared sensing element as shown in b) is manufactured.
なお、上記の実施例では化合物半導体1bとしてCd
x Hg 1−x T eを用いた赤外線検知素子の場
合を示したが、この発明の製造方法を他の半導体の酸化
膜形成時に用いても上記実施例と同様の効果を奏する。Note that in the above embodiment, Cd is used as the compound semiconductor 1b.
Although the case of an infrared sensing element using x Hg 1-x Te has been shown, the same effects as in the above embodiment can be obtained even if the manufacturing method of the present invention is used when forming an oxide film of other semiconductors.
〔発明の効果)
以上説明したようにこの発明は、受光面となる化合物半
導体上に陽極酸化膜を形成する酸化膜形成工程と、この
酸化膜形成工程で形成された陽極酸化膜を除去する工程
と、陽極酸化膜除去後に再度陽極酸化膜を形成する工程
と、再度形成された陽極酸化膜上に反射防止膜を形成す
る工程とを含むので、膜質がよく、表面が清浄な陽極酸
化膜を形成でき、その上に反射防止膜を形成でき斧ので
、反射防止膜の剥離がなくなり、歩留りが向上し、また
、特性のよい素子が得られる効果がある。[Effects of the Invention] As explained above, the present invention includes an oxide film forming step of forming an anodic oxide film on a compound semiconductor serving as a light-receiving surface, and a step of removing the anodic oxide film formed in this oxide film forming step. The process includes a step of forming an anodized film again after removing the anodic oxide film, and a step of forming an antireflection film on the re-formed anodic oxide film, so it is possible to obtain an anodic oxide film with good film quality and a clean surface. Since the anti-reflective film can be formed on the anti-reflective film, there is no peeling of the anti-reflective film, the yield is improved, and elements with good characteristics can be obtained.
第1図(a)は光導電型赤外線検知素子の構造の一例を
示す平面図、第1図(b)は第1図(a)に示した切断
線A−Aの断面図、第2図(a)〜(c)は、第1図(
a)、(b)に示した光導電型赤外線検知素子の製造方
法を説明するための図である。
図において、1はウェハ、1aは高抵抗の基板、1bは
化合物半導体、4は受光面、5は陽極酸化膜、6は反射
防止膜である。
なお、各図中の同一符号は同一または相当部分を示す。
代理人 大 岩 増 雄 (外2名)一
し−
貫くFIG. 1(a) is a plan view showing an example of the structure of a photoconductive infrared sensing element, FIG. 1(b) is a sectional view taken along cutting line A-A shown in FIG. 1(a), and FIG. (a) to (c) are shown in Figure 1 (
FIG. 4 is a diagram for explaining a method of manufacturing the photoconductive infrared sensing element shown in a) and FIG. In the figure, 1 is a wafer, 1a is a high-resistance substrate, 1b is a compound semiconductor, 4 is a light receiving surface, 5 is an anodized film, and 6 is an antireflection film. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Masuo Oiwa (2 others)
Claims (1)
酸化膜形成工程と、この酸化膜形成工程で形成された陽
極酸化膜を除去する工程と、陽極酸化膜除去後に再度陽
極酸化膜を形成する工程と、再度形成された陽極酸化膜
上に反射防止膜を形成する工程とを含むことを特徴とす
る光検知素子の製造方法。An oxide film formation process in which an anodic oxide film is formed on the compound semiconductor that will become the light receiving surface, a process in which the anodic oxide film formed in this oxide film formation process is removed, and an anodic oxide film is formed again after the anodic oxide film is removed. A method for manufacturing a photodetecting element, comprising the steps of: forming an antireflection film on the anodic oxide film formed again.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63007309A JPH0719904B2 (en) | 1988-01-14 | 1988-01-14 | Method for manufacturing photodetection element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63007309A JPH0719904B2 (en) | 1988-01-14 | 1988-01-14 | Method for manufacturing photodetection element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01183169A true JPH01183169A (en) | 1989-07-20 |
JPH0719904B2 JPH0719904B2 (en) | 1995-03-06 |
Family
ID=11662403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63007309A Expired - Lifetime JPH0719904B2 (en) | 1988-01-14 | 1988-01-14 | Method for manufacturing photodetection element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0719904B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110512254A (en) * | 2019-09-16 | 2019-11-29 | Oppo广东移动通信有限公司 | Shell of electronic equipment and preparation method thereof, electronic equipment |
-
1988
- 1988-01-14 JP JP63007309A patent/JPH0719904B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110512254A (en) * | 2019-09-16 | 2019-11-29 | Oppo广东移动通信有限公司 | Shell of electronic equipment and preparation method thereof, electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
JPH0719904B2 (en) | 1995-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3553997B2 (en) | Gallium arsenide / aluminum gallium arsenide photocell with environmentally sealed ohmic contact grid and method of manufacturing the cell | |
JPS6146078B2 (en) | ||
EP0013342B1 (en) | Method of fabrication of self-aligned field-effect transistors of the metal-semiconductor type | |
US4403397A (en) | Method of making avalanche photodiodes | |
JPS6233758B2 (en) | ||
EP0441450A1 (en) | Process for manufacturing an integrated semiconductor device comprising the formation of a first contact electrode, encapsulated and provided with spacers, and a second contact electrode auto-aligned to the first | |
JPH01183169A (en) | Manufacture of photodetector | |
EP0021931B1 (en) | Process for the self-alignment of differently doped regions of a semiconductor structure, and application of the process to the manufacture of a transistor | |
JP3157948B2 (en) | Solar cell and method of manufacturing the same | |
JPH0763097B2 (en) | Photosensor fabrication method | |
JP2812059B2 (en) | Manufacturing method of infrared detecting element | |
JP3378310B2 (en) | Method for manufacturing compound semiconductor device | |
US4482881A (en) | Thick extended contact photoconductor | |
JPS60251632A (en) | Manufacture of semiconductor device | |
FR2579832A1 (en) | METHOD FOR ALLOYING SOLAR CELLS AND CELLS THUS OBTAINED | |
JPH0537001A (en) | Photodetector and manufacture thereof | |
JPH02192773A (en) | Semiconductor device | |
JPS6138871B2 (en) | ||
JPS60257182A (en) | Manufacture of semiconductor device | |
JPS60226160A (en) | Manufacture for thin film resistance device | |
JPH0449271B2 (en) | ||
JPS5935192B2 (en) | Handmade Thai Yukousoshi | |
JPS6222475B2 (en) | ||
JPH0447989B2 (en) | ||
JPH0793455B2 (en) | Avalanche photodiode manufacturing method |