JPH01182949A - Magneto-optical recording method for superconducting material - Google Patents

Magneto-optical recording method for superconducting material

Info

Publication number
JPH01182949A
JPH01182949A JP63005276A JP527688A JPH01182949A JP H01182949 A JPH01182949 A JP H01182949A JP 63005276 A JP63005276 A JP 63005276A JP 527688 A JP527688 A JP 527688A JP H01182949 A JPH01182949 A JP H01182949A
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
membrane
superconductor
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63005276A
Other languages
Japanese (ja)
Inventor
Terue Kataoka
片岡 照栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63005276A priority Critical patent/JPH01182949A/en
Publication of JPH01182949A publication Critical patent/JPH01182949A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize extremely high speed writing without making an irradiating laser beam particularly strong by holding a micro area where is changed to a normal-conductor by irradiating a superconducting membrane with the beam with a magnetic flux. CONSTITUTION:A superconducting membrane 1 is formed on a substrate 5, and a bias magnetic field 6, which is smaller than the critical magnetic field of the superconductor film 1 and uniform, is impressed from a vertical direction to the face of the superconducting membrane 1. A laser beam 2 irradiates the superconducting membrane 1 in the condition with a micro spot converged with a convergent lens 4. When an insulating membrane which consists of a micro crystal grain and whose grain boundary is particularly thin, and a ceramic to constitute a Josephson junction, in which an inter-grain becomes the weak bonding of a point shape, are used for the superconducting membrane 1 to be used, the superconducting condition of the superconducting membrane 1 is broken by a comparatively weak light, and it can be made to be a normal- conducting condition. Thus, a particularly high speed writing can be realized.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、セラミック超電導体膜を用いる、極めて動作
速度の速い光磁気記録に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to magneto-optical recording that uses a ceramic superconductor film and has an extremely high operating speed.

〈従来の技術〉 従来の、光磁気記録は、磁性体の薄膜を記録媒体に用い
ていた。
<Prior Art> Conventional magneto-optical recording uses a thin film of magnetic material as a recording medium.

磁性体の記録媒体を用いた光磁気記録にも、種々の方式
があるが、−船釣には次の方式が吏われた。磁性体の薄
膜に、直径1μm程度に収束したレーザ光を照射し、そ
の照射エネルギーにより、その部分の磁性体の温度が上
がり、保磁力(Hc)が下がって、磁化を反転させるこ
とで情報ビットを書き込んでいた。その読出しは書き込
みより弱い、直線偏光したレーザ光を収束して、磁性体
の薄膜を走食し、書き込まれた情報をファラデー効果あ
るいは磁気カー効果などの磁気光学効果で、磁化が反転
した領域では、その直線偏光の偏光面の回転が変化する
ことで検出していた。
There are various methods of magneto-optical recording using magnetic recording media, but the following method was used for boat fishing. A thin film of magnetic material is irradiated with laser light focused to a diameter of about 1 μm, and the irradiation energy raises the temperature of the magnetic material in that area, lowers the coercive force (Hc), and reverses the magnetization, thereby creating information bits. was written. For reading, linearly polarized laser light, which is weaker than writing, is focused and erodes the thin film of magnetic material, and the written information is transferred to the region where the magnetization has been reversed by magneto-optic effects such as the Faraday effect or the magnetic Kerr effect. It was detected by changing the rotation of the polarization plane of the linearly polarized light.

以上のような、従来の光磁気記録の書込みの1例を示し
たのが第6図である。
FIG. 6 shows an example of writing in the conventional magneto-optical recording as described above.

基板上に作製した磁性体膜14全垂直に磁化しておく。The magnetic film 14 produced on the substrate is completely magnetized perpendicularly.

磁性体膜14の磁化の方向と反対の磁界をもつバイアス
磁界15を磁界発生器16によって印加しておき、磁性
体膜16の微小領域であるスポット3にレーザ光2を照
射して、そのスポット3の温度が一定以上になると磁化
が反転して情報ビットが書き込まれるのである。
A bias magnetic field 15 having a magnetic field opposite to the direction of magnetization of the magnetic film 14 is applied by a magnetic field generator 16, and a laser beam 2 is irradiated to a spot 3, which is a minute region of the magnetic film 16, to remove the spot. When the temperature of 3 becomes above a certain level, the magnetization is reversed and an information bit is written.

〈発明が解決しようとする問題点〉 従来の、磁性体薄膜を用いる光磁気記録は、光の熱効果
により磁化を反転させる情報ビットの書き込みを行なう
ので、磁性体の膜厚を薄くするレーザビームの強度をあ
げるなどの改良を行っても106〜102ビツト/秒程
度で、記録速度に限界があつ之。
<Problems to be Solved by the Invention> Conventional magneto-optical recording using a magnetic thin film writes information bits that reverse the magnetization by the thermal effect of light, so a laser beam that reduces the thickness of the magnetic film is required. Even if improvements such as increasing the strength of the recording speed are made, the recording speed remains at around 106 to 102 bits/second.

本発明は、従来の光磁気記録の方法による書き込み速度
の限界以上になる極めて書き込み動作速度の早い光磁気
記録の方法を提供するものである。
The present invention provides a magneto-optical recording method that has an extremely high writing operation speed that exceeds the writing speed limit of conventional magneto-optical recording methods.

く問題点を解決するための手段〉 本発明の光磁気記録は、光の熱効果による磁化の反転で
なく、超電導体膜に光を照射して常電導体にした微小領
域を磁束で保持する光磁気記録である。
Means for Solving the Problems> The magneto-optical recording of the present invention does not reverse magnetization due to the thermal effect of light, but instead uses magnetic flux to hold a micro region made into a normal conductor by irradiating a superconductor film with light. This is magneto-optical recording.

使用する超電導体膜に、微小な舖晶粒子からなり、その
粒界が極く薄い絶縁膜、又は粒子間がホゾ イント状の弱結合になったジョセフ4ン接合を構成する
セラミックを用いれば、比較的弱い光によって超電導体
膜の超電導状態を壊して常電導状態にすることができる
。また、この状態の変化は、ソ 超電導体特有の極めて高速のジョセフザン素子の動作速
度である。
If the superconductor film used is an insulating film made of minute monocrystalline grains with extremely thin grain boundaries, or a ceramic that forms a Joseph 4-junction with hosoint-like weak bonds between the grains, it is possible to The superconducting state of a superconductor film can be broken down to a normal conducting state using weakly focused light. Moreover, this change in state is due to the extremely high operating speed of the Josephusian element, which is unique to superconductors.

〈作 用〉 本発明の光磁気記録で使用する記録媒体は、超電導体の
薄膜であり、書き込みに光ビームの照射によシ、超電導
状態が壊れて、常電導に変化する現象を利用しているの
で、従来の光磁気記録の方法と比較すると格段に高速の
1012ビツト/秒程度の書き込みが可能になった。
<Function> The recording medium used in the magneto-optical recording of the present invention is a thin film of superconductor, and when irradiated with a light beam for writing, the superconducting state is broken and changes to normal conductivity. This makes it possible to write at a speed of about 1012 bits/second, which is much faster than with conventional magneto-optical recording methods.

又、セラミック超電導体を使用することにより小さいエ
ネルギーの光で書き込むことが可能になった。
Furthermore, the use of ceramic superconductors has made it possible to write with light of low energy.

〈実施例〉 本発明の実施例を図面を参照しながら説明する。<Example> Embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の1実施例である超電導体膜1への情
報ビットの書き込みを示している。
FIG. 1 shows writing of information bits into a superconductor film 1 according to an embodiment of the present invention.

超電導体膜1を基板5の上に作製し、この超電導体膜1
の臨界磁界Hcより小さく、一様なバイアス磁界6を前
記の膜1の面に垂直になる方向から印加しておく。この
状態の超電導体膜1にレーザ光を収束レンズで収束した
微小なスポットで照射する。
A superconductor film 1 is produced on a substrate 5, and this superconductor film 1
A uniform bias magnetic field 6 smaller than the critical magnetic field Hc is applied from a direction perpendicular to the surface of the film 1. The superconductor film 1 in this state is irradiated with laser light in a minute spot converged by a converging lens.

収束されたレーザ光2で照射されに部分の超電導体膜1
は、その超電導状態が壊れて常電導体になり、超電導体
の特性である完全反磁性は消失する。
The part of the superconductor film 1 that is irradiated with the focused laser beam 2
The superconducting state is broken and becomes a normal conductor, and the perfect diamagnetism, which is a characteristic of superconductors, disappears.

レーザ光2の照射によるバイアス磁界6の変化を示した
のが、第2図である。超電導体膜1が、超電導体状態の
ときは、その完全反磁性のため磁界6は膜1のなかに侵
入することができない。しかし、レーザ光2によってス
ポット8で照射されその部分が常電導体になると、バイ
アス磁界はそのスポット8の部分に集中し、スポット8
部分の磁束密度を高くする。
FIG. 2 shows the change in the bias magnetic field 6 due to the irradiation of the laser beam 2. When the superconductor film 1 is in a superconducting state, the magnetic field 6 cannot penetrate into the film 1 due to its complete diamagnetic property. However, when the spot 8 is irradiated by the laser beam 2 and that part becomes a normal conductor, the bias magnetic field is concentrated on the spot 8, and the spot 8 becomes a normal conductor.
Increase the magnetic flux density of the part.

従って、第2図のようにレーザ光2で、スポット3に情
報を記入し、そのレーザ光の照射をやめても、スポット
部に集中した磁束によって超電導体膜1の臨界磁界Hc
以上になるようバイアス磁界6を設計しておけば、書き
込まれた情報は、消失しないで保持される。
Therefore, even if information is written in the spot 3 with the laser beam 2 and the laser beam irradiation is stopped as shown in FIG. 2, the critical magnetic field H
If the bias magnetic field 6 is designed to satisfy the above requirements, the written information will be retained without being lost.

以上によって、超電導体膜1への書き込みを行なうが、
従来のレーザ光による熱効果で磁化を反転する方法でな
く、本発明はレーザ光2によって超電導状態を変える現
象によるので、非常に高速な、10−12秒程度の時間
での書き込みができる。
Through the above steps, writing to the superconductor film 1 is performed, but
Instead of the conventional method of reversing magnetization using the thermal effect of laser light, the present invention uses a phenomenon in which the superconducting state is changed using laser light 2, so writing can be performed very quickly, in about 10-12 seconds.

レーザ光2で書き込まれた情報の読出しは、従来と同じ
ように、書き込みに使ったレーザ光2より弱く、かつ、
直線偏光させたレーザ光を照射しレーザ光2は、ファラ
デー効果、又は磁気カー効果により、磁界によって回転
するので、その回転を検出すればよい。
The reading of information written with the laser beam 2 is weaker than the laser beam 2 used for writing, as in the conventional case, and
The laser beam 2 that is irradiated with a linearly polarized laser beam is rotated by a magnetic field due to the Faraday effect or the magnetic Kerr effect, so it is sufficient to detect the rotation.

実施例で、光エネルギーを用いる書き込み、読出しにレ
ーザ光を用いたのはレーザ光は収束したとき色収差など
の収差が少なく極く小さい光スポツト全作ることができ
るからである。
In the embodiment, laser light was used for writing and reading using optical energy because laser light has little aberration such as chromatic aberration when converged and can create an extremely small light spot.

次に、本実施例に用いたセラミック超電導体について説
明する。
Next, the ceramic superconductor used in this example will be explained.

光磁気記録に用いる超電導体は小さいエネルギーで状態
を制御できることが望しい。
It is desirable that the state of superconductors used in magneto-optical recording can be controlled with low energy.

小さいエネルギーで超電導状態を変化させる超電導に、
第3図に示し念磁気抵抗素子に用いたセラミック超電導
体がある。この磁気抵抗素子は電極8とリード線9及び
10を通して、図示しない電源から定電流を流しておく
。このセラミック超電導体磁気抵抗素子は、磁界がない
ときは超電導か− 状態を示し素子1の電圧は検出されないイ、極〈弱い磁
界を印加しても、その超電導状態が壊れはじめ抵抗の発
生を示す素子1の電圧が検出される。
In superconductivity, which changes the superconducting state with small energy,
There is a ceramic superconductor shown in FIG. 3 and used in a magnetoresistance element. A constant current is passed through the magnetoresistive element from an unillustrated power source through the electrode 8 and lead wires 9 and 10. This ceramic superconductor magnetoresistive element exhibits a superconducting state when there is no magnetic field, and the voltage of element 1 is not detected. The voltage of element 1 is detected.

この磁界の増加に従って素子の抵抗は急速に増大する。As this magnetic field increases, the resistance of the element increases rapidly.

以上の磁気抵抗素子の超電導体の特性は、第4図に示し
たように、超電導体の微細な粒子11がその粒界2で極
く薄い漉縁膜、又は点接触の弱接合によるジョセフソン
接合を介して集合したセラミック超電導体によるもので
ある。このセラミック超電導体を等価回路で示したのが
第5図である。
The characteristics of the superconductor of the magnetoresistive element described above are as shown in FIG. This is due to ceramic superconductors assembled through bonding. FIG. 5 shows an equivalent circuit of this ceramic superconductor.

粒界にジョセフソン接合をもつセラミック超電導体は、
比較的弱い磁場や電流の印加、又は光の照射によってそ
のジョセフソン接合のトンネル電流に影響がでて、超電
導状態が壊れる特性がある。
Ceramic superconductors with Josephson junctions at grain boundaries are
Application of a relatively weak magnetic field or current, or irradiation with light affects the tunnel current in the Josephson junction, causing the superconducting state to break.

以上で説明したように、粒界にジョセフソン接合部もっ
たセラミック超電導体は、短時間の光の照射によっても
、その接合部から超電導状態を壊して常電導状態にする
ことができる。従って、このようなセラミック超電導体
の薄い膜を、前記の超電導光磁気記録に用いれば、現在
、最も臨界温度が高い超電導体ができるセラミック超電
導体を用いて小さい外部エネルギーで書き込みができる
装置にできる。
As explained above, a ceramic superconductor having a Josephson junction at the grain boundary can break the superconducting state from the junction and become a normal conductive state even by short-term irradiation with light. Therefore, if a thin film of such a ceramic superconductor is used in the above-mentioned superconducting magneto-optical recording, it is possible to create a device that can write with a small amount of external energy using a ceramic superconductor, which is currently the superconductor with the highest critical temperature. .

なお、前記のセラミック超電導体の臨界磁界Hcは低い
ので、書き込み部全保持するバイアス磁界を小さくする
ことができる。
Note that since the critical magnetic field Hc of the ceramic superconductor is low, the bias magnetic field that holds the entire writing section can be made small.

なお、前記の特性をもつセラミック超電導体の薄膜は、
スパッタリング法やCVD法などによる膜作製技術と、
雰囲気と温度条件を制御した熱処理によって作製するこ
とができる。又、この超電導体膜1の基板にはアルミナ
、ジルコニア等のセラミック基板、又は透明基板を必要
とするときは耐熱ガラスの基板を用いることができる。
Furthermore, the ceramic superconductor thin film with the above characteristics is
Film production technology using sputtering method, CVD method, etc.
It can be manufactured by heat treatment with controlled atmosphere and temperature conditions. Further, as the substrate of this superconductor film 1, a ceramic substrate such as alumina or zirconia, or a heat-resistant glass substrate can be used when a transparent substrate is required.

〈発明の効果〉 本発明の結晶粒からなるセラミック超電導体膜を用いた
光磁気記録は、その粒界の特性から少ないエネルギー照
射で超電導状態が壊れるので、照射するレーザ光を特に
強くしなくても極めて高速の書き込みを行なうことがで
きる。又、臨界磁界Hcも小さいのでバイアス磁界も小
さくできる。
<Effects of the Invention> In magneto-optical recording using a ceramic superconductor film made of crystal grains according to the present invention, the superconducting state is destroyed by irradiation with a small amount of energy due to the characteristics of the grain boundaries, so the irradiated laser light does not need to be particularly strong. It is also possible to perform extremely high-speed writing. Furthermore, since the critical magnetic field Hc is also small, the bias magnetic field can also be made small.

又、この読み出しも光学的に高速で行なうことができる
ので、消費エネルギーが小さく、極めて高速の超電導体
光磁気記録を実現できる。
Further, since this readout can also be performed optically at high speed, extremely high speed superconductor magneto-optical recording can be realized with low energy consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は第1
図の部分拡大図、第3図は本発明の超電導体の説明図、
第4図は超電導体の部分拡大図、第5図は第4図の等価
回路図、第6図は従来例の構成図である。 1は超電導体膜、2はレーザ光、3はスポット、8は電
極、9と10はリード線、11は超電導体粒子、12は
粒界、13はジョセフソン接合、14は磁性体膜、15
はバイアス磁界、16は磁界発生器である。 代理人 弁理士 杉 山 毅 至(他1名)6バイ“r
スλ−一、】L 第 1 ■ 第2図 ! 第3 図 第イ図
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
A partially enlarged view of the figure, FIG. 3 is an explanatory diagram of the superconductor of the present invention,
FIG. 4 is a partially enlarged view of a superconductor, FIG. 5 is an equivalent circuit diagram of FIG. 4, and FIG. 6 is a configuration diagram of a conventional example. 1 is a superconductor film, 2 is a laser beam, 3 is a spot, 8 is an electrode, 9 and 10 are lead wires, 11 is a superconductor particle, 12 is a grain boundary, 13 is a Josephson junction, 14 is a magnetic film, 15
is a bias magnetic field, and 16 is a magnetic field generator. Agent: Patent attorney Takeshi Sugiyama (and 1 other person) 6 by “r”
S λ-1, ]L 1st ■ Figure 2! Figure 3 Figure A

Claims (1)

【特許請求の範囲】[Claims] 1、結晶粒からなるセラミック超電導体薄膜の膜面に垂
直に、前記超電体薄膜の臨界磁界より小さい一様なバイ
アス磁界を印加しておき、前記超電導体膜に局所的に光
を照射して、部分的に常電導体に変換し、該常電導体部
にバイアス磁界の磁束を収束させ、前記超電導体薄膜の
臨界磁界以上に保つことで、前記光照射の入力を記録す
ることを特徴とする超電導体光磁気記録方法。
1. A uniform bias magnetic field smaller than the critical magnetic field of the superconductor thin film is applied perpendicular to the film surface of the ceramic superconductor thin film consisting of crystal grains, and the superconductor film is locally irradiated with light. The input of the light irradiation is recorded by partially converting into a normal conductor, converging the magnetic flux of a bias magnetic field on the normal conductor part, and keeping it above the critical magnetic field of the superconductor thin film. Superconductor magneto-optical recording method.
JP63005276A 1988-01-13 1988-01-13 Magneto-optical recording method for superconducting material Pending JPH01182949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63005276A JPH01182949A (en) 1988-01-13 1988-01-13 Magneto-optical recording method for superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63005276A JPH01182949A (en) 1988-01-13 1988-01-13 Magneto-optical recording method for superconducting material

Publications (1)

Publication Number Publication Date
JPH01182949A true JPH01182949A (en) 1989-07-20

Family

ID=11606719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63005276A Pending JPH01182949A (en) 1988-01-13 1988-01-13 Magneto-optical recording method for superconducting material

Country Status (1)

Country Link
JP (1) JPH01182949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077266A (en) * 1988-09-14 1991-12-31 Hitachi, Ltd. Method of forming weak-link josephson junction, and superconducting device employing the junction
US5563564A (en) * 1993-04-22 1996-10-08 University Of Houston Strong high-temperature superconductor trapped field magnets

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077266A (en) * 1988-09-14 1991-12-31 Hitachi, Ltd. Method of forming weak-link josephson junction, and superconducting device employing the junction
US5563564A (en) * 1993-04-22 1996-10-08 University Of Houston Strong high-temperature superconductor trapped field magnets
US6025769A (en) * 1993-04-22 2000-02-15 University Of Houston Strong high-temperature superconductor trapped field magnets

Similar Documents

Publication Publication Date Title
US6418001B1 (en) Tunneling magnetoresistive element using a bias magnetic field
Fan et al. Low‐Temperature Beam‐Addressable Memory
JPH03203839A (en) Recording and reproducing device
JPH01182949A (en) Magneto-optical recording method for superconducting material
JPS62184644A (en) Medium for optomagnetic memory and recording system using said medium
WO2004019051A1 (en) Magnetic sensor
JP3093772B2 (en) Recording method
JPH0316007A (en) Magnetic recording device and magnetic head
JP2738714B2 (en) Recording method of magneto-optical recording
JP3142838B2 (en) Recording / playback method
JPS58108007A (en) Optomagnetic recording method
JPH0386954A (en) Magneto-optical recorder
JPS63255852A (en) Recording medium
JPH01196785A (en) Magnetic storage element
JPS5819753A (en) Vertical magnetic recording medium and reproducing method of vertical magnetizing signal using said recording medium
JPH11296837A (en) Magnetic recording medium and recording and reproducing method using it
JPH0456363B2 (en)
JPH03130904A (en) Magnetic recording system
JPH01290143A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method
JPH0194559A (en) Rewritable superconductive magneto-optical disk
JPH0250303A (en) Reproducing magnetic head
JPH0237508A (en) Magnetic recording head
JPH02148404A (en) Magnetic recorder and recording/reproducing method
JPS61217902A (en) Reproducing method for magnetic recording information and reproducing head
JPH01173408A (en) Magnetic head for magneto-optical recording