JPH01290143A - Magneto-optical recording medium and magneto-optical recording and reproducing method - Google Patents

Magneto-optical recording medium and magneto-optical recording and reproducing method

Info

Publication number
JPH01290143A
JPH01290143A JP11982188A JP11982188A JPH01290143A JP H01290143 A JPH01290143 A JP H01290143A JP 11982188 A JP11982188 A JP 11982188A JP 11982188 A JP11982188 A JP 11982188A JP H01290143 A JPH01290143 A JP H01290143A
Authority
JP
Japan
Prior art keywords
magneto
optical recording
magnetization
layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11982188A
Other languages
Japanese (ja)
Inventor
Mitsuya Okada
満哉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11982188A priority Critical patent/JPH01290143A/en
Publication of JPH01290143A publication Critical patent/JPH01290143A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To improve recording density by using magneto-optical recording layers having two-layer constitution subjected to exchange bonding. CONSTITUTION:The 1st, 2nd magneto-optical recording layer 31, 32 films subjected to the exchange bonding can be divided to two types when an exchange interaction acts between the two layers 31 and 32. Namely, one thereof is called P type and is the case in which the sub-lattice magnetization of a rare earth metal is dominant with both the 1st layer 31 and the 2nd layer 32 or in which the sub-lattice magnetization of a rare earth is conversely dominant. The other one is called A type and the sub-lattice magnetization of the transition metal is dominant with the 1st layer 31 and the sub-lattice magnetization of the rare earth is dominant with the 2nd layer 32 or vice versa. The specific magnetization curves and the magneto-optical hysteresis loops of the respective layers 31, 32 are obtainable with each of the P type and the A type by controlling the magnetic characteristic charts and film thicknesses of these two layers 31, 32 and the magnetic wall energy between the layers 31 and 32. The many- valued recording is thereby enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光磁気記録媒体およびこの媒体を使用して情報
を記録し再生する光磁気記録・再生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording medium and a magneto-optical recording/reproducing method for recording and reproducing information using this medium.

〔従来の技術〕[Conventional technology]

元ディスクメモリは高密度、大容量、高速アクセスが可
能であるということから、現在の磁気ディスクメモリに
代わる新規なメモリとして考えられている。中でも光磁
気記録媒体を用い7を光磁気ディスクは書替え性を有し
ていることから最も注目され、近年活発に研究開発がお
こなわれている。
Original disk memory is considered as a new memory to replace the current magnetic disk memory because it has high density, large capacity, and high speed access. Among these, magneto-optical disks, which use magneto-optical recording media, have attracted the most attention because they are rewritable and have been actively researched and developed in recent years.

第7図は従来から知られている光磁気記録媒体の基本的
な構成図で、図に示しえように光磁気記録媒体は円板状
のガラスあるいは透明樹脂を用いた基板1上に、基板l
に対して垂直方向に磁化を有する垂直磁化膜から成る光
磁気記録層3を形成したものである。光磁気記録層3と
してはMnB1゜MnCuB1.MnTiB1.MnA
lGe、PtCo などの結晶体磁性薄層、あるいはG
d、Tb、Dy、Ho、am。
Figure 7 is a basic configuration diagram of a conventionally known magneto-optical recording medium. l
A magneto-optical recording layer 3 is formed of a perpendicularly magnetized film having magnetization in a direction perpendicular to the magnetic field. As the magneto-optical recording layer 3, MnB1°MnCuB1. MnTiB1. MnA
lGe, PtCo, etc. crystalline magnetic thin layer, or G
d, Tb, Dy, Ho, am.

Ndなどの希土類とFe、Go、Niなどの遷移金属と
の合金として得られるアモルファス磁性薄膜が知られて
いる。
Amorphous magnetic thin films obtained as alloys of rare earth elements such as Nd and transition metals such as Fe, Go, and Ni are known.

また、第8図に光磁気記録媒体の断面図を示し友ように
、基板1に深さ600〜100OA、ピッチ16〜2.
.5μmで溝11をうす巻き状もしくは同心円状に形成
し、この基板1上に光磁気記録層3を形成しt媒体構成
も知られている。ここで形成されている#11は、記録
媒体への情報の記録あるいは再生・消去に用いるレーザ
果光ビームのトラッキングアクセスに用いられる。
FIG. 8 shows a cross-sectional view of a magneto-optical recording medium, in which the substrate 1 has a depth of 600-100 OA and a pitch of 16-2.
.. A t-medium structure is also known in which a groove 11 of 5 μm is formed in a thinly wound or concentric shape, and a magneto-optical recording layer 3 is formed on this substrate 1. #11 formed here is used for tracking access of a laser beam used for recording, reproducing, and erasing information on a recording medium.

まt1100に光磁気記録媒体の断面図を示すように、
光磁気記録層3の経時変化および劣化を阻止する定めに
、光磁気記録#3の両面をスペーサ2と保護層4とでは
さみ込んだ媒体構成も従来から知られている。
As shown in the cross-sectional view of the magneto-optical recording medium in t1100,
In order to prevent aging and deterioration of the magneto-optical recording layer 3, a medium configuration in which both sides of the magneto-optical recording #3 are sandwiched between a spacer 2 and a protective layer 4 has also been known.

上記の従来からの光磁気記録媒体へのIrf!報記録は
2値信号に対応しt形で実行されてiる。すなわち、第
10図に元磁気記amの磁化状態図を示すように、2値
信号”0″、“1″の”1”に対応する部分が光磁気記
録層上の反転磁区の位置、あるいは反転磁区の抱部とな
るように記録がなされている。このため、記録密度はほ
ぼ記録再生に用いるレーザ光の集光スポット径で制限さ
れてしまうという欠点があり、これに対して、光磁気記
録媒体に多値情報を記録して実効的に記録密度を向上さ
せようという試みがある(生計ら:“光磁気記録*1*
−特開昭62−2)4540、および滝ら;に増光磁気
記録媒体における再生特性°昭和60年電子通信学会半
導体・材料部門全国大会予稿集pl−44)、第11図
はこの試みで用腟られている記録媒体の構成図で、図に
示すように、多層の記録層35とスペーサ層25とから
成るものである。
Irf! to the above conventional magneto-optical recording medium! The information recording corresponds to a binary signal and is performed in a t-type. That is, as shown in the magnetization state diagram of the original magneto-recorder am in FIG. Recording is performed so as to be in the embrace of reversed magnetic domains. For this reason, the recording density has the disadvantage that it is almost limited by the focal spot diameter of the laser beam used for recording and reproduction. There are attempts to improve the
- Unexamined Japanese Patent Publication No. 62-2) 4540, and Taki et al.; Reproduction characteristics of brightening magnetic recording media ° 1985 IEICE Semiconductor and Materials Division National Conference Proceedings pl-44), Figure 11 was used in this attempt. This is a configuration diagram of a recording medium that is inserted into the vagina. As shown in the figure, it is composed of a multilayer recording layer 35 and a spacer layer 25.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述した光磁気記録媒体の記録密度を上げる方
法の一つとして、多層の記録層を持つ構成の媒体が試み
られているが、各光磁気記録層および記録層間のスペー
サの膜厚制御を高精度でおこなわなければならないとい
う欠点があシ、また、各記録層にアクセスするtめには
レーザ光の焦点深度を層間隔以下に浅くする必要があり
、この九めレンズ系を大きく変更しなければならないな
ど、記録媒体および記録装置がともに複雑になってしま
うという欠点がある。
However, as one of the methods to increase the recording density of the above-mentioned magneto-optical recording medium, attempts have been made to create a medium with a multi-layered recording layer structure, but it is difficult to control the film thickness of each magneto-optical recording layer and the spacer between the recording layers. This has the disadvantage that it must be performed with high precision, and in order to access each recording layer, the depth of focus of the laser beam must be made shallower than the layer spacing, which requires major changes to this lens system. This has the disadvantage that both the recording medium and the recording device become complicated.

本発明の目的はこのような従来の欠点を解決し、成膜が
容易な媒体構成を持つ光磁気記録媒体と、この媒体に特
殊な記録装置を必要とせず、簡単な記fiパワーコント
ロールにより多値記fiを可能とする元磁気記録再生方
法を提供することにある。
The purpose of the present invention is to solve these conventional drawbacks, and to provide a magneto-optical recording medium that has a medium configuration that allows easy film formation, and a multi-purpose recording medium that does not require a special recording device and that can be used in a wide range of applications with simple recording power control. The object of the present invention is to provide a magnetic recording and reproducing method that makes it possible to record data.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光磁気記録媒体および′yr:!ifi気記録
・再生方法は、レーザを用9て垂直磁気異方性を持つ磁
性薄趣に4ft−#1金記録し、反射レーザ光の偏光状
態の差を信号として再生する大磁気記録媒体において、
透明基板と、前記透明基根上に形成されt第1のi:磁
気記録層と、前記第1の元磁気記録層上に形成された第
2の尤磁気記録−と勿有し、前記第1の光磁気記録層の
磁化方向と前記第2の光磁気記録層の磁化方向が平行お
よび反平行を含む組合わせによって31直の情報を記録
すること、および光磁気記録が体に特定のバイアスff
l界を印加し。
The magneto-optical recording medium of the present invention and 'yr:! The IFI recording and reproducing method uses a laser to record on a 4ft-#1 gold layer with perpendicular magnetic anisotropy, and reproduces the difference in the polarization state of the reflected laser beam as a signal in a large magnetic recording medium. ,
a transparent substrate, a first magnetic recording layer formed on the transparent base, and a second magnetic recording layer formed on the first original magnetic recording layer; The magneto-optical recording layer has a magneto-optical recording layer whose magnetization direction and the magnetization direction of the second magneto-optic recording layer are parallel and antiparallel to each other.
Apply l field.

レーザ光照射によって第1および第2の−yt、m気記
録鳩両層とも磁化を反転させるレーザパワーレベルP!
と、レーザ光照射によってft磁気記記録両層のいずれ
か一層の磁化を反転させるレーザーパワレベルP1と、
レーザ光照射によってt磁気記勤層両層とも磁化反転し
ないレーザパワーレベルPoとを用いて3値の情報を記
録し、光出気記録増両屡の磁化方向に対応して得られる
3レベルの反射レーザ光の回元状態t−信号として再生
することにより構成される。
Laser power level P at which the magnetization of both the first and second -yt and m-recording layers is reversed by laser beam irradiation!
and a laser power level P1 for reversing the magnetization of either of the ft magnetic recording layers by laser beam irradiation;
Three-level information is recorded using a laser power level Po that does not cause magnetization reversal in both layers of the magnetic recording layer by laser beam irradiation, and three-level information is obtained corresponding to the magnetization direction of the optical recording layer. It is constructed by reproducing the reflected laser beam as a regenerated state t-signal.

〔実施例〕〔Example〕

久に、本発明の光磁気記録媒体と記録・再生方法とにつ
いて図面を参照して説明する。
First, the magneto-optical recording medium and recording/reproducing method of the present invention will be explained with reference to the drawings.

第1図(alは本発明に係る光磁気記録媒体の基本構成
の断面図である。第1図(a)では透明な基板1上に第
1の光磁気記録層31と第2の光磁気記録層32とが成
膜されている。基板1としてはガラス、ポリメタクリル
酸メチル(PMMA ) 、ポリカーボネートま友はエ
ポキシなどの透明樹脂が用いられる。この基板1にはあ
らかじめトラッキングサーボ用の溝やピットが形成され
tものも用いられる。光磁気記録Nll31,32とし
ては結晶体磁性薄膜、あるいは希土類と遷移金属との合
金薄膜が用いられる。ここではQd 、 Tl) 、 
Dy 、Ho 、 Sm、Ndなどの希土類とFe、C
o、Niなどの遷移金属とから成る希土類遷移金属合金
薄膜を用いる。成膜には几Fマグネトロンスパッタff
l:’を採用し、真空を破ることなく第1および第2の
光磁気記録層を連続成膜する。希土類遷移金属合金薄膜
は非常に酸化されやすいために、実際は第1図(bJに
具体的な構成図を示すように、記録#をはさみ込む形で
スペーサ2と保ilI膜4とを形成する。これらの農も
光磁気記録層の成膜の際に同一装置中で連続成膜される
。スペーサ2および保護JII14としては透明な8i
3N4 を友はA4Nなどの窒化物やSiO,8i02
゜Ta、 Os  などの酸化物である誘電体が使用さ
れる。
FIG. 1 (al) is a cross-sectional view of the basic structure of the magneto-optical recording medium according to the present invention. In FIG. A recording layer 32 is formed thereon.The substrate 1 is made of glass, polymethyl methacrylate (PMMA), polycarbonate, or a transparent resin such as epoxy. A type in which pits are formed is also used.For magneto-optical recording N11, 32, a crystalline magnetic thin film or an alloy thin film of a rare earth and a transition metal is used.Here, Qd, Tl),
Rare earths such as Dy, Ho, Sm, Nd and Fe, C
A rare-earth transition metal alloy thin film consisting of transition metals such as O, Ni, etc. is used. For film formation, F magnetron sputtering is used.
1:' is adopted, and the first and second magneto-optical recording layers are continuously formed without breaking the vacuum. Since the rare earth transition metal alloy thin film is very easily oxidized, in reality, as shown in FIG. These films are also formed continuously in the same apparatus when forming the magneto-optical recording layer.Transparent 8i
Companions of 3N4 are nitrides such as A4N, SiO, 8i02
A dielectric material such as an oxide such as Ta or Os is used.

スペーサ2は再生時のカー(Kerり回転角の増幅用と
しても用いられるため、所望の膜厚に設定される。
Since the spacer 2 is also used for amplifying the Kerr rotation angle during reproduction, it is set to a desired thickness.

次に本発明に係る第1および第2の元磁気記録層間の′
5F、換相互作用について説明する。ここで用いる希土
類遷移金属合金薄膜はフェリ磁性体であシ、希土類の磁
気モーメントと遷移金属の磁気モーメントとは反平行に
結合し、みかけ上の磁化はこの2つの副格子磁化の差と
なる。2/1間で交換相互作用が働く場合、交換結合し
た2鳩膜は2つのタイプに分けることができる。第2図
の光磁気記録層の磁化の模式図に示すように、その一つ
はPタイプと呼ばれるもので、第1層と第2層ともに遷
移金属の副格子磁化が優勢であるか、逆に希土類の副格
子磁化が優勢である場合である。他の一つはAタイプと
呼ばれるもので、第1層は遷移金属の副格子磁化が優勢
で、第2/ilは希土類の副格子磁化が優勢であるか、
または、この逆の場合である。
Next, according to the present invention, ' between the first and second original magnetic recording layers is
5F, exchange interaction will be explained. The rare earth transition metal alloy thin film used here is a ferrimagnetic material, and the magnetic moments of the rare earth and the transition metal are coupled antiparallel to each other, and the apparent magnetization is the difference between the two sublattice magnetizations. When exchange interaction occurs between 2/1, two types of exchange-coupled pigeon membranes can be divided into two types. As shown in the schematic diagram of the magnetization of the magneto-optical recording layer in Figure 2, one of them is called the P type, in which the sublattice magnetization of the transition metal is dominant in both the first and second layers, or the magnetization is reversed. This is the case where rare earth sublattice magnetization is dominant. The other one is called type A, in which the first layer is dominated by transition metal sublattice magnetization, and the second layer is dominated by rare earth sublattice magnetization.
Or vice versa.

この又換結合2層膜においては、両層の磁気特性図、膜
厚および両層間の磁壁エネルギを制御することにより、
Pタイプ、Aタイプのそれぞれについて第3図に示すよ
うな磁化曲線および各層の磁気光学ヒステリシスループ
が得られる。ここで。
In this recombinant two-layer film, by controlling the magnetic characteristic diagram of both layers, the film thickness, and the domain wall energy between both layers,
Magnetization curves and magneto-optic hysteresis loops of each layer as shown in FIG. 3 are obtained for each of the P type and A type. here.

印加磁界を正方向に大きくしたときの各層の磁化反転磁
界のうち小さいほうt−Hl、大きいほう全H2とする
。例えば第3図(aJに示すPタイプの場合、印加磁界
0のとき両層ともみ刀1け上の磁化が下向きで6りtと
する。H,なる磁界を印加しtのち、磁界をゼロにする
と、第1層のみ磁化が反転した状態が得られる。また、
H2なる磁界を印加しtのち磁界をゼロにすると、両層
とも上向きの磁化状態となる。交換結合2鳩膜において
l一層1とH2との温度特性が第4図の温度特性図に示
すXうに設計し、バイアス磁界としてHb を印加しt
とき、TlからT2までの温度では一方の層が磁化反転
しrT2以上の温度では両方の層が磁化反転する。多値
記録にはこのメカニズムが利用される。
When the applied magnetic field is increased in the positive direction, the smaller one of the magnetization reversal magnetic fields of each layer is t-Hl, and the larger one is total H2. For example, in the case of the P type shown in Figure 3 (aJ), when the applied magnetic field is 0, the magnetization of both layers is 6 points downward, and the magnetic field is H, and after t, the magnetic field is reduced to zero. Then, a state is obtained in which the magnetization of only the first layer is reversed.
When a magnetic field H2 is applied and the magnetic field is reduced to zero after t, both layers become in an upward magnetized state. The exchange-coupled two-layer membrane was designed so that the temperature characteristics of the first layer and H2 were as shown in the temperature characteristic diagram in Figure 4, and Hb was applied as a bias magnetic field.
At a temperature between Tl and T2, one layer undergoes magnetization reversal, and at a temperature equal to or higher than rT2, both layers undergo magnetization reversal. This mechanism is used for multivalue recording.

次に記録再生方法について説明する。第5図は記録信号
のレベル図で、変換結合2#膜から成る光磁気記録媒体
に、永久磁石あるいは電磁石を用いた印710磁界発生
手段によりHbなる一定磁界を印加した状態で、3値の
データ列に対応して3レベルのレーザパワー(Po=P
□、 ”1 e P2ノをクロ。
Next, a recording/reproducing method will be explained. FIG. 5 is a level diagram of a recording signal, and shows that a constant magnetic field of Hb is applied to a magneto-optical recording medium made of a conversion coupling 2# film by a magnetic field generating means using a permanent magnet or an electromagnet. Three levels of laser power (Po=P
□, ``1 e P2 no black.

りに同期させて照射する。ここでPlなるレーザパワー
はレーザ照射部に第4図に示し’ft T tからT2
までの間の特定の温度を与えるパワーであシ、2/i#
のうちの一層のみ磁化反転させる。また、P2なるレー
ザパワーはレーザ照射部に第4図に示し7j T 2以
上の特定の温度を与えるパワーである。
irradiate in synchronization with Here, the laser power Pl is shown in FIG.
The power that gives a specific temperature between 2/i#
The magnetization of only one layer is reversed. Further, the laser power P2 is the power that gives the laser irradiation section a specific temperature of 7j T 2 or more as shown in FIG.

Po=P几なるレーザパワーは再生時に用いるレーザパ
ワーと同じレベルであシ、第4図に示し7tTt以下の
特定の温度になっている。このとき、ZJl膜の磁化状
態には変化を与えない。こうした3レベルのレーザ照射
によシ3レベルの磁化状態を形成でき、3値記碌が得ら
れる。
The laser power of Po=P is at the same level as the laser power used during reproduction, and is at a specific temperature of 7tTt or less as shown in FIG. At this time, no change is given to the magnetization state of the ZJl film. By such three-level laser irradiation, three-level magnetization states can be formed, and three-value recording can be obtained.

信号再生にはカー効果を用いる。第1の光磁気記録層の
換庫をレーザ光が透過するよりに薄く形成することによ
り、第1および第2の光磁気記録層の磁化方向に対応し
て第6図の磁化状態とカー回転角との対応図に示すよう
に、3レベルのカー回転角が得られる。このレベルt−
再生時に判定することによシ、3値信号の再生がなされ
る。
The Kerr effect is used for signal reproduction. By forming the first magneto-optical recording layer to be thinner than the laser beam can pass through, the magnetization state and Kerr rotation shown in FIG. 6 correspond to the magnetization directions of the first and second magneto-optical recording layers. As shown in the correspondence diagram with the angle, three levels of Kerr rotation angles are obtained. This level t-
The ternary signal is reproduced by making the determination at the time of reproduction.

次に本発明に基づいて作成しt光磁気記録媒体とその記
録再生特性とについて説明する。直径1301i1のポ
リカーボネート基板上にRJ’マグネトロンスパッタ法
によ、98i1N4換をスペーサとして800 Ag換
し友。さらに保護層として8i3N4農を80OA形成
し几。印加磁界400エルステツド(Oe)のもとで媒
体? 11.3 vIecで回転し、クロック17MH
2でパルス幅100 ns の信号金記鎌した。記録パ
ワー4mWから5mWの範囲でGdFe層のみの磁化反
転が生じ、5mW以上の記録パワーではGdFeおよび
’1’bF’eC:o の両層の磁化反転が生じ、各磁
化状態に対応して良好な再生信号が得られ次。
Next, a magneto-optical recording medium prepared according to the present invention and its recording and reproducing characteristics will be explained. 800 Ag was replaced on a polycarbonate substrate with a diameter of 1301 by RJ' magnetron sputtering using 98i1N4 as a spacer. Furthermore, 80OA of 8i3N4 was formed as a protective layer. Medium under an applied magnetic field of 400 Oe? Rotates at 11.3 vIec, clocked at 17MH
2, a signal with a pulse width of 100 ns was set. Magnetization reversal of only the GdFe layer occurs in the recording power range of 4 mW to 5 mW, and magnetization reversal of both the GdFe and '1'bF'eC:o layers occurs at recording power of 5 mW or more, and the results are good for each magnetization state. A good playback signal is obtained.

なお以上の実施例では特定の媒体について説明しtが、
本発明はこれらの媒体ならびに材料の組合せに限定する
ものでない。
Note that in the above embodiments, a specific medium is explained, and t is
The present invention is not limited to these combinations of media and materials.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、交換結合し7t2層構成
のi:磁気記録層音用いることにより、両層の磁化方向
に対応して3値記録ができ、実効的に記録密度を従来の
2値記録の1.5倍に向上できる効果がある。ま几、3
値記録はレーザパワーのコントロールによっておこなう
之め、従来の記録装置をほとんど変更することなく使用
できる。
As explained above, the present invention uses an exchange-coupled 7T two-layer i:magnetic recording layer to perform ternary recording corresponding to the magnetization direction of both layers, effectively lowering the recording density from the conventional two-layer structure. This has the effect of being 1.5 times better than value recording. Makoto, 3
Since value recording is performed by controlling laser power, conventional recording devices can be used with almost no changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光磁気記録媒体の基本構成の断面
図、第2図は第1図のft、jIi気記録記録磁化を示
しt模式図、第3図は第1図の光磁気記録層の磁化曲線
と磯気元学カーヒステリシスループとを示した模式図、
第4図は第1図の光磁気記録層の反転磁界の温度特性図
、第5図および第6図はそれぞれ本発明に係る記録信号
のレベル図および磁化状態とカー1g1転角との対応図
、第7図、第8図、第9図、第10図および第11図は
従来から知られている光磁気記録媒体の基本的な構成図
およびその記録再生方法を説明する友めの図である。 1・・・基板、2・・・スペーサ、31・・・第1の元
!l…気記録層、32・・・第2の光磁気記録層、4・
・・保護ノe0代理人 弁理士  内 原   晋 第f図 箭3図 菊 4 図 躬5図 (a)テ′ニタ列 θ l  / 2  θ 2)0 (c)カー回転角 第 7 し] /:基板 箭8図 躬 q 図
FIG. 1 is a sectional view of the basic structure of the magneto-optical recording medium according to the present invention, FIG. 2 is a schematic diagram showing the ft and jIi recording magnetizations of FIG. 1, and FIG. 3 is a schematic diagram of the magneto-optical recording medium of FIG. A schematic diagram showing the magnetization curve of the recording layer and Gengaku Isoki Kerr hysteresis loop,
FIG. 4 is a temperature characteristic diagram of the reversal magnetic field of the magneto-optical recording layer in FIG. 1, and FIGS. 5 and 6 are a level diagram of a recording signal according to the present invention and a correspondence diagram between the magnetization state and the Kerr 1g1 rotation angle, respectively. , FIG. 7, FIG. 8, FIG. 9, FIG. 10, and FIG. 11 are companion diagrams for explaining the basic configuration of conventionally known magneto-optical recording media and their recording and reproducing methods. be. 1...Substrate, 2...Spacer, 31...First element! l... air recording layer, 32... second magneto-optical recording layer, 4.
...Protection e0 Agent Patent Attorney Susumu Uchihara Figure F Figure 3 Figure 4 Figure 5 (a) Table row θ l / 2 θ 2) 0 (c) Kerr rotation angle 7] / :Substrate 8 diagram q diagram

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ光を用いて垂直磁気異方性を持つ磁性薄膜
に情報を記録し、反射レーザ光の偏光状態の差を信号と
して再生する光磁気記録媒体において、透明基板と、前
記透明基板上に形成された第1の光磁気記録層と、前記
第1の光磁気記録層上に形成された第2の光磁気記録層
とを有し、前記第1の光磁気記録層の磁化方向と前記第
2の光磁気記録層の磁化方向とが平行および反平行を含
む組合わせによって3値の情報を記録することを特徴と
する光磁気記録媒体。
(1) In a magneto-optical recording medium that records information on a magnetic thin film with perpendicular magnetic anisotropy using a laser beam and reproduces the difference in the polarization state of the reflected laser beam as a signal, a transparent substrate and a a first magneto-optical recording layer formed on the magneto-optical recording layer, and a second magneto-optical recording layer formed on the first magneto-optical recording layer, the magnetization direction of the first magneto-optical recording layer being A magneto-optical recording medium, characterized in that three-value information is recorded by a combination of magnetization directions of the second magneto-optical recording layer including parallel and antiparallel.
(2)請求項(1)記載の光磁気記録媒体に特定のバイ
アス磁界を印加し、レーザ光照射によって第1および第
2の光磁気記録層両層とも磁化を反転させるレーザパワ
ーレベルP_2と、レーザ光照射によって光磁気記録層
両層のいずれか一層の磁化を反転させるレーザーパワレ
ベルP_1と、レーザ光照射によって光磁気記録層両層
とも磁化反転しないレーザパワーレベルP_0とを用い
て3値の情報を記録し、光磁気記録層両層の磁化方向に
対応して得られる3レベルの反射レーザ光の偏光状態を
信号として再生することを特徴とする光磁気記録・再生
方法。
(2) a laser power level P_2 that applies a specific bias magnetic field to the magneto-optical recording medium according to claim (1) and reverses the magnetization of both the first and second magneto-optical recording layers by laser beam irradiation; A ternary signal is generated using a laser power level P_1 that causes the magnetization of either one of the magneto-optical recording layers to be reversed by laser light irradiation, and a laser power level P_0 that does not cause the magnetization of either magneto-optical recording layer to be reversed by laser light irradiation. A magneto-optical recording and reproducing method characterized in that information is recorded and the polarization state of three levels of reflected laser light obtained in correspondence with the magnetization directions of both magneto-optical recording layers is reproduced as a signal.
JP11982188A 1988-05-16 1988-05-16 Magneto-optical recording medium and magneto-optical recording and reproducing method Pending JPH01290143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11982188A JPH01290143A (en) 1988-05-16 1988-05-16 Magneto-optical recording medium and magneto-optical recording and reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11982188A JPH01290143A (en) 1988-05-16 1988-05-16 Magneto-optical recording medium and magneto-optical recording and reproducing method

Publications (1)

Publication Number Publication Date
JPH01290143A true JPH01290143A (en) 1989-11-22

Family

ID=14771084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11982188A Pending JPH01290143A (en) 1988-05-16 1988-05-16 Magneto-optical recording medium and magneto-optical recording and reproducing method

Country Status (1)

Country Link
JP (1) JPH01290143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030986A1 (en) * 1994-05-10 1995-11-16 Hitachi Maxell, Ltd. Magnetooptical recording medium, and method and apparatus for recording/reproduction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125903A (en) * 1983-12-09 1985-07-05 Sony Corp Thermomagneto-optical recording system
JPS647352A (en) * 1986-03-27 1989-01-11 Canon Kk Magneto-optical recording method
JPS6417248A (en) * 1987-07-09 1989-01-20 Matsushita Electric Ind Co Ltd Multivalued logic recording and reproducing method for magneto-optical recording carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125903A (en) * 1983-12-09 1985-07-05 Sony Corp Thermomagneto-optical recording system
JPS647352A (en) * 1986-03-27 1989-01-11 Canon Kk Magneto-optical recording method
JPS6417248A (en) * 1987-07-09 1989-01-20 Matsushita Electric Ind Co Ltd Multivalued logic recording and reproducing method for magneto-optical recording carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030986A1 (en) * 1994-05-10 1995-11-16 Hitachi Maxell, Ltd. Magnetooptical recording medium, and method and apparatus for recording/reproduction

Similar Documents

Publication Publication Date Title
JP2910250B2 (en) Magneto-optical recording medium
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
JP2579631B2 (en) Magneto-optical recording method
US5265073A (en) Overwritable magneto-optical recording medium having two-layer magnetic films wherein one of the films contains one or more of Cu, Ag, Ti, Mn, B, Pt, Si, Ge, Cr and Al, and a method of recording on the same
JP2916071B2 (en) Magneto-optical recording device
JP2762445B2 (en) Signal reproducing method for magneto-optical recording medium
JPH09198731A (en) Magneto-optical recording medium
JPH01290143A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method
JPH01155533A (en) Magneto-optical recording medium
JP3168679B2 (en) Magneto-optical recording / reproducing method
JP2674275B2 (en) Magneto-optical recording medium and magneto-optical recording method
JP2790685B2 (en) Magneto-optical recording method
JPH11185312A (en) Magneto-optical recording medium
JP2746313B2 (en) Information recording method
JPH04313833A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method using this medium
JPH10134437A (en) Production of magneto-optical recording medium
JP3381960B2 (en) Magneto-optical recording medium
JPS61182651A (en) Photomagnetic recording medium
JP3074104B2 (en) Magneto-optical recording medium
JP2768514B2 (en) Magneto-optical recording method
JP2857008B2 (en) Reproduction method of magneto-optical recording medium
JP3542155B2 (en) Magneto-optical recording medium and magneto-optical recording / reproducing device
KR970010942B1 (en) Optical recording medium
JPH02101658A (en) Magneto-optical record recording system
JPH03119540A (en) Magneto-optical recording medium