JPH01182747A - Enzyme electrode - Google Patents

Enzyme electrode

Info

Publication number
JPH01182747A
JPH01182747A JP63006208A JP620888A JPH01182747A JP H01182747 A JPH01182747 A JP H01182747A JP 63006208 A JP63006208 A JP 63006208A JP 620888 A JP620888 A JP 620888A JP H01182747 A JPH01182747 A JP H01182747A
Authority
JP
Japan
Prior art keywords
enzyme
electrode
redox compound
mediator
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63006208A
Other languages
Japanese (ja)
Inventor
Takahiro Iino
恭弘 飯野
Tadashi Nakajima
正 中島
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP63006208A priority Critical patent/JPH01182747A/en
Publication of JPH01182747A publication Critical patent/JPH01182747A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an electrode characterized by excellent current dependency for enzyme concentration, stable performance for a long period and a low cost, by using a reduction type redox compound, which is insoluble in water and soluble in organic solvent, as an electron transfer material. CONSTITUTION:As an enzyme electrode, a reduction type redox compound such as phenothiazine, phenoxazine and the like, which is insoluble in water and soluble in organic solvent, is used as mediator. Electrons are made to trans fer between oxidation-reduction enzyme and a current collector with the media tor, and an electric signal is detected. Thus the substrate is determined. The stable redox compound in the reduced state is used as the mediator. A potential, which is higher than the oxidation-reduction potential of the redox compound, is applied, and electrolytic oxidation is performed. Therefore, the reaction speed of the entire system does not become a rate determining state owing to the reducing reaction of the mediator. Thus the electron acceptance reaction from the enzyme is efficiently performed, and the large current value is obtained. Furthermore, the reduction type redox compound can be used in a pattern, in which it is incorporated in a macromolecule compound such as poly tetrafluoroethylene.

Description

【発明の詳細な説明】 奮l上夏五批光」 本発明は、燃料電池、バイオリアクター電極材料、バイ
オセンサー用電極などとして好適な酵素電極に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an enzyme electrode suitable for use in fuel cells, bioreactor electrode materials, biosensor electrodes, and the like.

の   び Iが ′しよ゛と る −従来から酵素反
応を利用して化学物質を検出するセンサーや、化学エネ
ルギーを電気エネルギーに変換して電力を得る燃料電池
などの研究が活発に行なわれており、なかでもグルコー
スオキシダーゼを利用したグルコースセン、サーについ
ては様々な方式のものが提案されている。具体的には。
- Research has been actively conducted on sensors that detect chemical substances using enzymatic reactions and fuel cells that convert chemical energy into electrical energy to generate electricity. Among them, various systems have been proposed for glucose sensors and sensors using glucose oxidase. in particular.

反応によって生成したH、O□を過酸化水素電極により
定量する方式、消費した02を酸素電極により定量する
方式がある。しかし、これらの方式では溶存酸素が十分
に存在しないとグルコースが正確に定量できないという
欠点がある。そこで、溶存酸素が十分に存在しなくても
電子伝達物質(以下、メデイエータ−という)に酸化還
元酵素と集電体との間の電子伝達を行なわせて電気信号
を検出し、グルコースを定量する方式が提案されている
。この方式において、メデイエータ−としては、フェロ
セン、ベンゾキノン、クロルアニル、チオニンなどの酸
化型レドックス化合物が主に用いられているが、これら
の低分子メデイエータ−物質は水に対する不溶性が充分
でないために電極から溶出し、電極の感度が徐々に低下
していくという問題点を有する。また、基質を酸化する
酵素を用いた酵素電極を構成する場合に酵素のメデイエ
ータ−として酸化型レドックス化合物を用いると。
There is a method of quantifying H and O□ produced by the reaction using a hydrogen peroxide electrode, and a method of quantifying consumed O2 using an oxygen electrode. However, these methods have the disadvantage that glucose cannot be accurately quantified unless there is sufficient dissolved oxygen. Therefore, even if there is not enough dissolved oxygen, an electron transfer substance (hereinafter referred to as a mediator) is used to transfer electrons between the oxidoreductase and the current collector, and an electrical signal is detected to quantify glucose. A method has been proposed. In this method, oxidized redox compounds such as ferrocene, benzoquinone, chloranil, and thionine are mainly used as mediators, but these low-molecular mediator substances are not sufficiently insoluble in water and therefore elute from the electrode. However, there is a problem that the sensitivity of the electrode gradually decreases. Furthermore, when constructing an enzyme electrode using an enzyme that oxidizes a substrate, an oxidized redox compound is used as a mediator of the enzyme.

酸化型レドックス化合物は熱力学的に酸化状態が安定な
ために系全体の反応速度はメデイエータ−の還元反応、
即ち酵素からの電子受容反応によって律速となり、酵素
からの電子受容反応が効率良く行なわれなくなり、大き
な電流値が得られない場合がある。
Since the oxidized state of oxidized redox compounds is thermodynamically stable, the reaction rate of the entire system depends on the reduction reaction of the mediator,
That is, the rate is determined by the electron acceptance reaction from the enzyme, and the electron acceptance reaction from the enzyme is not performed efficiently, so that a large current value may not be obtained.

本発明は、上記事情に鑑みなされたもので、要存酸素が
充分に存在しなくても基質を正確に定量することができ
、かつメデイエータ−物質が電極から溶出して電極の感
度が低下するようなことがなく、更に酵素からの電子受
容反応が効率良く行なわれて大きな電流値が得られる高
精度で安価な酵素電極を提供することを目的とする。
The present invention was developed in view of the above circumstances, and allows accurate quantitative determination of the substrate even when sufficient oxygen is not present, and the mediator substance is eluted from the electrode, reducing the sensitivity of the electrode. It is an object of the present invention to provide a highly accurate and inexpensive enzyme electrode that does not cause such problems and allows electron acceptance reactions from enzymes to be carried out efficiently to obtain a large current value.

するための   び 本発明者らは、上記目的を達成するため鋭意検討を行な
った結果、フェノチアジン類、フェノキサジン類等の還
元型レドックス化合物が酸化還元酵素の良好なメデイエ
ータ−となること、更にこれらの還元型レドックス化合
物は水に対する溶解度が非常に低く、しかも有機溶剤に
可溶であるため、これらの化合物と高分子化合物からな
る組成物を電極に塗布、印刷又は圧着などして、或いは
これらの化合物と高分子化合物及びカーボンなどの導電
体からなる組成物を成形して電極を作製し。
In order to achieve the above object, the present inventors conducted intensive studies and found that reduced redox compounds such as phenothiazines and phenoxazines are good mediators of oxidoreductases. Reduced redox compounds have very low solubility in water and are soluble in organic solvents. Electrodes are made by molding a composition consisting of a compound, a polymer compound, and a conductor such as carbon.

これにグルコースオキシダーゼなどの酵素を固定するこ
とにより、酸素濃度に対する電流依存性に優れ、ブドウ
糖などの基質濃度と電流値とが良好な対応を示すと共に
、メデイエータ−の溶出もなく、長期間にわたり安定し
た性能を示し、更に安価であり、容易に作製できる酵素
電極が得られることを知見し、本発明をなすに至ったも
のである。
By immobilizing enzymes such as glucose oxidase on this, it has excellent current dependence on oxygen concentration, shows good correspondence between substrate concentration such as glucose and current value, and is stable for a long time without elution of mediator. The inventors have discovered that an enzyme electrode can be obtained that exhibits excellent performance, is inexpensive, and can be easily produced, and has led to the present invention.

従って、本発明は、酵素と集電体の電子伝達を電子伝達
物質が媒介する酵素電極において、電子伝達物質が水に
不溶であり、かつ有機溶剤に可溶な還元型レドックス化
合物であることを特徴とする酵素電極を提供する。
Therefore, the present invention provides an enzyme electrode in which an electron transfer substance mediates electron transfer between an enzyme and a current collector, in which the electron transfer substance is a reduced redox compound that is insoluble in water and soluble in an organic solvent. Provides an enzyme electrode with characteristics.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明に係る酵素電極は、メデイエータ−としてフェノ
チアジン類、フェノキサジン類等の水に不溶でかつ有機
溶剤に可溶な還元型レドックス化合物を用いたものであ
り、このメデイエータ−に酸化還元酵素と集電体との間
の電子伝達を行なわせて電気信号を検出し、基質を定量
するものである。
The enzyme electrode according to the present invention uses, as a mediator, a reduced redox compound such as phenothiazines and phenoxazines that is insoluble in water and soluble in organic solvents, and the mediator is combined with an oxidoreductase. It allows electron transfer between an electric body and detects an electric signal to quantify the substrate.

ここで、基質は酵素及びメデイエータ−(M)の存在下
でどのように反応するかといえば、酵素としてグルコー
スオキシダーゼ(GOD)を用いてグルコースを定量す
る場合について示すと次のようになる。
Here, how the substrate reacts in the presence of the enzyme and the mediator (M) is as follows when glucose is quantified using glucose oxidase (GOD) as the enzyme.

グルコース+(GOD)ox”グルコン酸+(COD)
RED    (1)Mox+ (G OD)RED=
MRED+ (COD)OX       (2)電極
+MRHD=ne−(電tin) +Mox     
      (3)(但し、。Xは酸化状態、REDは
還元状態を示す。
Glucose + (GOD) ox” Gluconic acid + (COD)
RED (1) Mox+ (GOD)RED=
MRED+ (COD)OX (2) Electrode+MRHD=ne-(electronic tin) +Mox
(3) (However, .X indicates an oxidized state and RED indicates a reduced state.

なお、H+移動の記述は省略した。) 従って、グルコースオキシダーゼのような基質を酸化す
る酵素のメデイエータ−としては、酸化型レドックス化
合物が主に用いられてきたが、上述したように酸化型レ
ドックス化合物は熱力学的に酸化状態が安定なため系全
体の反応速度はメデイエータ−の還元反応、すなわち酵
素からの電子受容反応、上記(2)式によって律速とな
り、そのため酵素からの電子受容反応が効率良く行なわ
れなくなり、大きな電流値が得られなくなる場合がある
のに対し、本発明の酵素電極は、メデイエータ−に還元
状態で安定なレドックス化合物を用い、これらレドック
ス化合物の酸化還元電位以上の電位を印加して電解酸化
することにより、系全体の反応速度はメデイエータ−の
還元反応によって律速にはならないので、酵素からの電
子受容反応が効率良く行なわれ、より大きな電流値が得
られるものである。
Note that the description of H+ movement has been omitted. ) Therefore, oxidized redox compounds have been mainly used as mediators for enzymes that oxidize substrates, such as glucose oxidase, but as mentioned above, oxidized redox compounds have thermodynamically stable oxidation states. Therefore, the reaction rate of the entire system is rate-limited by the reduction reaction of the mediator, that is, the electron acceptance reaction from the enzyme, and the equation (2) above.As a result, the electron acceptance reaction from the enzyme is not performed efficiently, and a large current value is not obtained. In contrast, the enzyme electrode of the present invention uses redox compounds that are stable in a reduced state as the mediator, and electrolytically oxidizes them by applying a potential higher than the redox potential of these redox compounds. Since the reaction rate is not rate-limited by the reduction reaction of the mediator, the electron acceptance reaction from the enzyme is carried out efficiently and a larger current value can be obtained.

本発明の酵素電極に用いられる還元型レドックス化合物
は、水に不溶で有機溶剤に可溶であればよく、特に限定
されるものではないが、下記一般式(1) (但し、Xは硫黄原子又は酸素原子、R1−R1はそれ
ぞれ水素原子、アルキル基、ハロゲン原子、ニトロ基、
アルコキシ基、アリール基から選ばれる原子又は基、R
9は水素原子又はアルキル基を示す。) で示されるフェノチアジン類又はフェノキサジン類が好
適に用いられる。なお、酵素としてグルコースオキシダ
ーゼを用いる場合は、グルコースオキシダーゼとの良好
なメデイエータ−機能を有することからフェノチアジン
が特に好ましい。
The reduced redox compound used in the enzyme electrode of the present invention is not particularly limited as long as it is insoluble in water and soluble in organic solvents. or an oxygen atom, R1-R1 are each a hydrogen atom, an alkyl group, a halogen atom, a nitro group,
Atoms or groups selected from alkoxy groups and aryl groups, R
9 represents a hydrogen atom or an alkyl group. ) Phenothiazines or phenoxazines shown in the following are preferably used. In addition, when glucose oxidase is used as the enzyme, phenothiazine is particularly preferred since it has a good mediator function with glucose oxidase.

上記還元型レドックス化合物は高分子化合物に包括した
形で用いることができるが、この場合高分子化合物とし
ては、ポリ四フッ化エチレン、ポリクロロトリフルオロ
エチレン、ポリフッ化ビニリデン、四フッ化エチレンー
六フッ化プロピレン共重合体、四フフ化エチレンーエチ
レン共重合体等のフッ素系樹脂、パーフルオロスルホン
酸ポリマー、パーフルオロカルボン酸ポリマー等のフッ
素系高分子電解質、ポリビニルアルコール、ポリアクリ
ルアミド等の親水性高分子化合物又はその架橋体、ポリ
エステル、ポリエチレンテレフタレート、ポリスチレン
、塩化ビニル等の熱可塑性樹脂、シリコーン、エポキシ
、ウレタン等の硬化性樹脂又はアルブミン、酢酸セルロ
ース、ニトロセルロース等の生体由来の高分子物質又は
その誘導体などの1種又は2種以上を混合して用いるこ
とができる。また、測定溶液とのぬれ性を向上させるた
め還元型レドックス化合物と高分子化合物とからなる組
成物に界面活性剤又はシリカ、酸化チタン等の微粉末を
添加すること、またカーボンブラック、グラファイト、
炭素繊維等の導電体を添加することは差支えない。
The above-mentioned reduced redox compound can be used in the form of being included in a polymer compound. In this case, the polymer compound may include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoroethylene, etc. Fluoropolymer electrolytes such as fluorinated propylene copolymers and tetrafluorinated ethylene-ethylene copolymers, fluoropolymer electrolytes such as perfluorosulfonic acid polymers and perfluorocarboxylic acid polymers, and highly hydrophilic materials such as polyvinyl alcohol and polyacrylamide. Molecular compounds or crosslinked products thereof, thermoplastic resins such as polyester, polyethylene terephthalate, polystyrene, vinyl chloride, curable resins such as silicone, epoxy, urethane, or biologically derived polymeric substances such as albumin, cellulose acetate, nitrocellulose, etc. One type or a mixture of two or more types of derivatives can be used. In addition, in order to improve the wettability with the measurement solution, surfactants or fine powders such as silica and titanium oxide may be added to the composition consisting of a reduced redox compound and a polymer compound, and carbon black, graphite, etc.
There is no problem in adding a conductor such as carbon fiber.

また、還元型レドックス化合物と高分子化合物の混合比
は、特に限定されるものではないが、還元型レドックス
化合物1重量部に対して高分子化合物1〜100重量部
、特に5〜20重量部とするのが好ましい。
Further, the mixing ratio of the reduced redox compound and the polymer compound is not particularly limited, but 1 to 100 parts by weight, particularly 5 to 20 parts by weight of the polymer compound to 1 part by weight of the reduced redox compound. It is preferable to do so.

本発明の酵素電極に■いられる酵素としては、進行させ
たい化学反応の種類に応じた基質特異性及び反応特異性
などにより適宜選択され、特に制限はないが1例えば、
グルコースオキシダーゼ、アルコールデヒドロゲナーゼ
、ウレアーゼ、グルコキナーゼ、ペルオキシダーゼ、コ
レステロールエステラーゼ、リパーゼ、ホスホリパーゼ
、カタラーゼ、乳酸デヒドロゲナーゼ、グルコアミラー
ゼ、ガラクトースオキシダーゼ、ペニシリナーゼ、チロ
シナーゼなどが挙げられる。
The enzyme contained in the enzyme electrode of the present invention is appropriately selected depending on the substrate specificity and reaction specificity depending on the type of chemical reaction desired to proceed, and is not particularly limited; for example,
Examples include glucose oxidase, alcohol dehydrogenase, urease, glucokinase, peroxidase, cholesterol esterase, lipase, phospholipase, catalase, lactate dehydrogenase, glucoamylase, galactose oxidase, penicillinase, and tyrosinase.

次に、本発明の酵素電極の作製方法について説明する。Next, a method for producing the enzyme electrode of the present invention will be explained.

本発明電極に用いられる電極基盤としては、スクリーン
印刷によって形成されたカーボン電極。
The electrode base used in the electrode of the present invention is a carbon electrode formed by screen printing.

白金、金、パラジウムなどの貴金属板、またはそれらの
蒸着膜、ステンレススチールなどが好適に用いられる。
Preferably used are plates of noble metals such as platinum, gold, and palladium, or vapor-deposited films thereof, and stainless steel.

電極の作製法としては、特に限定されるものではないが
、上記還元型レドックス化合物を少量の有機溶剤に溶解
し、上記高分子化合物の溶液状態又は水分散状態のもの
と混合して、上記i!!極基極上盤上の組成物を塗布又
は印刷によって成形し、乾燥固化後、酵素を固定する方
法、または上記組成物に酵素を混入したものを電極に塗
布、印刷又は圧着する方法などが用いられる。なお、こ
れらの組成物にカーボンなどの導電体を入れてもよい。
The method for producing the electrode is not particularly limited, but the reduced redox compound is dissolved in a small amount of an organic solvent, mixed with the polymer compound in a solution state or water dispersion state, and the above i. ! ! A method is used in which the composition on the top plate of the electrode is molded by coating or printing, and after drying and solidification, the enzyme is immobilized, or a method in which the composition mixed with the enzyme is coated, printed, or crimped on the electrode. . Note that a conductor such as carbon may be added to these compositions.

更に、還元型レドックス化合物をカーボンなどの導電体
と共に上記高分子化合物と混合したものを印刷などによ
って成形して電極を作製し、酵素を固定する方法なども
用いることができる。印刷法としては、簡便でしかも比
較的塗布量の多いスクリーン印刷法が好適である。
Furthermore, it is also possible to use a method in which a reduced redox compound is mixed with the above-mentioned polymer compound together with a conductor such as carbon, and an electrode is prepared by printing or the like, and the enzyme is immobilized. As a printing method, a screen printing method is suitable because it is simple and allows a relatively large amount of coating.

上記還元型レドックス化合物からなる組成物より形成さ
れた成形物に酵素を固定する方法としては、特に制限は
ないが、包括法、担体結合法、共有結合法、イオン結合
法、吸着法、架橋法などが挙げられ、中でも酵素を高分
子のネットワークに包み込む包括法やグルタルアルデヒ
ドによりシッフ塩基を形成する方法が好適に用いられる
。ここで、還元型レドックス化合物に対する酵素の量と
しては必ずしも制限されるものではないが、1〜50.
000単位/mgとするのが好ましく、処理温度として
は0〜30℃、pHは3〜10の範囲とするのが好まし
い。
There are no particular restrictions on the method for immobilizing enzymes on the molded article formed from the composition made of the above-mentioned reduced redox compound, but examples include entrapment method, carrier bonding method, covalent bonding method, ionic bonding method, adsorption method, and crosslinking method. Among them, an entrapment method in which the enzyme is wrapped in a polymer network and a method in which a Schiff base is formed with glutaraldehyde are preferably used. Here, the amount of enzyme relative to the reduced redox compound is not necessarily limited, but may range from 1 to 50.
000 units/mg, the treatment temperature is preferably 0 to 30°C, and the pH is preferably 3 to 10.

見ユ豊羞求 以上説明したように、還元型レドックス化合物と高分子
化合物からなる組成物を電極に塗布、印刷又は圧着する
か、還元型レドックス化合物をカーボンなどの導電体と
共に高分子化合物と混合した組成物を印刷などによって
成形、電極を作製し、これにグルコースオキシダーゼな
どの酵素を固定するか、または予め組成物に酵素を混入
させることにより、酵素濃度に対する電流依存性に優れ
、基質濃度と電流値とが良好な対応を示すと共に、メデ
イエータ−の溶出もなく、長期間にわたり安定した性能
を示し、更に安価であり、容易に作製できる酵素電極が
得られる。この酵素電極は、たとえば、血糖値又は尿糖
値などを測定するセンサーとして好適に用いられる。
As explained above, a composition consisting of a reduced redox compound and a polymer compound can be coated, printed, or crimped onto an electrode, or a reduced redox compound can be mixed with a polymer compound together with a conductor such as carbon. The resulting composition is molded by printing to create an electrode, and an enzyme such as glucose oxidase is immobilized thereon, or by pre-mixing the enzyme into the composition, it has excellent current dependence on enzyme concentration and An enzyme electrode can be obtained that exhibits good correspondence with the current value, exhibits stable performance over a long period of time without elution of the mediator, is inexpensive, and can be easily produced. This enzyme electrode is suitably used as a sensor for measuring, for example, blood sugar level or urine sugar level.

以下、実施例と比較例を示し、本発明を具体的に説明す
るが、本発明は下記の実施例は制限されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples.

〔実施例1〕 フェノチアジン(精工化学課)1重量部を少量のアセト
ンに溶解し、水分散性テフロンデイスパージョン(固形
分60%)10重量部を混合して、メノウ乳鉢にて充分
混合した。こうして得られたペースト状組成物をスクリ
ーン印刷したカーボン電極に塗布し、乾燥した。
[Example 1] 1 part by weight of phenothiazine (Seiko Chemical Division) was dissolved in a small amount of acetone, mixed with 10 parts by weight of water-dispersible Teflon dispersion (solid content 60%), and thoroughly mixed in an agate mortar. . The paste-like composition thus obtained was applied to a screen-printed carbon electrode and dried.

この電極に500単位のグルコースオキシダーゼ(シグ
マ社製)を1%グルタルアルデヒドのリン酸緩衝液50
μQにて風乾固定し、酵素電極を得た。
To this electrode, 500 units of glucose oxidase (manufactured by Sigma) was added in 1% glutaraldehyde phosphate buffer solution.
It was air-dried and fixed using μQ to obtain an enzyme electrode.

次に、この酵素電極を用い、pH7,4リン酸緩衝溶液
中でブドウ糖(和光純薬製)を加え、銀塩化銀電極対比
+〇、6Vにおける電流を測定したところ、図面におい
て実線Aで示す通りの結果が得られ、この実施例に係る
酵素電極は450■/dのブドウ糖濃度まで電流値と良
い対応を示すことが認められた。
Next, using this enzyme electrode, glucose (manufactured by Wako Pure Chemical Industries, Ltd.) was added in a pH 7.4 phosphate buffer solution, and the current at 6 V compared to the silver-silver chloride electrode was measured, as shown by the solid line A in the drawing. The same results were obtained, and it was confirmed that the enzyme electrode according to this example showed good correspondence with the current value up to a glucose concentration of 450 μ/d.

〔実施例2〕 フェノチアジン1重量部とグルコースオキシダーゼ50
0単位を少量のアセトンに溶解し、水分散性テフロンデ
ィスバージョン(固形分60%)10重量部を混合して
、メノウ乳鉢にて充分混合した。こうして得られたペー
スト状組成物をスクリーン印刷したカーボン電極に塗布
し、乾燥した。
[Example 2] 1 part by weight of phenothiazine and 50 parts by weight of glucose oxidase
0 unit was dissolved in a small amount of acetone, mixed with 10 parts by weight of water-dispersible Teflon dispersion (solid content 60%), and thoroughly mixed in an agate mortar. The paste-like composition thus obtained was applied to a screen-printed carbon electrode and dried.

この電極に実施例1と同様にしてグルコースオキシダー
ゼを固定し、得られた酵素電極のブドウ糖に対する応答
電流を実施例1と同様にして測定した0図面において実
線Bで示す通りの結果が得られ、この実施例に係る酵素
電極は450mg/aのブドウ糖濃度まで電流値と良い
対応を示すことが認められた。
Glucose oxidase was immobilized on this electrode in the same manner as in Example 1, and the response current to glucose of the obtained enzyme electrode was measured in the same manner as in Example 1. Results as shown by the solid line B in the drawing were obtained. It was found that the enzyme electrode according to this example showed good correspondence with the current value up to a glucose concentration of 450 mg/a.

〔比較例〕[Comparative example]

クロラニル(和光純薬展)1重量部に対し水分散性テフ
ロンデイスパージョン(固形分60%)10重量部を混
合し、メノウ乳鉢にて充分混合した。
10 parts by weight of a water-dispersible Teflon dispersion (solid content 60%) was mixed with 1 part by weight of chloranil (Wako Pure Chemical Industries, Ltd.) and thoroughly mixed in an agate mortar.

こうして得られたペースト状組成物をスクリーン印刷し
たカーボン電極に塗布し、乾燥した。
The paste-like composition thus obtained was applied to a screen-printed carbon electrode and dried.

この電極に実施例1と同様に酵素を固定し、酵素電極を
作製し、ブドウ糖に対する応答電流を測定した。結果は
図面において破線Cで示す通りであり、300■/dl
lのブドウ糖濃度でこの比較例の酵素電極は飽和に達し
てしまった。更に、一部クロラニルの溶出が見られた。
An enzyme was immobilized on this electrode in the same manner as in Example 1, an enzyme electrode was prepared, and the response current to glucose was measured. The results are as shown by the broken line C in the drawing, and 300■/dl
The enzyme electrode of this comparative example reached saturation at a glucose concentration of 1 liter. Furthermore, some elution of chloranil was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例1、実施例2及び比較例の酵素電極を用い
た場合におけるブドウ糖濃度と電流値との関係を示すグ
ラフである。 出願人  株式会社  ブリデストン 代理人  弁理士  小 島、隆 司
The drawing is a graph showing the relationship between glucose concentration and current value when the enzyme electrodes of Example 1, Example 2, and Comparative Example are used. Applicant Brideston Co., Ltd. Agent Patent Attorney Takashi Kojima

Claims (1)

【特許請求の範囲】[Claims] 1、酵素と集電体の電子伝達を電子伝達物質が媒介する
酵素電極において、電子伝達物質が水に不溶であり、か
つ有機溶剤に可溶な還元型レドックス化合物であること
を特徴とする酵素電極。
1. An enzyme electrode in which an electron transfer substance mediates electron transfer between an enzyme and a current collector, wherein the electron transfer substance is a reduced redox compound that is insoluble in water and soluble in an organic solvent. electrode.
JP63006208A 1988-01-14 1988-01-14 Enzyme electrode Pending JPH01182747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006208A JPH01182747A (en) 1988-01-14 1988-01-14 Enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006208A JPH01182747A (en) 1988-01-14 1988-01-14 Enzyme electrode

Publications (1)

Publication Number Publication Date
JPH01182747A true JPH01182747A (en) 1989-07-20

Family

ID=11632113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006208A Pending JPH01182747A (en) 1988-01-14 1988-01-14 Enzyme electrode

Country Status (1)

Country Link
JP (1) JPH01182747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243012A (en) * 2012-05-18 2013-12-05 Toyota Motor Corp Method of manufacturing electrode for biofuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243012A (en) * 2012-05-18 2013-12-05 Toyota Motor Corp Method of manufacturing electrode for biofuel cell

Similar Documents

Publication Publication Date Title
Karyakin et al. Electroreduction of NAD+ to enzymatically active NADH at poly (neutral red) modified electrodes
Chaubey et al. Mediated biosensors
Dzyadevych et al. Amperometric enzyme biosensors: Past, present and future
US5264092A (en) Redox polymer modified electrode for the electrochemical regeneration of coenzyme
Bartlett et al. Strategies for the development of amperometric enzyme electrodes
Silber et al. Poly (methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors
Bartlett et al. A review of the immobilization of enzymes in electropolymerized films
Fortier et al. Optimization of a polypyrrole glucose oxidase biosensor
Karyakin et al. New amperometric dehydrogenase electrodes based on electrocatalytic NADH‐oxidation at poly (methylene blue)‐modified electrodes
US5089112A (en) Electrochemical biosensor based on immobilized enzymes and redox polymers
US5665222A (en) Soybean peroxidase electrochemical sensor
Bu et al. Characterization of a ferrocene-containing polyacrylamide-based redox gel for biosensor use
US4321123A (en) Coenzyme immobilized electrode
Vidal et al. A chronoamperometric sensor for hydrogen peroxide based on electron transfer between immobilized horseradish peroxidase on a glassy carbon electrode and a diffusing ferrocene mediator
Malinauskas et al. Bioelectrochemical sensor based on PQQ-dependent glucose dehydrogenase
EP0390390A1 (en) Electrochemical biosensor based on immobilized enzymes and redox polymers
Schmidt et al. Reagentless oxidoreductase sensors
Chi et al. Electrocatalytic oxidation of reduced nicotinamide coenzymes at Methylene Green-modified electrodes and fabrication of amperometric alcohol biosensors
Saito et al. Characterization of poly (vinylferrocene-co-2-hydroxyethyl methacrylate) for use as electron mediator in enzymatic glucose sensor
Bu et al. NAD (P) H sensors based on enzyme entrapment in ferrocene-containing polyacrylamide-based redox gels
Castañón et al. Amperometric detection of ethanol with poly-(o-phenylenediamine)-modified enzyme electrodes
Kuwabata et al. Preparation and properties of amperometric uric acid sensors
Losada et al. Ferrocenyl and permethylferrocenyl cyclic and polyhedral siloxane polymers as mediators in amperometric biosensors
Boguslavsky et al. Amperometric thin film biosensors based on glucose dehydrogenase and Toluidine Blue O as catalyst for NADH electrooxidation
Tzang et al. Voltammetric biosensors for the determination of formate and glucose-6-phosphate based on the measurement of dehydrogenase-generated NADH and NADPH