JP2013243012A - Method of manufacturing electrode for biofuel cell - Google Patents

Method of manufacturing electrode for biofuel cell Download PDF

Info

Publication number
JP2013243012A
JP2013243012A JP2012114662A JP2012114662A JP2013243012A JP 2013243012 A JP2013243012 A JP 2013243012A JP 2012114662 A JP2012114662 A JP 2012114662A JP 2012114662 A JP2012114662 A JP 2012114662A JP 2013243012 A JP2013243012 A JP 2013243012A
Authority
JP
Japan
Prior art keywords
electrode
enzyme
slurry
biofuel cell
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012114662A
Other languages
Japanese (ja)
Inventor
Tsuruyo Kawauchi
鶴代 河内
Satoshi Yoneda
聡 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012114662A priority Critical patent/JP2013243012A/en
Publication of JP2013243012A publication Critical patent/JP2013243012A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode for a biofuel cell capable of applying an enzyme to the surface of a conductive base material by a one-time application step in a form excellently dispersed from carbon slurry.SOLUTION: Provided is a method of manufacturing an electrode for a biofuel cell in which an enzyme solution obtained by dissolving an enzyme into an aqueous solvent is salted out, a slurry for the electrode is generated by mixing the enzyme taken out by salting out, and the slurry for the electrode is applied to the surface of the conductive base material.

Description

本発明は、バイオ燃料電池用電極の製造方法に関するものである。   The present invention relates to a method for producing an electrode for a biofuel cell.

アノード側電極とカソード側電極がイオン伝導性を有する電解質膜を介して対向配置された構成の燃料電池は、たとえば、固体高分子型燃料電池などとして知られている。   A fuel cell having a configuration in which an anode side electrode and a cathode side electrode are arranged to face each other through an electrolyte membrane having ion conductivity is known as a polymer electrolyte fuel cell, for example.

上記する燃料電池においては、アノード側電極に燃料(水素)が供給され、そこで触媒の作用によってプロトン(H+)となり、2個の電子(e-)はカソード側電極に向けて放出される。アノード側電極で生成されたプロトンは電解質膜を介してカソード側電極に達し、触媒の作用によってアノード側電極からの2個の電子(e-)を受け取るとともに、外部から供給される酸素から生成される酸素イオンとともに水が生成される。発電された電気は、外部回路を通る電子の移動が電流として取り出されるようになっている。すなわち、アノード側ではH2→2H++2e-の反応が、カソード側では2H++1/2O2+2e-→H2Oの反応がそれぞれ起こっており、全体反応としてはH2+1/2O2→H2Oの反応が起こることによって発電がおこなわれる。化学反応を効率よく進めるために電極には上記のように触媒が使用されており、たとえば固体高分子型燃料電池では白金が多用されている。 In the fuel cell described above, fuel (hydrogen) is supplied to the anode side electrode, where it becomes proton (H + ) by the action of the catalyst, and two electrons (e ) are emitted toward the cathode side electrode. Protons generated at the anode side electrode reach the cathode side electrode through the electrolyte membrane, receive two electrons (e ) from the anode side electrode by the action of the catalyst, and are generated from oxygen supplied from the outside. Water is produced with oxygen ions. In the generated electricity, the movement of electrons through an external circuit is taken out as a current. That is, the reaction of H 2 → 2H + + 2e occurs on the anode side, and the reaction of 2H + + 1 / 2O 2 + 2e → H 2 O occurs on the cathode side, and the overall reaction is H 2 + 1 / 2O 2 → Electricity is generated by the reaction of H 2 O. In order to advance the chemical reaction efficiently, a catalyst is used for the electrode as described above. For example, platinum is frequently used in a polymer electrolyte fuel cell.

ところで、昨今、生物内でおこなわれている生体代謝が高効率なエネルギー変換機構であることに着目し、これを燃料電池に適用する技術が研究されている。この生体代謝はエネルギー利用効率が高く、しかも室温程度の穏やかな条件で反応が進行するという特徴を備えている。しかしながら、微生物や細胞には化学エネルギーから電気エネルギーへの変換といった目的の反応以外にも不要な反応が多く存在することから、十分なエネルギー変換効率が発揮され難い。そこで、酵素を触媒として適用することで所望の反応のみをおこなわせる燃料電池(バイオ燃料電池)が開発されている。このバイオ燃料電池は、触媒として機能する酵素によって燃料を分解してプロトンと電子に分離するものであり、この燃料としてはメタノールやエタノールのようなアルコール類、あるいはグルコースのような単糖類、デンプンのような多糖類を用いたものが用いられている。   By the way, recently, attention has been paid to the fact that living body metabolism carried out in living organisms is a highly efficient energy conversion mechanism, and a technique for applying this to a fuel cell has been studied. This biological metabolism is characterized by high energy utilization efficiency and the reaction proceeds under mild conditions of about room temperature. However, since microorganisms and cells have many unnecessary reactions other than the intended reaction such as conversion from chemical energy to electrical energy, it is difficult to achieve sufficient energy conversion efficiency. Therefore, a fuel cell (biofuel cell) has been developed that can perform only a desired reaction by applying an enzyme as a catalyst. In this biofuel cell, the fuel is decomposed by an enzyme that functions as a catalyst and separated into protons and electrons. This fuel is an alcohol such as methanol or ethanol, a monosaccharide such as glucose, or starch. Those using such polysaccharides are used.

上記するバイオ燃料電池の電極製造に着目すると、これまでの電極製造方法は一般に、カーボンペーパー等の導電性基材(電極骨格部材)の表面に対して所望に調製されたカーボンスラリーを塗工し、乾燥させて電極中間体を製作した後(第1の工程)、酵素を含む溶液にこの電極中間体を浸漬して酵素を固定化して電極を製作する(第2の工程)という、2つの工程による製造方法が適用されている。この製造方法によれば、カーボンペーパーからなる導電性基材の表面にカーボンを主成分とする被膜(コート層)が形成され、この表面に酵素が固定された構成の電極が形成されることになる。なお、このような従来のバイオ燃料電池用電極の製造方法が特許文献1において実施例として開示されている。   Focusing on the biofuel cell electrode manufacturing described above, the conventional electrode manufacturing methods generally apply a carbon slurry prepared on the surface of a conductive substrate (electrode skeleton member) such as carbon paper. After the electrode intermediate is produced by drying (first step), the electrode intermediate is immersed in a solution containing the enzyme to immobilize the enzyme to produce the electrode (second step). The manufacturing method by a process is applied. According to this manufacturing method, a coating (coating layer) containing carbon as a main component is formed on the surface of a conductive base material made of carbon paper, and an electrode having a structure in which an enzyme is immobilized is formed on the surface. Become. In addition, the manufacturing method of such a conventional electrode for biofuel cells is disclosed as an example in Patent Document 1.

このように、バイオ燃料電池の電極製造において、導電性基材の表面にカーボンスラリーを塗工し、次いで酵素を固定するといった二つの工程を要している最大の理由は、酵素は有機溶媒中で凝集して凝集体を生成し易いため、導電性基材表面に酵素を分散させた状態で万遍なく配設し難いからである。仮に酵素をスラリーと混合して導電性基材表面に塗工した場合(すなわち、一つの塗工工程のみによる電極製造)には、酵素が凝集体を生成してしまい、導電性基材表面の一部に酵素の凝集体が固定された電極が製造される可能性が極めて高い。そして、このように導電性基材表面の一部に酵素の凝集体が固定された電極では、酵素全体が触媒作用を十分に発揮することができず、燃料電池の発電性能の低下に直結することから好ましくない。   Thus, in the production of an electrode for a biofuel cell, the biggest reason for requiring two steps of coating the surface of the conductive substrate with carbon slurry and then fixing the enzyme is that the enzyme is in an organic solvent. This is because it is easy to form an aggregate by agglomeration, and it is difficult to dispose the enzyme uniformly on the surface of the conductive substrate. If the enzyme is mixed with the slurry and applied to the surface of the conductive substrate (that is, the electrode is produced by only one coating process), the enzyme forms aggregates, There is an extremely high possibility that an electrode in which an enzyme aggregate is partially immobilized will be produced. And in the electrode in which the aggregate of the enzyme is fixed on a part of the surface of the conductive base material in this way, the whole enzyme cannot fully exhibit the catalytic action, which directly leads to a decrease in the power generation performance of the fuel cell. That is not preferable.

上記課題を解消し、一度の塗工工程による電極製造方法によっても、導電性基材の表面に酵素を良好に分散固定することができ、もって、品質に優れたバイオ燃料電池用電極を効率よく製造することのできるバイオ燃料電池用電極の製造方法に関する発案が当該技術分野で切望されている。   The above problems can be solved and the enzyme can be well dispersed and fixed on the surface of the conductive substrate even by the electrode manufacturing method by a single coating process. A proposal relating to a method for producing an electrode for a biofuel cell that can be produced is eagerly desired in the art.

特開2010−262830号公報JP 2010-262830 A

本発明は上記する問題に鑑みてなされたものであり、導電性基材の表面に対し、一度の塗工工程にてスラリーと混合された酵素を良好に分散された態様で塗工することのできるバイオ燃料電池用電極の製造方法を提供することを目的とする。   The present invention has been made in view of the problems described above, and is applied to the surface of a conductive substrate in a well-dispersed manner with an enzyme mixed with slurry in a single coating step. An object of the present invention is to provide a method for producing a biofuel cell electrode.

前記目的を達成すべく、本発明によるバイオ燃料電池用電極の製造方法は、酵素を水系溶媒に溶かしてなる酵素溶液を塩析させ、塩析にて取り出した酵素をスラリーと混合して電極用スラリーを生成し、電極用スラリーを導電性基材の表面に塗工するものである。   In order to achieve the above object, a method for producing an electrode for a biofuel cell according to the present invention includes salting out an enzyme solution obtained by dissolving an enzyme in an aqueous solvent, mixing the enzyme taken out by salting out with a slurry, and A slurry is generated, and the electrode slurry is applied to the surface of the conductive substrate.

本発明のバイオ燃料電池用電極の製造方法は、酵素溶液を塩析(塩存在下で析出)させて取り出すことにより、分散性を有した固体状の酵素を生成し、この酵素をスラリーと混合して電極用スラリーを生成するものである。生成された電極用スラリーにおいては、酵素が凝集することなく良好に分散していることから、この電極用スラリーをカーボンフェルト等の導電性基材に塗工することで、導電性基材の表面や内部に酵素を凝集させることなく良好に分散した態様で配設することができる。   The method for producing an electrode for a biofuel cell of the present invention produces a solid enzyme having dispersibility by salting out an enzyme solution (depositing in the presence of salt) and mixing the enzyme with a slurry. Thus, an electrode slurry is produced. In the generated electrode slurry, since the enzyme is well dispersed without agglomeration, the surface of the conductive substrate can be obtained by coating the electrode slurry on a conductive substrate such as carbon felt. Or it can arrange | position in the aspect disperse | distributed favorably, without making an enzyme aggregate inside.

したがって、一度の塗工工程でバイオ燃料電池用電極を製造することができるため、スラリーの塗工と酵素の固定を別途おこなっていた二つの工程からなる従来の製造方法に比して工程を短縮することができ、このことによって製造コストを低減できる。さらに、導電性基材の表面全体に酵素が凝集することなく分散固定されていることから、発電性能に優れたバイオ燃料電池用電極を製造することができる。   Therefore, the biofuel cell electrode can be manufactured in a single coating process, so the process is shortened compared to the conventional manufacturing method consisting of two processes in which slurry coating and enzyme fixation are separately performed. This can reduce the manufacturing cost. Furthermore, since the enzyme is dispersed and fixed on the entire surface of the conductive substrate without agglomeration, an electrode for a biofuel cell having excellent power generation performance can be produced.

ここで、「塗工」とは、塗布、散布、ディップ等を含む意味であり、たとえば塗布した後に、自然乾燥もしくは強制乾燥して電極スラリーの溶媒成分が蒸散することまでも含むことができる。   Here, the term “coating” includes application, dispersion, dip, and the like, and can include, for example, even after the application, the solvent component of the electrode slurry is evaporated by natural drying or forced drying.

また、酵素溶液を塩析させる際に用いられる塩析作用を備えた塩としては、クエン酸塩や酒石酸塩、硫酸塩などが挙げられ、たとえば、クエン酸アンモニウムや硫酸アンモニウムが適用できる。   Examples of the salt having a salting-out action used when salting out the enzyme solution include citrate, tartrate, sulfate, and the like. For example, ammonium citrate and ammonium sulfate can be applied.

また、電極用スラリーを生成する実施の形態として、酵素溶液を硫酸アンモニウムもしくはクエン酸アンモニウムで塩析させ、遠心して酵素沈殿物を生成し、酵素沈殿物を水系溶媒に添加して懸濁液を生成し、懸濁液を濃縮させて固体状の酵素を沈殿物として取り出し、取り出した固体状の酵素をスラリーと混合して電極用スラリーを生成する形態を挙げることができる。   In addition, as an embodiment for producing a slurry for electrodes, the enzyme solution is salted out with ammonium sulfate or ammonium citrate, centrifuged to produce an enzyme precipitate, and the enzyme precipitate is added to an aqueous solvent to produce a suspension. Then, the suspension can be concentrated to take out the solid enzyme as a precipitate, and the solid enzyme thus taken out can be mixed with the slurry to form an electrode slurry.

以上の説明から理解できるように、本発明のバイオ燃料電池用電極の製造方法によれば、酵素を水系溶媒に溶かしてなる酵素溶液を塩析させ、塩析にて取り出した酵素をスラリーと混合して電極用スラリーを生成し、この電極用スラリーを導電性基材に塗工することにより、一度の塗工工程で導電性基材に酵素を良好に分散固定させることができ、製造効率を高めながら、発電性能に優れたバイオ燃料電池用電極を製造することができる。   As can be understood from the above description, according to the method for producing an electrode for a biofuel cell of the present invention, an enzyme solution obtained by dissolving an enzyme in an aqueous solvent is salted out, and the enzyme taken out by salting out is mixed with the slurry. The electrode slurry is produced, and the electrode slurry is applied to the conductive substrate, whereby the enzyme can be well dispersed and fixed on the conductive substrate in a single coating process. It is possible to produce an electrode for a biofuel cell that is excellent in power generation performance while being enhanced.

(a)はバイオ燃料電池の構造を側面から示した模式図であり、(b)は(a)のb矢視図である。(A) is the schematic diagram which showed the structure of the biofuel cell from the side, (b) is a b arrow line view of (a). バイオ燃料電池の出力評価試験結果を示す図である。It is a figure which shows the output evaluation test result of a biofuel cell.

以下、バイオ燃料電池用電極の製造方法を説明する。
(バイオ燃料電池の構造)
図1は、バイオ燃料電池の構造を説明した模式図である。同図で示すように、バイオ燃料電池10は、イオン伝導性を有する電解質膜3と、その両側に、シリコンプレート6で挟持されたアノード側電極7Aおよびカソード側電極7B(以上をまとめて電極7)と、これらの電極の外側に位置するチタンメッシュからなる集電体2,2と、さらに集電体2,2の外側に位置するシリコンプレート5で挟持された燃料タンク4,4と、これらの部材の積層体を左右から挟圧する一対の帯電防止アクリル板1,1とから大略構成されており、各積層体の内部に不図示の電解質溶液が満たされた状態となっている。図1aで示す各構成部材の積層体に対し、最終的に図1bで示すボルト穴1aを介してボルトが一対の帯電防止アクリル板1,1間に挿通され、ナット締め等されることでバイオ燃料電池10が組み付けられる。
Hereinafter, the manufacturing method of the electrode for biofuel cells is demonstrated.
(Structure of biofuel cell)
FIG. 1 is a schematic diagram illustrating the structure of a biofuel cell. As shown in the figure, the biofuel cell 10 includes an electrolyte membrane 3 having ion conductivity, and an anode side electrode 7A and a cathode side electrode 7B sandwiched by silicon plates 6 on both sides thereof (the above is collectively referred to as an electrode 7). ), Current collectors 2 and 2 made of titanium mesh located outside these electrodes, and fuel tanks 4 and 4 sandwiched between silicon plates 5 located outside current collectors 2 and 2, The laminated body of these members is generally composed of a pair of antistatic acrylic plates 1 and 1 that sandwich the left and right sides, and each laminated body is filled with an electrolyte solution (not shown). 1a is finally inserted into a pair of antistatic acrylic plates 1 and 1 through a bolt hole 1a shown in FIG. The fuel cell 10 is assembled.

電極7は、グラファイトやカーボンブラック、活性炭、カーボンフェルト、カーボンペーパー、カーボンクロス等の導電性炭素質の導電性基材(電極骨格部材)の表面に、カーボンを主成分とする材料がコーティングされ、さらにこの表面に酵素が分散固定されて形成されている。   The electrode 7 has a carbon-based material coated on the surface of a conductive carbonaceous conductive substrate (electrode skeleton member) such as graphite, carbon black, activated carbon, carbon felt, carbon paper, carbon cloth, Furthermore, an enzyme is dispersed and fixed on this surface.

電極7の導電性基材表面に分散固定される酵素としては、デヒドロゲナーゼやオキシダーゼなどの酸化還元酵素を挙げることができる。この酸化還元酵素の具体例としては、グルコースデヒドロゲナーゼ(GDH)やフルクトースデヒドロゲナーゼ(FDH)、ビリルビンオキシダーゼ(BOD)、アルコールデヒドロゲナーゼ(ADH)、アルコールオキシダーゼ(AOD)、アルデヒドオキシダーゼ、アルデヒドデヒドロゲナーゼ、グルコースオキシダーゼ(GOD)、ギ酸デヒドロゲナーゼ、ギ酸オキシダーゼ、ジアホラーゼ、マルチ銅オキシダーゼなどを挙げることができる。また、酵素は、これらのうちの一種のみを用いてもよいし、二種以上を組み合わせて用いてもよい。   Examples of the enzyme dispersed and fixed on the surface of the conductive substrate of the electrode 7 include oxidoreductases such as dehydrogenase and oxidase. Specific examples of this oxidoreductase include glucose dehydrogenase (GDH), fructose dehydrogenase (FDH), bilirubin oxidase (BOD), alcohol dehydrogenase (ADH), alcohol oxidase (AOD), aldehyde oxidase, aldehyde dehydrogenase, glucose oxidase (GOD). ), Formate dehydrogenase, formate oxidase, diaphorase, multi-copper oxidase and the like. Moreover, only 1 type of these may be used for an enzyme, and 2 or more types may be used in combination.

また、酵素は、アノード側電極7Aとカソード側電極7Bの双方の導電性基材表面に分散固定されてもよいし、アノード側電極7Aとカソード側電極7Bのいずれか一方にのみ分散固定されてもよい。   Further, the enzyme may be dispersed and fixed on the surface of the conductive base material of both the anode side electrode 7A and the cathode side electrode 7B, or may be dispersed and fixed only on one of the anode side electrode 7A and the cathode side electrode 7B. Also good.

たとえばアノード側電極7Aが酵素を有する(酵素電極)の場合、電極に用いた酵素の反応の基質となる物質が燃料としてアノード側電極に供給される。燃料の具体例としては、メタノールやエタノールなどのアルコール類、アセトアルデヒドなどのアルデヒド類、ギ酸や酢酸などのカルボン酸類、グルコース、フルクトースなどの糖類などが挙げられる。燃料は電極に固定された酵素に応じて適宜選択することができ、たとえば水溶液の状態で燃料タンク4から電極7側へ供給される。一方、カソード極では大気中から酸素を取り込み、水が生成される。   For example, when the anode side electrode 7A has an enzyme (enzyme electrode), a substance serving as a substrate for the enzyme reaction used for the electrode is supplied to the anode side electrode as fuel. Specific examples of the fuel include alcohols such as methanol and ethanol, aldehydes such as acetaldehyde, carboxylic acids such as formic acid and acetic acid, and sugars such as glucose and fructose. The fuel can be appropriately selected according to the enzyme immobilized on the electrode. For example, the fuel is supplied from the fuel tank 4 to the electrode 7 in the form of an aqueous solution. On the other hand, oxygen is taken in from the atmosphere at the cathode electrode to generate water.

(電極の製造方法)
次に、電極7の製造方法を概説する。まず、酵素を水系溶媒に溶かして酵素溶液を調製し、この酵素溶液に硫酸アンモニウム(硫安)等を添加して塩析し、適宜遠心分離して酵素沈殿物を生成する。
(Method for manufacturing electrode)
Next, the manufacturing method of the electrode 7 will be outlined. First, an enzyme solution is prepared by dissolving an enzyme in an aqueous solvent, and ammonium sulfate (ammonium sulfate) or the like is added to the enzyme solution for salting out, followed by appropriate centrifugation to produce an enzyme precipitate.

この酵素沈殿物を硫安入りバッファで懸濁して懸濁液を生成し、懸濁液を濃縮することで固体状の酵素を析出させる。   The enzyme precipitate is suspended in a buffer containing ammonium sulfate to form a suspension, and the suspension is concentrated to precipitate a solid enzyme.

ここで、酵素の塩析は、塩析作用のあるクエン酸塩や酒石酸塩、硫酸塩などの存在下で酵素の析出が図られるものであり、たとえば、クエン酸アンモニウムや硫酸アンモニウムが酵素溶液に添加されることによっておこなわれる。なお、塩濃度は10mM以上で2M以下の範囲が好ましく、100mM以上で1M以下の範囲が望ましい。   Here, the salting out of the enzyme is one in which the enzyme is precipitated in the presence of salting out citrate, tartrate, sulfate, etc. For example, ammonium citrate or ammonium sulfate is added to the enzyme solution. To be done. The salt concentration is preferably in the range of 10 mM to 2 M, and preferably in the range of 100 mM to 1 M.

析出された固体状の酵素を別途調製されたスラリーに混合して電極用スラリーを生成する。
得られた電極用スラリーを導電性基材に塗工することにより、電極7が製造される。
The precipitated solid enzyme is mixed with a separately prepared slurry to produce an electrode slurry.
The electrode 7 is manufactured by coating the obtained slurry for electrodes on a conductive substrate.

この電極の製造方法では、有機溶媒内で凝縮することなく、良好な分散性を有する固体状の酵素を予め生成し、この固体状の酵素を別途調製されたスラリーに混合して電極用スラリーを生成し、この電極用スラリーを導電性基材に塗工することから、一度の塗工工程にて工程短縮効果、品質ばらつき低減効果を奏する、発電性能に優れたバイオ燃料電池用電極を製造することが可能となる。   In this electrode manufacturing method, a solid enzyme having good dispersibility is generated in advance without condensing in an organic solvent, and this solid enzyme is mixed with a separately prepared slurry to prepare an electrode slurry. Since this electrode slurry is applied to a conductive base material, a biofuel cell electrode with excellent power generation performance that produces a process shortening effect and a quality variation reducing effect in a single coating process is manufactured. It becomes possible.

[発電性能評価試験とその結果]
本発明者等は、以下の方法で実施例1、2と比較例の各バイオ燃料電池を製作し、それぞれのバイオ燃料電池の出力値を測定する実験をおこなった。
[Power generation performance evaluation test and results]
The inventors of the present invention manufactured the biofuel cells of Examples 1 and 2 and the comparative example by the following method, and conducted an experiment to measure the output value of each biofuel cell.

(実施例1のバイオ燃料電池)
固体状のBilirubin Oxidase “Amano”3(天野エンザイム社製)(以下、BO-3とする)を使用する。
(Biofuel cell of Example 1)
A solid Bilirubin Oxidase “Amano” 3 (Amano Enzyme) (hereinafter referred to as BO-3) is used.

(アノード側電極の製作方法)
カーボンブラック50mg、10%ポリビニルリジン222μLとN-メチルピロリドン3mLを混合し、十分に分散させてスラリーを生成した(以上、ステップ1)。
(Anode side electrode manufacturing method)
50 mg of carbon black, 222 μL of 10% polyvinyl lysine and 3 mL of N-methylpyrrolidone were mixed and sufficiently dispersed to produce a slurry (step 1 above).

1cm2のカーボンフェルトの表面に、生成されたスラリーを塗布し、十分に乾燥させることでアノード側電極を製作した(以上、ステップ2)。 The produced slurry was applied to the surface of 1 cm 2 of carbon felt and dried sufficiently to produce an anode side electrode (step 2).

(固体状のBO-3の調製)
BO-3を10mM、リン酸カリウム溶液(以下、KPBとし、pH8.5である)に溶かし、400mg/mLのBO-3の酵素溶液(以下、BO-3液とする)を調製し、0.1mLのBO-3液を70%の硫酸アンモニウムで塩析させた。遠心して得たBO-3沈殿が十分に溶解される量である0.3M硫酸アンモニウム入り10mM Tris-HCl溶液(pH8)を添加し、懸濁した。次いで、懸濁液を濃縮して沈殿物を得、得られた沈殿物を固体状BO-3とした(以上、ステップ3)。
(Preparation of solid BO-3)
BO-3 is dissolved in 10 mM potassium phosphate solution (hereinafter referred to as KPB, pH 8.5) to prepare a 400 mg / mL BO-3 enzyme solution (hereinafter referred to as BO-3 solution). mL of BO-3 solution was salted out with 70% ammonium sulfate. A 10 mM Tris-HCl solution (pH 8) containing 0.3 M ammonium sulfate in an amount that sufficiently dissolves the BO-3 precipitate obtained by centrifugation was added and suspended. Next, the suspension was concentrated to obtain a precipitate, and the obtained precipitate was converted into solid BO-3 (step 3 above).

(カソード側電極の製作方法)
カーボンブラック300mg、テフロン(登録商標)200mg、2-プロパノール5.1mLを混合し、十分に分散させてスラリーを調製した(以上、ステップ4)。
(Method of manufacturing cathode side electrode)
Carbon black 300 mg, Teflon (registered trademark) 200 mg, and 2-propanol 5.1 mL were mixed and sufficiently dispersed to prepare a slurry (step 4 above).

ステップ3と同様の方法で調製された固体状のBO-3に2-プロパノールを添加し、十分に混合しながら固体状のBO-3を洗浄した。次いで、遠心して固体状のBO-3を回収した後、調整されている上記スラリーを添加し、十分に混合したものを固体状BO-3入りスラリーとした(以上、ステップ5)。   2-Propanol was added to the solid BO-3 prepared in the same manner as in Step 3, and the solid BO-3 was washed with thorough mixing. Subsequently, the solid BO-3 was collected by centrifugation, and the prepared slurry was added, and the mixture was mixed thoroughly to obtain a solid BO-3-containing slurry (step 5).

1cm2のカーボンフェルトの表面に、ステップ3で生成されたスラリーを塗布し、十分に乾燥させることでカソード側電極を製作した(以上、ステップ6)。 The cathode electrode was manufactured by applying the slurry produced in Step 3 to the surface of 1 cm 2 carbon felt and drying it thoroughly (Step 6).

製作されたアノード側電極とカソード側電極を使用し、図1で模擬する構造を呈したバイオ燃料電池を製作した(以上、ステップ7)。   A biofuel cell having the structure simulated in FIG. 1 was manufactured using the manufactured anode side electrode and cathode side electrode (step 7).

(実施例2のバイオ燃料電池)
固体状のCotA(Bacillus subtilis由来マルチ銅オキシターゼ)を使用する。
実施例1のステップ1,2は実施例2においても同様である。
(Biofuel cell of Example 2)
Solid CotA (Bacillus subtilis derived multi-copper oxidase) is used.
Steps 1 and 2 in the first embodiment are the same in the second embodiment.

実施例2では、ステップ3として、実施例1の「固体状のBO-3の調製」に代わって以下で説明する「固体状のCotAの調製」をおこなう。   In Example 2, instead of “Preparation of solid BO-3” in Example 1, “Preparation of solid CotA” described below is performed as Step 3.

(固体状のCotAの調製)
(CotAの発現方法と培養方法)
Bacillus subtilis由来野生型CotA発現遺伝子(PDB:1UVW)をPCRでクローニングした後、Escherichiacoli BL21(DE3)に形質転換し、得られた組換え体をアンピシリン入りTB培地で1日培養した。この培養液を遠心し、菌体の沈殿物を得た。
(Preparation of solid CotA)
(CotA expression method and culture method)
A Bacillus subtilis-derived wild-type CotA expression gene (PDB: 1UVW) was cloned by PCR, transformed into Escherichiacoli BL21 (DE3), and the resulting recombinant was cultured in ampicillin-containing TB medium for 1 day. This culture solution was centrifuged to obtain a bacterial cell precipitate.

(固体状CotAの取得方法)
(菌体破砕)
菌体を10mM KPB(pH8.5)で懸濁した後、マルチビーズショッカで破砕し、破砕液を遠心し、分離した上清を4℃で一晩静置し、粗酵素液を得た。
(Method for obtaining solid CotA)
(Fracture of cells)
The cells were suspended in 10 mM KPB (pH 8.5), crushed with a multi-bead shocker, the crushed liquid was centrifuged, and the separated supernatant was allowed to stand overnight at 4 ° C. to obtain a crude enzyme solution.

(核酸分解処理)
粗酵素液に対し、破砕に用いた菌体1g(質重量)当たり10μLのLysonaseを添加し、室温で20分間緩やかに攪拌後、遠心して上清を得た。
(Nucleic acid degradation treatment)
To the crude enzyme solution, 10 μL of Lysonase was added per 1 g (weight / weight) of bacterial cells used for disruption, gently stirred at room temperature for 20 minutes, and then centrifuged to obtain a supernatant.

(硫安分画)
上記する上清に対し、50%〜70%の硫安分画をおこない、遠心して得られた沈殿物をこれが十分に溶解される量である10mM KPB(pH8.5)で溶解して溶解液を得た。
(Ammonium sulfate fraction)
Perform 50% to 70% ammonium sulfate fractionation on the above supernatant, and dissolve the precipitate obtained by centrifugation with 10 mM KPB (pH 8.5), which is enough to dissolve the precipitate. Obtained.

(熱処理)
上記する溶解液を70℃で10分間熱処理した後、遠心して上清を得た。
(Heat treatment)
The above lysate was heat-treated at 70 ° C. for 10 minutes and then centrifuged to obtain a supernatant.

(透析)
上記する熱処理後の上清を透析チューブに移し、4℃で一晩透析をおこなった。なお、透析バッファの組成は以下のとおりである。
組成:Tris-HCl(pH8.0) 終濃度10mM
硫酸アンモニウム 終濃度300mM
1M DTT 終濃度0.1mM
透析チューブの中身を遠心して上清を得、この上清を透析後の上清とした。
(Dialysis)
The supernatant after the above heat treatment was transferred to a dialysis tube and dialyzed overnight at 4 ° C. The composition of the dialysis buffer is as follows.
Composition: Tris-HCl (pH 8.0) final concentration 10 mM
Ammonium sulfate final concentration 300 mM
1M DTT final concentration 0.1mM
The contents of the dialysis tube were centrifuged to obtain a supernatant, which was used as the supernatant after dialysis.

(固体状CotAの調製)
分隔膜を用いて透析後の上清を濃縮し、濃縮液を4℃で一晩以上静置して析出させ、遠心して分離した析出物を固体状CotAとした。
(Preparation of solid CotA)
The supernatant after dialysis was concentrated using a diaphragm, and the concentrated solution was allowed to stand overnight at 4 ° C. for precipitation, and the precipitate separated by centrifugation was designated as solid CotA.

(洗浄)
上記する固体状CotAを10mM Tris-HCl(pH8)で3回洗浄し、電極製作に用いた。
(Washing)
The above-mentioned solid CotA was washed 3 times with 10 mM Tris-HCl (pH 8) and used for electrode fabrication.

実施例2のカソード側電極の製作方法に関し、上記ステップ4は同じであり、実施例2のステップ5においては、固体状CotAを2-プロパノールで洗浄した後、ステップ4で調製したスラリーを添加し、十分に混合したものを固体状CotA入りスラリーとした。
実施例2において、ステップ6、7は実施例1と同様である。
Regarding the method for producing the cathode side electrode of Example 2, the above Step 4 is the same. In Step 5 of Example 2, the solid CotA was washed with 2-propanol, and then the slurry prepared in Step 4 was added. A well-mixed slurry was made into a solid CotA-containing slurry.
In the second embodiment, steps 6 and 7 are the same as in the first embodiment.

(比較例のバイオ燃料電池)
実施例1のステップ5以外は実施例1と同様の方法でバイオ燃料電池を製作した。
(Biofuel cell of comparative example)
A biofuel cell was produced in the same manner as in Example 1 except for Step 5 in Example 1.

比較例におけるステップ5では、カソード側電極の固体状BO-3入りスラリーの生成において、BO-3を10mM KPB(pH8.5)に溶解し、400mg/mLのBO-3液に調製した。このBO-3液0.1mLに2-プロパノールを0.3mL添加して洗浄した。次いで、遠心して得られた沈殿物に調整されているスラリー(ステップ4で調製されているスラリー)を添加し、十分に混合したものを固体状BO-3入りスラリーとした。   In Step 5 of the comparative example, BO-3 was dissolved in 10 mM KPB (pH 8.5) to prepare a 400 mg / mL BO-3 solution in the production of the solid BO-3 slurry for the cathode side electrode. 0.3 mL of 2-propanol was added to 0.1 mL of this BO-3 solution and washed. Next, the adjusted slurry (slurry prepared in Step 4) was added to the precipitate obtained by centrifugation, and the mixture was mixed well to obtain a solid BO-3 containing slurry.

(バイオ燃料電池の発電性能評価)
実施例1,2および比較例の各バイオ燃料電池に対し、アノード用燃料として2Mのアスコルビン酸ナトリウム水溶液を用い、カソード側電極は50mMのフェリシアン化カリウム溶液を加えた後に測定に用いた。なお、フェリシアン化カリウム溶液は事前に0.1Mリン酸ナトリウム溶液(pH7)に溶かしたものを使用した。
(Evaluation of power generation performance of biofuel cells)
For each of the biofuel cells of Examples 1 and 2 and Comparative Example, a 2M sodium ascorbate aqueous solution was used as the anode fuel, and the cathode side electrode was used for measurement after adding a 50 mM potassium ferricyanide solution. The potassium ferricyanide solution used was dissolved in 0.1M sodium phosphate solution (pH 7) in advance.

出力測定は、電池両極間に直列に接続した外部負荷装置としてELECTRONIC Load PLZ164WA(菊水電子工業株式会社製)とWAVY FOR PLZ-4Wソフトウェア(菊水電子工業株式会社製)を用いて測定した。なお、測定は室温条件下(約25℃)にて実施した。測定結果を図2に示す。   The output was measured using ELECTRONIC Load PLZ164WA (manufactured by Kikusui Electronics Co., Ltd.) and WAVY FOR PLZ-4W software (manufactured by Kikusui Electronics Co., Ltd.) as external load devices connected in series between the battery electrodes. The measurement was performed under room temperature conditions (about 25 ° C.). The measurement results are shown in FIG.

同図で示すように、比較例の出力は0.3mW/cm2、実施例1の出力は1.3mW/cm2、実施例2の出力は1.1mW/cm2であり、比較例に対して実施例1は4.3倍程度、実施例2は3.7倍程度も出力性能が向上する結果が得られている。これは、実施例1、2においては、カソード側電極に酵素が良好に分散固定されているためであると推察される。 As shown in the figure, the output of Comparative Example 0.3 mW / cm 2, the output of Example 1 1.3 mW / cm 2, the output of Example 2 was 1.1 mW / cm 2, carried out for Comparative Example The output performance is improved about 4.3 times in Example 1 and about 3.7 times in Example 2. This is presumably because in Examples 1 and 2, the enzyme was well dispersed and immobilized on the cathode side electrode.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…帯電防止アクリル板、2…集電体(チタンメッシュ)、3…電解質膜、4…燃料タンク、5,6…シリコンプレート、7…電極、7A…アノード側電極、7B…カソード側電極、10…バイオ燃料電池   DESCRIPTION OF SYMBOLS 1 ... Antistatic acrylic board, 2 ... Current collector (titanium mesh), 3 ... Electrolyte membrane, 4 ... Fuel tank, 5, 6 ... Silicon plate, 7 ... Electrode, 7A ... Anode side electrode, 7B ... Cathode side electrode, 10 ... Biofuel cell

Claims (2)

酵素を水系溶媒に溶かしてなる酵素溶液を塩析させ、塩析にて取り出した酵素をスラリーと混合して電極用スラリーを生成し、電極用スラリーを導電性基材の表面に塗工するバイオ燃料電池用電極の製造方法。   Bios in which an enzyme solution obtained by dissolving an enzyme in an aqueous solvent is salted out, the enzyme taken out by salting out is mixed with the slurry to produce a slurry for the electrode, and the electrode slurry is applied to the surface of the conductive substrate. Manufacturing method of electrode for fuel cell. 酵素溶液を硫酸アンモニウムもしくはクエン酸アンモニウムで塩析させる請求項1に記載のバイオ燃料電池用電極の製造方法。   The method for producing an electrode for a biofuel cell according to claim 1, wherein the enzyme solution is salted out with ammonium sulfate or ammonium citrate.
JP2012114662A 2012-05-18 2012-05-18 Method of manufacturing electrode for biofuel cell Pending JP2013243012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012114662A JP2013243012A (en) 2012-05-18 2012-05-18 Method of manufacturing electrode for biofuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012114662A JP2013243012A (en) 2012-05-18 2012-05-18 Method of manufacturing electrode for biofuel cell

Publications (1)

Publication Number Publication Date
JP2013243012A true JP2013243012A (en) 2013-12-05

Family

ID=49843711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012114662A Pending JP2013243012A (en) 2012-05-18 2012-05-18 Method of manufacturing electrode for biofuel cell

Country Status (1)

Country Link
JP (1) JP2013243012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207199A (en) * 2016-08-17 2016-12-07 张静 A kind of preparation method of enzyme biological fuel cell positive pole thin-film material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182747A (en) * 1988-01-14 1989-07-20 Bridgestone Corp Enzyme electrode
JP2006234788A (en) * 2004-07-23 2006-09-07 Canon Inc Enzyme electrode, and device, sensor, fuel cell, and electrochemical reactor provided with enzyme electrode
WO2010090271A1 (en) * 2009-02-09 2010-08-12 アークレイ株式会社 Electrochemical sensor and method for manufacturing same
JP2012028181A (en) * 2010-07-23 2012-02-09 Toyota Motor Corp Enzyme electrode and fuel cell having the same
WO2012026493A1 (en) * 2010-08-26 2012-03-01 アイシン精機株式会社 Electrode having enzyme crystals immobilized thereon, process for production of electrode having enzyme crystals immobilized thereon, and biological fuel cell and biosensor each equipped with electrode having enzyme crystals immobilized thereon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182747A (en) * 1988-01-14 1989-07-20 Bridgestone Corp Enzyme electrode
JP2006234788A (en) * 2004-07-23 2006-09-07 Canon Inc Enzyme electrode, and device, sensor, fuel cell, and electrochemical reactor provided with enzyme electrode
WO2010090271A1 (en) * 2009-02-09 2010-08-12 アークレイ株式会社 Electrochemical sensor and method for manufacturing same
JP2012028181A (en) * 2010-07-23 2012-02-09 Toyota Motor Corp Enzyme electrode and fuel cell having the same
WO2012026493A1 (en) * 2010-08-26 2012-03-01 アイシン精機株式会社 Electrode having enzyme crystals immobilized thereon, process for production of electrode having enzyme crystals immobilized thereon, and biological fuel cell and biosensor each equipped with electrode having enzyme crystals immobilized thereon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207199A (en) * 2016-08-17 2016-12-07 张静 A kind of preparation method of enzyme biological fuel cell positive pole thin-film material

Similar Documents

Publication Publication Date Title
Kim et al. Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications
Ramanavicius et al. Enzymatic biofuel cell based on anode and cathode powered by ethanol
Yehezkeli et al. Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications
Aquino Neto et al. New energy sources: the enzymatic biofuel cell
Topcagic et al. Development of a membraneless ethanol/oxygen biofuel cell
Kim et al. Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells
Narváez Villarrubia et al. Methylene green electrodeposited on SWNTs-based “bucky” papers for NADH and l-malate oxidation
Hou et al. Enhanced performance of a glucose/O2 biofuel cell assembled with laccase-covalently immobilized three-dimensional macroporous gold film-based biocathode and bacterial surface displayed glucose dehydrogenase-based bioanode
Habrioux et al. Concentric glucose/O2 biofuel cell
Gao et al. Electrocatalytic activity of carbon spheres towards NADH oxidation at low overpotential and its applications in biosensors and biofuel cells
Fujita et al. A repeatedly refuelable mediated biofuel cell based on a hierarchical porous carbon electrode
Tsujimura et al. CueO-immobilized porous carbon electrode exhibiting improved performance of electrochemical reduction of dioxygen to water
Neto et al. Developing ethanol bioanodes using a hydrophobically modified linear polyethylenimine hydrogel for immobilizing an enzyme cascade
Sakuta et al. Multi-enzyme anode composed of FAD-dependent and NAD-dependent enzymes with a single ruthenium polymer mediator for biofuel cells
Gouranlou et al. Enhancement of ethanol–oxygen biofuel cell output using a CNT based nano-composite as bioanode
Hui et al. Laccase-catalyzed electrochemical fabrication of polyaniline/graphene oxide composite onto graphite felt electrode and its application in bioelectrochemical system
Varničić et al. Gluconic acid synthesis in an electroenzymatic reactor
Servat et al. Modification of porous carbon tubes with enzymes: application for biofuel cells
JP5423580B2 (en) Enzyme electrode and biofuel cell having the same
CN110890554B (en) High-power flexible single-enzyme glucose fuel cell and preparation method thereof
US20140342248A1 (en) Fuel cell
KR101157182B1 (en) An oriented dual layered electrode for enzyme fuel cell and a method thereof
JP2013243012A (en) Method of manufacturing electrode for biofuel cell
JP2012028181A (en) Enzyme electrode and fuel cell having the same
Gouranlou et al. Ethanol/O2 biofuel cell using a biocathode consisting of laccase/HOOC-MWCNTs/polydiallyldimethylammonium chloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150120