JPH01182344A - Styrene based polymer resin composition - Google Patents

Styrene based polymer resin composition

Info

Publication number
JPH01182344A
JPH01182344A JP63004923A JP492388A JPH01182344A JP H01182344 A JPH01182344 A JP H01182344A JP 63004923 A JP63004923 A JP 63004923A JP 492388 A JP492388 A JP 492388A JP H01182344 A JPH01182344 A JP H01182344A
Authority
JP
Japan
Prior art keywords
weight
rubber
styrene based
styrene
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63004923A
Other languages
Japanese (ja)
Other versions
JP2681642B2 (en
Inventor
Keisuke Funaki
圭介 舟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP63004923A priority Critical patent/JP2681642B2/en
Priority to AU25607/88A priority patent/AU610950B2/en
Priority to DE3852991T priority patent/DE3852991T2/en
Priority to EP88119375A priority patent/EP0318793B1/en
Priority to AT88119375T priority patent/ATE118231T1/en
Priority to ES88119375T priority patent/ES2070844T3/en
Priority to CA000584527A priority patent/CA1336624C/en
Priority to MYPI88001391A priority patent/MY104352A/en
Priority to FI885632A priority patent/FI98525C/en
Priority to SU884356994A priority patent/RU2033416C1/en
Priority to KR1019880016232A priority patent/KR940010824B1/en
Priority to MYPI89000015A priority patent/MY104125A/en
Priority to EP89100233A priority patent/EP0324398B1/en
Priority to DE89100233T priority patent/DE68909059T2/en
Priority to ES89100233T priority patent/ES2059567T3/en
Priority to AT89100233T priority patent/ATE94577T1/en
Priority to AU28402/89A priority patent/AU609239B2/en
Priority to FI890154A priority patent/FI98526C/en
Priority to CA000588025A priority patent/CA1336625C/en
Priority to SU894613296A priority patent/RU2088611C1/en
Priority to CN89100171A priority patent/CN1033915C/en
Priority to KR1019890000379A priority patent/KR940010825B1/en
Publication of JPH01182344A publication Critical patent/JPH01182344A/en
Priority to US07/510,110 priority patent/US5395890A/en
Priority to US08/463,898 priority patent/US6008293A/en
Priority to US08/463,897 priority patent/US6051655A/en
Priority to US08/462,858 priority patent/US6046275A/en
Priority to US08/463,899 priority patent/US6013726A/en
Priority to US08/464,356 priority patent/US6093768A/en
Priority to US08/463,927 priority patent/US5891951A/en
Priority to US08/463,900 priority patent/US6087435A/en
Priority to US08/487,708 priority patent/US6043307A/en
Application granted granted Critical
Publication of JP2681642B2 publication Critical patent/JP2681642B2/en
Priority to US09/075,867 priority patent/US5990217A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title resin composition, containing a styrene based polymer with a syndiotactic structure, thermoplastic resin and/or rubber and inorganic filler and having excellent heat resistance and further mechanical physical properties, such as tensile modulus of elasticity or tensile strength. CONSTITUTION:A composition containing (A) 1-98wt.%, preferably 5-95wt.% styrene based polymer, obtained by polymerizing a styrene based monomer in the presence of a condensation product of a titanium compound with water and a trialkylaluminum as a catalyst in, e.g., an inert hydrocarbon solvent, and mainly having a syndiotactic structure, (B) 1-98wt.%, preferably 5-95wt.% thermoplastic resin and/or rubber, preferably polystyrene having an atactic structure, rubber-like polymer containing a styrene based compound as one component thereof, etc., and (C) 1-60wt.%, preferably 5-50wt.% inorganic filler, preferably glass fibers, carbon fibers or titanium dioxide.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスチレン系重合体樹脂組成物に関し、詳しくは
耐熱性ならびに力学的物性にすぐれたスチレン系重合体
樹脂組成物に関する0本発明のスチレン系重合体樹脂組
成物は耐熱性構造材をはじめとして、耐熱性の要求され
る各種産業用資材。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a styrene polymer resin composition, and more particularly to a styrenic polymer resin composition having excellent heat resistance and mechanical properties. Polymer resin compositions are used in various industrial materials that require heat resistance, including heat-resistant structural materials.

機械ヂ部品素材等として幅広く、かつ有効に利用される
It is widely and effectively used as a material for machine parts.

[従来の技術及び発明が解決しようとする課題]一般に
、結晶性ポリオレフィンにおいて、その力学的性質、熱
的性質を改良するために、他樹脂とのブレンドに無機充
填材を配合することが行なわれている。
[Prior art and problems to be solved by the invention] Generally, in order to improve the mechanical properties and thermal properties of crystalline polyolefin, inorganic fillers are added to the blend with other resins. ing.

その中で熱可塑性樹脂に、本出願人が先に開発した融点
の高いシンジオタクチック構造を有するスチレン系重合
体(特開昭62−1048111号公報)を配合するこ
とにより、熱的な性質を改善しようとする試みがなされ
ている(特開昭62−257950号公報)。
Among them, thermal properties were improved by blending a styrene polymer with a syndiotactic structure with a high melting point (Japanese Patent Application Laid-open No. 1048111/1982), which was previously developed by the applicant, into a thermoplastic resin. Attempts have been made to improve this (Japanese Unexamined Patent Publication No. 62-257950).

しかしながら、上記の従来技術では、その機械的強度は
配合する樹脂それぞれを超えることはなく不充分であっ
た。
However, in the above-mentioned conventional technology, the mechanical strength did not exceed that of each of the resins to be blended, and was insufficient.

本発明は上記従来の欠点を解消し、耐熱性にすフレ、し
かも力学的物性に優れたスチレン系重合体樹脂組成物を
提供することを目的とするものである。
It is an object of the present invention to overcome the above-mentioned conventional drawbacks and to provide a styrene polymer resin composition that has excellent heat resistance, flexibility, and mechanical properties.

[課題を解決するための手段] すなわち本発明は、(a)主としてシンジオタクチック
構造を有するスチレン系重合体1〜98重量%、(b)
熱可塑性樹脂および/またはゴム1〜98重量%および
(c)無機充填材1〜60重量%を含むスチレン系重合
体樹脂組成物を提供するものである。
[Means for Solving the Problems] That is, the present invention provides (a) 1 to 98% by weight of a styrenic polymer mainly having a syndiotactic structure; (b)
The present invention provides a styrenic polymer resin composition containing 1 to 98% by weight of a thermoplastic resin and/or rubber and (c) 1 to 60% by weight of an inorganic filler.

本発明の組成物においては、(a)成分として、主とし
てシンジオタクチック構造−を有するスチレン系重合体
が用いられる。
In the composition of the present invention, a styrenic polymer mainly having a syndiotactic structure is used as component (a).

このスチレン系重合体の主としてシンジオタクチック構
造とは、立体化学構造が主としてシンジオタクチック構
造、即ち炭素−炭素結合から形成される主鎖に対して側
鎖であるフェニル基や置換フェニル基が交互に反対方向
に位置する立体構造を有するものであり、そのタフティ
シティ−は同位体炭素による核磁気共鳴法(”C−NM
R法)により定量される。”C−NMR法により測定さ
れるタフティシティ−は、連続する複数個の構成単位の
存在割合、例えば2個の場合はダイアツド、3個の場合
はトリアット、5個の場合はペンタッドによって示すこ
とができるが、本発明に言う主としてシンジオタクチッ
ク構造を有するスチレン系重合体とは、通常はダイアツ
ドで75%以上、好ましくは85%以上、若しくはペン
タッド(ラセミペンタッド)で30%以上、好ましくは
50%以上のシンジオタクテイシテイ−を有するポリス
チレン、ポリ(アルキルスチレン)、ポリ(ハロゲン化
スチレン)、ポリ(アルコキシスチレン)、ポリ(ビニ
ル安息香酸エステル)おjびこれらの混合物、あるいは
これらを主成分とする共重合体を指称する。なお、ここ
でポリ(アルキルスチレン)としては、ポリ(メチルス
チレン)、ポリ(エチルスチレン)、ポリ(イソプロピ
ルスチレン)、ポリ(ターシャリ−ブチルスチレン)な
どがあり、ポリ(ハロゲン化スチレン)としては、ポリ
(クロロスチレン)、ポリ(ブロモスチレン)、ポリ(
フルオロスチレン)などがある。また、ポリ(アルコキ
シスチレン)としては、ポリ(メトキシスチレン)、ポ
リ(エトキシスチレン)などがある。これらのうち特に
好ましいスチレン系重合体としては、ポリスチレン、ポ
リ(p−メチルスチレン)、ポリ(m−メチルスチレン
)、ポリ(p−ターシャリ−ブチルスチレン)、ポリ(
p−クロロスチレン)、ポリ(m−クロロスチレン)、
ポリ(p−フルオロスチレン)、更にはスチレンとP−
メチルスチレンとの共重合体をあげることができる。
The mainly syndiotactic structure of this styrenic polymer means that the stereochemical structure is mainly syndiotactic, that is, the main chain formed from carbon-carbon bonds has alternating phenyl groups or substituted phenyl groups as side chains. It has a three-dimensional structure located in the opposite direction, and its toughness can be determined by nuclear magnetic resonance method using carbon isotope ("C-NM").
R method). Toughness measured by the C-NMR method is expressed by the proportion of consecutive constituent units, e.g. 2 in the case of diats, 3 in the case of triats, and 5 in the case of pentads. However, the styrenic polymer mainly having a syndiotactic structure as used in the present invention usually has a diad content of 75% or more, preferably 85% or more, or a pentad (racemic pentad) content of 30% or more, preferably Polystyrene, poly(alkyl styrene), poly(halogenated styrene), poly(alkoxystyrene), poly(vinyl benzoic acid ester) and mixtures thereof, or mixtures thereof, having a syndiotacticity of 50% or more, or containing these as the main component. Here, poly(alkylstyrene) includes poly(methylstyrene), poly(ethylstyrene), poly(isopropylstyrene), poly(tert-butylstyrene), etc. Examples of (halogenated styrene) include poly(chlorostyrene), poly(bromostyrene), poly(
fluorostyrene), etc. Furthermore, examples of poly(alkoxystyrene) include poly(methoxystyrene) and poly(ethoxystyrene). Among these, particularly preferred styrenic polymers include polystyrene, poly(p-methylstyrene), poly(m-methylstyrene), poly(p-tert-butylstyrene), poly(
p-chlorostyrene), poly(m-chlorostyrene),
Poly(p-fluorostyrene), and even styrene and P-
Examples include copolymers with methylstyrene.

また、本発明に用いるスチレン系重合体は、分子量につ
いては制限はないが、重量平均分子量が10.000以
上のものが好ましく、とりわけ50,000以上のもの
が最適である。ここで重量平均分子量が10、Goo未
溝のものでは、このものの耐熱性9機械的強度が充分で
なく、配合後も充分な改善が認められない。さらに、分
子量分布についてもその広狭は制約がなく、様々なもの
を充当することが可有するスチレン系重合体は、融点が
160〜3’l [1℃であって、従来のアタクチック
構造のスチレン系重合体に比べて耐熱性が格段に優れて
いる。
The styrenic polymer used in the present invention is not limited in molecular weight, but preferably has a weight average molecular weight of 10,000 or more, most preferably 50,000 or more. Here, when the weight average molecular weight is 10 and the ungrooved one has insufficient heat resistance and mechanical strength of 9, no sufficient improvement is observed even after blending. Furthermore, there are no restrictions on the molecular weight distribution, and various types of styrenic polymers can be used. It has much better heat resistance than polymers.

このような主としてシンジオタクチック構造を有するス
チレン系重合体は、例えば不活性炭化水素溶媒中または
溶媒の不存在下に、チタン化合物、及び水とトリアルキ
ルアルミニウムの縮合生成物を触媒として、スチレン系
単量体(上記スチレン系重合体に対応する単量体)を重
合することにより製造することができる(特開昭62−
187708号公報)。
Such styrenic polymers having a mainly syndiotactic structure can be produced by using a titanium compound and a condensation product of water and trialkylaluminum as catalysts, for example, in an inert hydrocarbon solvent or in the absence of a solvent. It can be produced by polymerizing monomers (monomers corresponding to the above-mentioned styrene polymers) (Japanese Patent Application Laid-Open No. 1983-1999).
187708).

上記(a)成分は組成物中に、1〜98重量%、好まし
くは5〜95重量%、より好ましくは10〜90重量%
の割合で含有せしめられる。ここで(a)成分の含有割
合が1重量%未満であると、このものによる耐熱性の改
良が認められない。一方、98重量%を超えると、この
もの自体の性買との有意差がなく、このシンジオタクチ
ック構造を有するスチレン系重合体を改質剤としてブレ
ンドした意味がない。
The above component (a) is present in the composition in an amount of 1 to 98% by weight, preferably 5 to 95% by weight, more preferably 10 to 90% by weight.
It is contained in a proportion of . If the content of component (a) is less than 1% by weight, no improvement in heat resistance is observed. On the other hand, if it exceeds 98% by weight, there is no significant difference in the properties of the polymer itself, and there is no point in blending this styrenic polymer having a syndiotactic structure as a modifier.

次に本発明の組成物においては、(b)成分として、上
述の主としてシンジオタクチック構造を有するスチレン
系重合体以外の熱可塑性樹脂および/またはゴムを用い
る。
Next, in the composition of the present invention, a thermoplastic resin and/or rubber other than the above-mentioned styrenic polymer mainly having a syndiotactic structure is used as component (b).

このような熱可塑性樹脂としては、組成物の用途等によ
り様々なものが選定され、特に制限はない。例えばアタ
クチック構造のポリスチレン、ア゛  イソタクチック
構造のポリスチレン、 AS樹脂。
Various thermoplastic resins can be selected depending on the intended use of the composition, and there are no particular limitations. For example, polystyrene with atactic structure, polystyrene with isotactic structure, and AS resin.

ABS樹脂などのスチレン系重合体をはじめ、ポリエチ
レンテレフタレートなどのポリエステル、ポリカーボネ
ート、ポリフェニレン−オキサイド、ボの縮合系重合体
、ポリアクリル酸、ポリアクリル酸エステル、ポリメチ
ルメタクリレートなどのアクリル系重合体、ポリエチレ
ン、ポリプロピレン、ポリブテン、ポリ4−メチルペン
テン−1゜エチレン−プロピレン共重合体などのポリオ
レフィン、あるいはポリ塩化ビニル、ポリ塩化ビニリデ
ン、ポリ弗化ビニリデンなどの含ハロゲンビニル化合物
重合体などが挙げられる。
In addition to styrene polymers such as ABS resin, polyesters such as polyethylene terephthalate, polycarbonate, polyphenylene oxide, condensation polymers such as polyester, acrylic polymers such as polyacrylic acid, polyacrylic acid ester, polymethyl methacrylate, and polyethylene. , polypropylene, polybutene, polyolefins such as poly4-methylpentene-1° ethylene-propylene copolymer, and halogen-containing vinyl compound polymers such as polyvinyl chloride, polyvinylidene chloride, and polyvinylidene fluoride.

これらの中でもアタクチック構造のポリスチレン、具体
的には重量平均分子量50,000〜500.Goo、
密度1.04〜1.065g/cm’の汎用ポリスチレ
ン: ABS樹脂;ポリエステル、具体的には極限粘度
[η]0.4〜1.5dj/g 、好ましくは0.5〜
1.4dj/g 、密度1.3:4〜1.40g/cm
’ 、融点255〜260℃のポリエチレンテレフタレ
ート;ポリカーボネート、具体的には粘度平均分子量2
0,000〜40,000.密度1.19〜122g/
ca+’のポリカーボネート:ポリエーテル、具体的に
は重量平均分子量5,000 N10,000゜密度1
.05〜1.07g/ls”のポリフェニレンオキサイ
ドなどが好適である。
Among these, polystyrene with an atactic structure, specifically, those having a weight average molecular weight of 50,000 to 500. Goo,
General-purpose polystyrene with a density of 1.04 to 1.065 g/cm': ABS resin; polyester, specifically, an intrinsic viscosity [η] of 0.4 to 1.5 dj/g, preferably 0.5 to
1.4dj/g, density 1.3:4-1.40g/cm
', polyethylene terephthalate with a melting point of 255 to 260°C; polycarbonate, specifically viscosity average molecular weight 2
0,000-40,000. Density 1.19-122g/
ca+' polycarbonate: polyether, specifically weight average molecular weight 5,000 N10,000° density 1
.. 05 to 1.07 g/ls'' of polyphenylene oxide is suitable.

一方、ゴムとしては様々なものが使用可能であるが、最
も好適なものはスチレン系化合物をその一成分として含
むゴム状共重合体で、例えば、スチレン−ブタジェンブ
ロック共重合体のブタジェン部分を一部あるいは完全に
水素化したゴム(SEBS) 、スチレン−ブタジェン
共重合体ゴム(SBR) 、アクリル酸メチル−ブタジ
ェン−スチレン共重合体ゴム、アクリロニトリル−ブタ
ジェン−スチレン共重合体ゴム(ABSゴム)、アクリ
ロニトリル−アルキルアクリレート−ブタジェン−スチ
レン共重合体ゴム(”’AABS) 、メタクリル酸メ
チル−アルキルアクリレート−スチレン共重合体ゴム(
MAS) 、メタクリル酸メチル−アルキルアクリレー
ト−ブタジェン−スチレン共重合体ゴム(MABS)な
どが挙げられる。これらのスチレン系化合物をその一成
分として含むゴム状共重合体は、スチレン単位を有する
ため(a)成分である主としてシンジオタクチック構造
を有するスチレン系重合体に対する分散性が良好であり
、その結果、物性の改善効果が著しい。さらに用いるこ
とのできるゴムの他の例としては天然ゴム、ポリブタジ
ェン、ポリイソプレン、ポリイソブチレン、ネオプレン
、エチレン−プロピレン共重合体ゴム、ポリスルフィド
ゴム、チオコールゴム、アクリルゴム、ウレタンゴム、
シリコーンゴム、エピクロルヒドリンゴム、ポリエーテ
ル・エステルゴム、ポリエステル・エステルゴムなどが
挙げられる。
On the other hand, various rubbers can be used, but the most suitable one is a rubbery copolymer containing a styrene compound as one of its components.For example, the butadiene moiety of a styrene-butadiene block copolymer is partially or fully hydrogenated rubber (SEBS), styrene-butadiene copolymer rubber (SBR), methyl acrylate-butadiene-styrene copolymer rubber, acrylonitrile-butadiene-styrene copolymer rubber (ABS rubber), Acrylonitrile-alkyl acrylate-butadiene-styrene copolymer rubber (AABS), methyl methacrylate-alkyl acrylate-styrene copolymer rubber (
MAS), methyl methacrylate-alkyl acrylate-butadiene-styrene copolymer rubber (MABS), and the like. Rubber-like copolymers containing these styrene compounds as one of their components have styrene units, so they have good dispersibility in component (a), a styrenic polymer that mainly has a syndiotactic structure. , the effect of improving physical properties is remarkable. Other examples of rubbers that can be used include natural rubber, polybutadiene, polyisoprene, polyisobutylene, neoprene, ethylene-propylene copolymer rubber, polysulfide rubber, thiol rubber, acrylic rubber, urethane rubber,
Examples include silicone rubber, epichlorohydrin rubber, polyether/ester rubber, and polyester/ester rubber.

上述の(b)成分は組成物中に1〜98重量%、好まし
くは5〜95重量%、より好ましくは20〜80重量%
の割合で含有せしめられる。ここで(b)4成分の含有
割合が1重量%未満であると、シンジオタクチック構造
を有するスチレン系重合体単独の場合の性質との有意差
がない。一方98重量%を超えると、シンジオタクチッ
ク構造を有するスチレン系重合体による力学的、熱的な
性質の改善が期待できない。
The above component (b) is present in the composition in an amount of 1 to 98% by weight, preferably 5 to 95% by weight, more preferably 20 to 80% by weight.
It is contained in a proportion of . Here, when the content of the four components (b) is less than 1% by weight, there is no significant difference in properties from the styrenic polymer having a syndiotactic structure alone. On the other hand, if it exceeds 98% by weight, no improvement in mechanical or thermal properties can be expected due to the styrenic polymer having a syndiotactic structure.

さらに本発明の組成物においては、(C)成分として無
機充填材を用いる。無機充填材としては繊維状のもので
あると、粒状、粉状のものであるとを問わない。繊維状
無機充填材としてはガラス繊維、炭素繊維、アルミナ繊
維等が挙げられ、特にガラス繊維、炭素繊維が好ましい
。ここでガラス繊維の形状としてはクロス状、マット状
、集束切断状、短繊維、フィラメント状のものがあるが
、□好ましくは集束切断状であり、長さが0.05+a
m〜13mm%繊維径が5〜15μ−のものであって、
特にシラン系処理を施したものが好ましい、また、炭素
繊維としてはポリアクリロニトリル(PAN’)系のも
のが好ましく、さらに好ましくはチョツプドファイバー
タイプであって、長さが31程度、直径が7〜15μm
の束ねたものが良い、一方、粒状、粉状無機充填材とし
てはタルク、カーボンブラック。
Furthermore, in the composition of the present invention, an inorganic filler is used as component (C). The inorganic filler may be fibrous, granular, or powdery. Examples of the fibrous inorganic filler include glass fiber, carbon fiber, and alumina fiber, with glass fiber and carbon fiber being particularly preferred. Here, the shape of the glass fibers includes cross-like, mat-like, focused-cut shape, short fiber, and filament-like shapes, but it is preferably focused-cut shape, and has a length of 0.05+a.
m~13mm% fiber diameter is 5~15μ-,
In particular, carbon fibers treated with silane are preferred, and carbon fibers based on polyacrylonitrile (PAN') are preferred, and chopped fiber types are more preferred, with a length of about 31 mm and a diameter of 7 mm. ~15μm
On the other hand, talc and carbon black can be used as granular or powdery inorganic fillers.

グラファイト、二酸化チタン、シリカ、マイカ。Graphite, titanium dioxide, silica, mica.

炭酸カルシウム、硫酸カルシウム、炭酸バリウム、炭酸
マグネシウム、硫酸マグネシウム、硫酸バリウム、オキ
シサルフェート、酸化スズ、アルミナ、カオリン、炭化
ケイ素、金属粉末等が挙げられ、特に二酸化チタンが好
ましい。ここで二酸化チタンの結晶形態としてはルチル
型、ブルツカイト型、アナタース型があるが、好ましく
はルチル型、アナタース型であって、平均粒度0.15
〜0.40μ層のものであり、さらにZn、 Aj、 
Si等で処理したものであってもよい。
Examples include calcium carbonate, calcium sulfate, barium carbonate, magnesium carbonate, magnesium sulfate, barium sulfate, oxysulfate, tin oxide, alumina, kaolin, silicon carbide, metal powder, etc., and titanium dioxide is particularly preferred. Here, the crystal form of titanium dioxide includes rutile type, brutzite type, and anatase type, but rutile type and anatase type are preferable, and the average particle size is 0.15.
~0.40μ layer, and further contains Zn, Aj,
It may also be one treated with Si or the like.

上述の(C)成分は組成物中に1〜80重量%、好まし
くは5〜50重量%、より好ましくは10〜40重量%
の割合で含有せしめられる。ここで(C)成分の含有割
合が1重量%未満であると、充填材としての充分な効果
が認められない、一方、60重量%を超えると均一に分
散できず、機械的強度に劣るものとなる。
The above-mentioned component (C) is present in the composition in an amount of 1 to 80% by weight, preferably 5 to 50% by weight, more preferably 10 to 40% by weight.
It is contained in a proportion of . If the content of component (C) is less than 1% by weight, sufficient effect as a filler will not be recognized, while if it exceeds 60% by weight, it will not be able to be uniformly dispersed and the mechanical strength will be poor. becomes.

本発明の組成物は、基本的には上述した(a)。The composition of the invention is basically as described above (a).

(b)および(C)成分よりなるものであるが、さらに
必要に応じて各種添加剤、例えば核剤、酸化防止剤、可
塑剤、相溶化剤、滑剤9着色剤、帯電防止剤等を添加す
ることもでき、特に核剤、酸化防止剤、可塑剤は添加す
ることが望ましい、ここで核剤としてはタルクが好適に
用いられ、本発明の組成物100重量部に対して0.1
〜lO重量部の割合で配合される。
It consists of components (b) and (C), and various additives such as nucleating agents, antioxidants, plasticizers, compatibilizers, lubricants, colorants, antistatic agents, etc. are added as necessary. In particular, it is desirable to add a nucleating agent, an antioxidant, and a plasticizer. Talc is preferably used as the nucleating agent here, and is added in an amount of 0.1 parts by weight per 100 parts by weight of the composition of the present invention.
It is blended in a proportion of ~10 parts by weight.

また酸化防止剤としては様々なものがあるが、特にリン
系酸化防止剤およびフェノール系酸化防止剤が好ましい
Although there are various antioxidants, phosphorus antioxidants and phenolic antioxidants are particularly preferred.

本発明の組成物は、上述の成分をニーダ−やミキシング
ロール、押出機などにより混練することにより、あるい
は溶液ブレンド等により均一に調製すればよい。
The composition of the present invention may be uniformly prepared by kneading the above-mentioned components using a kneader, mixing roll, extruder, etc., or by solution blending, etc.

[実施例] 次に、本発明を実施例および比較例によりさらに詳しく
説明するが、本発明の範囲を超えない限り、これに限定
されるものではない。
[Examples] Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto as long as the scope of the present invention is not exceeded.

参考例1(主としてシンジオタクチック構造を有するポ
リスチレンの製造) 反応容器に溶媒としてトルエン2ftと、触媒成分であ
るシクロペンタジェニルチタニウムトリクロライド1ミ
リモル、およびメチルアルミノキサンをアルミニウム原
子として0.8モル加え、 20℃においてスチレン3
.8 j2を加えて1時間重合反応を行なった0反応終
了後、生成物を塩酸−メタノール混合液で洗浄し、触媒
成分を分解除去した。ついで乾燥して重合体330gを
得た。つぎに、この重合体をメチルエチルケトンを溶媒
としてソックスレー抽出し、抽出残分95重量%を得た
。この重合体は重量平均分子量が290,000 、数
平均分子量tsa、oooであり、融点は270℃であ
った。また、この重合体は同位体炭素の核磁気共鳴(”
C−NMR)による分析からシンジオタクチック構造に
基因する145.35pp■に吸収が認められ、そのピ
ーク面積から算出したペンタッドでのシンジオタクテイ
シテイ−は96%のものであった。
Reference Example 1 (Production of polystyrene mainly having a syndiotactic structure) 2 ft of toluene as a solvent, 1 mmol of cyclopentadienyl titanium trichloride as a catalyst component, and 0.8 mol of methylaluminoxane as an aluminum atom were added to a reaction vessel. , Styrene 3 at 20°C
.. After the completion of the 0 reaction in which 8j2 was added and the polymerization reaction was carried out for 1 hour, the product was washed with a hydrochloric acid-methanol mixture to decompose and remove the catalyst component. It was then dried to obtain 330 g of a polymer. Next, this polymer was subjected to Soxhlet extraction using methyl ethyl ketone as a solvent to obtain an extraction residue of 95% by weight. This polymer had a weight average molecular weight of 290,000, a number average molecular weight of tsa, ooo, and a melting point of 270°C. In addition, this polymer can be used for isotopic carbon nuclear magnetic resonance ("
Analysis by C-NMR) showed absorption at 145.35 pp.2 due to the syndiotactic structure, and the syndiotacticity in pentad calculated from the peak area was 96%.

実施例1 上記参考例1において得られたシンジオタクチック構造
を有するポリスチレン35重量部、熱可塑性樹脂として
ポリカーボネート(商品名:出光ポリカーボネートA 
3000.粘度平均分子量28,500〜30,500
.密度1.20g/c+*3.出光石油化学鱒製)35
重量部をおよび平均繊維長3■のガラス繊維(旭ファイ
バーグラス■製9wA維径10〜15μm。
Example 1 35 parts by weight of polystyrene having a syndiotactic structure obtained in Reference Example 1 above, polycarbonate (trade name: Idemitsu Polycarbonate A) as a thermoplastic resin
3000. Viscosity average molecular weight 28,500-30,500
.. Density 1.20g/c+*3. Idemitsu Petrochemical Trout) 35
Parts by weight are glass fibers with an average fiber length of 3mm (9wA manufactured by Asahi Fiberglass), fiber diameter 10-15μm.

チョツプドストランド状) 30重量部を、トライブレ
ンドし、これに結晶核剤としてタルク(商品名:タルク
−FFR、浅田製粉■製)1重量部を加え、ヘンシェル
ミキサーで混合したのち、押出機で混練して押出し、ペ
レット化した0次いで、このベレットから試験片を成形
して機械的強度および熱変形温度を測定した。結果を第
1表に示す。
30 parts by weight of chopped strands) were triblended, 1 part by weight of talc (trade name: Talc-FFR, manufactured by Asada Seifun ■) was added as a crystal nucleating agent, mixed in a Henschel mixer, and then extruded using an extruder. The pellets were kneaded, extruded, and pelletized. Then, test pieces were formed from the pellets and the mechanical strength and heat distortion temperature were measured. The results are shown in Table 1.

実施例2 実施例1において、ポリカーボネートの代り255℃、
密度1.34g/cm’ 、三菱レーヨン輛製)を用い
た他は、実施例1と同様な操作を行なって試験片を得た
。試験結果を第1表に示す。
Example 2 In Example 1, instead of polycarbonate, 255°C,
A test piece was obtained by carrying out the same operation as in Example 1, except that a material having a density of 1.34 g/cm' (manufactured by Mitsubishi Rayon Co., Ltd.) was used. The test results are shown in Table 1.

実施例3 上記参考例1において得られたシンジオタクチック構造
を有するポリスチレン45重量部、ポリエチレンテレフ
タレート(実施例2で用いた物と同じ)45重量部、ガ
ラス繊維10重量部を配合した他は実施例2と同様な操
作を行なって試験片を得た。試験結果を第1表に示す、
 一 実施例4 実施例1において、ポリカーボネートの代りにアタクチ
ックポリスチレン(商品名:出光ステ0−ル11530
0.重量平均分子量370.Goo 、メルトインデッ
クス2.密度1.05g/c+a’ 、出光石油化学■
製)を用いた他は実施例1と同様にして試験片を得た。
Example 3 The same procedure was carried out except that 45 parts by weight of polystyrene having a syndiotactic structure obtained in Reference Example 1, 45 parts by weight of polyethylene terephthalate (same as that used in Example 2), and 10 parts by weight of glass fiber were blended. A test piece was obtained by performing the same operation as in Example 2. The test results are shown in Table 1.
Example 4 In Example 1, atactic polystyrene (trade name: Idemitsu Steel 11530) was used instead of polycarbonate.
0. Weight average molecular weight 370. Goo, Melt Index 2. Density 1.05g/c+a', Idemitsu Petrochemical ■
A test piece was obtained in the same manner as in Example 1, except that the same method was used as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

実施例5 実施例1において、ポリカーボネートの代りにポリフェ
ニレンオキサイド(カタログNo。
Example 5 In Example 1, polyphenylene oxide (Catalog No.) was used instead of polycarbonate.

V−100,重量平均分子量7,200 、密度1.0
6g/cm”。
V-100, weight average molecular weight 7,200, density 1.0
6g/cm".

5CIENTIFICPOLYMERPRODUCTS
 INC,製)を用いた他は実施例1と同様にして試験
片を得た。結果を第1表に示す。
5CIENTIFIC POLYMER PRODUCTS
A test piece was obtained in the same manner as in Example 1, except that a test piece (manufactured by INC.) was used. The results are shown in Table 1.

実施例6 実施例1において、ポリカーボネートの代りにABS樹
脂(商品名: JSRABS 15.日本合成ゴム■製
)を用いた他は、実施例1と同様にして試験片を得た。
Example 6 A test piece was obtained in the same manner as in Example 1, except that ABS resin (trade name: JSRABS 15. manufactured by Japan Synthetic Rubber ■) was used instead of polycarbonate.

結果を第1表に示す。The results are shown in Table 1.

実施例フ 実施例1において、ポリカーボネートの代りにメタクリ
ル酸メチル−n−ブチルアクリレート−スチレン共重合
体(ローム&ハース■製、商品名=にM330 )を用
いた他は実施例1と同様にして試験片を得た。結果を第
1表に示す。
Example 1 The procedure was the same as in Example 1, except that methyl methacrylate-n-butyl acrylate-styrene copolymer (manufactured by Rohm & Haas, trade name: M330) was used instead of polycarbonate. A test piece was obtained. The results are shown in Table 1.

実施例8 上記参考例1において得られたシンジオタクチック構造
のポリスチレン45重量部、熱可塑性樹脂としてアタク
チックポリスチレン(実施例4で用いた物と同じ)45
重量部およびカーボンファイバー(商品名:トレカ、 
PAN系チョツプドファイバー、東し■製、平均長3 
am、直径7〜10μm)10重量部を配合した他は実
施例1と同様にして試験片を得た。結果を第1表に示す
Example 8 45 parts by weight of the syndiotactic polystyrene obtained in Reference Example 1 above, 45 parts by weight of atactic polystyrene (same as that used in Example 4) as the thermoplastic resin
Weight part and carbon fiber (product name: trading card,
PAN type chopped fiber, made by Toshi ■, average length 3
A test piece was obtained in the same manner as in Example 1, except that 10 parts by weight (am, diameter 7 to 10 μm) was blended. The results are shown in Table 1.

実施例9 実施例8において、カーボンファイバーの代りに二酸化
チタン(商品名:チタニア16809石原産業■製)1
0重量部を配合した他は実施例8と同様にして試験片を
得た。結果を第1表に示す。
Example 9 In Example 8, titanium dioxide (trade name: Titania 16809 manufactured by Ishihara Sangyo ■) 1 was used instead of carbon fiber.
A test piece was obtained in the same manner as in Example 8 except that 0 parts by weight was added. The results are shown in Table 1.

−□実施例10 上記参考例1において得られたシンジオタクチック構造
を有するポリスチレン35重量部、熱可塑性樹脂として
、実施例4で用いたものと同じアタクチックポリスチレ
ン20重量部、ゴムとして実施例7で用いたものと同じ
メタクリル酸メチル−n−ブチルアクリレート−スチレ
ン共重合体15重量部、実施例1で用いたものと同じガ
ラス繊維30重量部を配合して用いたことの他は実施例
1と同様にした。結果を第1表に示す。
-□Example 10 35 parts by weight of polystyrene having a syndiotactic structure obtained in Reference Example 1 above, 20 parts by weight of the same atactic polystyrene used in Example 4 as thermoplastic resin, Example 7 as rubber Example 1 except that 15 parts by weight of the same methyl methacrylate-n-butyl acrylate-styrene copolymer used in Example 1 and 30 parts by weight of the same glass fiber as used in Example 1 were used. I did the same thing. The results are shown in Table 1.

比較例1 実施例1において、ガラス繊維を入れずに参考例1で得
られたシンジオタクチック構造を有するポリスチレン5
0重量部、ポリカーボネート(実施例1で用いた物と同
じ)50重量部を用いた他は実施例1と同様にして試験
片を得た。結果を第1表に示す。
Comparative Example 1 In Example 1, polystyrene 5 having a syndiotactic structure obtained in Reference Example 1 without adding glass fiber was used.
A test piece was obtained in the same manner as in Example 1, except that 0 parts by weight and 50 parts by weight of polycarbonate (the same as used in Example 1) were used. The results are shown in Table 1.

比較例2 比較例1において、ポリカーボネートの代りにポリエチ
レンテレフタレート(実施例2で用いたにして試験片を
得た。結果を第1表に示す。
Comparative Example 2 In Comparative Example 1, polyethylene terephthalate (used in Example 2) was used instead of polycarbonate to obtain a test piece. The results are shown in Table 1.

比較例3 比較例1において、ポリカーボネートの代りにアタクチ
ックポリスチレン(実施例4で用いた物と同じ)50重
量部を用いた他は比較例1と同様にして試験片を得た。
Comparative Example 3 A test piece was obtained in the same manner as in Comparative Example 1, except that 50 parts by weight of atactic polystyrene (same as that used in Example 4) was used instead of polycarbonate.

結果を第1表に示す。The results are shown in Table 1.

比較例4 比較例1において、ポリカーボネートの代りにポリフェ
ニレンオキサイド(実施例5で用いた物と同じ)50重
量部を用いた他は比較例1と同様にして試験片を得た。
Comparative Example 4 A test piece was obtained in the same manner as in Comparative Example 1, except that 50 parts by weight of polyphenylene oxide (the same as that used in Example 5) was used instead of polycarbonate.

結果を第1表に示す。The results are shown in Table 1.

比較例5 比較例1において、ポリカーボネートの代りにABS樹
脂(実施例6で用いた物と同じ)50重量部を用いた他
は比較例1と同様にして試験片を得た。結果を第1表に
示す。
Comparative Example 5 A test piece was obtained in the same manner as in Comparative Example 1, except that 50 parts by weight of ABS resin (the same as that used in Example 6) was used instead of polycarbonate. The results are shown in Table 1.

比較例6 比較例1において、ポリカーボネートの代りにメタクリ
ル酸メチル−n−ブチルアクリレート−スチレン共重合
体(実施例7で用G)た物と同じ)50重量部を用いた
他は比較例1と同様にして試験片を得た。結果を第1表
に示す。
Comparative Example 6 Same as Comparative Example 1 except that 50 parts by weight of methyl methacrylate-n-butyl acrylate-styrene copolymer (same as that used in Example 7) was used instead of polycarbonate. A test piece was obtained in the same manner. The results are shown in Table 1.

比較例フ 実施例1において得られたシンジオタクチック構造を有
するポリスチレン15重量部、熱可塑性樹脂として実施
例4で用いたアタクチックポリスチレン15重量部、実
施例1で用いたガラス繊維70重量部を用いた他は実施
例1と同様にして試験片を得ようとしたが、均一に分散
せず、試験片が得られなかった。
Comparative Example: 15 parts by weight of polystyrene having a syndiotactic structure obtained in Example 1, 15 parts by weight of atactic polystyrene used in Example 4 as a thermoplastic resin, and 70 parts by weight of glass fiber used in Example 1. Although an attempt was made to obtain a test piece in the same manner as in Example 1 except for using the following materials, it was not uniformly dispersed and no test piece was obtained.

リ SPS ;シンジオタクチックポリスチレンPC:
ポリカーボネート PUT 、ポリエチレンテレフタレートaPs ;アタ
クチックポリスチレン ppo 、ポリフェニレンオキサイド ABS  ;アクリロニトリル′−ブタジェンースチレ
ン共重合体 MAS ;メタクリル酸メチル−n−ブチルアクリレー
ト−スチレン共重合体 GF;ガラス繊維 CF  、炭素繊維 傘2 7MA (THERMAL MECHANICA
L ANALYSIS)による。
Re-SPS; syndiotactic polystyrene PC:
Polycarbonate PUT, polyethylene terephthalate aPs; atactic polystyrene ppo, polyphenylene oxide ABS; acrylonitrile'-butadiene-styrene copolymer MAS; methyl methacrylate-n-butyl acrylate-styrene copolymer GF; glass fiber CF, carbon fiber umbrella 2 7MA (THERMAL MECHANICA
L ANALYSIS).

[発明の効果] 本発明のスチレン系重合体組成物は耐熱性にすぐれたも
のである。しかも引張弾性率、引張強度など力学的物性
もすぐれたものである。
[Effects of the Invention] The styrenic polymer composition of the present invention has excellent heat resistance. Moreover, it has excellent mechanical properties such as tensile modulus and tensile strength.

したがって、本発明のスチレン系重合体組成物は、耐熱
性構造材などとして有効に利用することができる。
Therefore, the styrenic polymer composition of the present invention can be effectively used as a heat-resistant structural material.

Claims (1)

【特許請求の範囲】[Claims] (1)(a)主としてシンジオタクチック構造を有する
スチレン系重合体1〜98重量%、(b)熱可塑性樹脂
および/またはゴム1〜98重量%および(c)無機充
填材1〜60重量%を含むスチレン系重合体樹脂組成物
(1) (a) 1-98% by weight of a styrenic polymer mainly having a syndiotactic structure, (b) 1-98% by weight of a thermoplastic resin and/or rubber, and (c) 1-60% by weight of an inorganic filler. A styrenic polymer resin composition comprising:
JP63004923A 1986-05-06 1988-01-14 Styrene polymer resin composition Expired - Fee Related JP2681642B2 (en)

Priority Applications (32)

Application Number Priority Date Filing Date Title
JP63004923A JP2681642B2 (en) 1988-01-14 1988-01-14 Styrene polymer resin composition
AU25607/88A AU610950B2 (en) 1987-12-04 1988-11-16 Styrene-based resin composition
EP88119375A EP0318793B1 (en) 1987-12-04 1988-11-22 Styrene-based resin composition
AT88119375T ATE118231T1 (en) 1987-12-04 1988-11-22 STYRENE-BASED RESIN MIXTURE.
ES88119375T ES2070844T3 (en) 1987-12-04 1988-11-22 RESIN COMPOSITION BASED ON STYRENE.
DE3852991T DE3852991T2 (en) 1987-12-04 1988-11-22 Styrene-based resin mixture.
CA000584527A CA1336624C (en) 1987-12-04 1988-11-30 Styrene-based resin composition
MYPI88001391A MY104352A (en) 1987-12-04 1988-11-30 Styrene-based resin composition
FI885632A FI98525C (en) 1987-12-04 1988-12-02 Styrene-based plastic composition
SU884356994A RU2033416C1 (en) 1987-12-04 1988-12-02 Polymeric composition
KR1019880016232A KR940010824B1 (en) 1987-12-04 1988-12-05 Styrene based resin composition
MYPI89000015A MY104125A (en) 1988-01-13 1989-01-06 Styrene-based resin composition.
DE89100233T DE68909059T2 (en) 1988-01-13 1989-01-07 Styrene-based resin mixture.
ES89100233T ES2059567T3 (en) 1988-01-13 1989-01-07 A STYRENE BASED RESIN COMPOSITION.
AT89100233T ATE94577T1 (en) 1988-01-13 1989-01-07 STYRENE BASED RESIN BLEND.
EP89100233A EP0324398B1 (en) 1988-01-13 1989-01-07 Styrene-based resin composition
AU28402/89A AU609239B2 (en) 1988-01-13 1989-01-11 Styrene-based resin composition
FI890154A FI98526C (en) 1988-01-13 1989-01-12 Composition containing styrene-based resin
CA000588025A CA1336625C (en) 1988-01-13 1989-01-12 Styrene-based resin composition
SU894613296A RU2088611C1 (en) 1988-01-13 1989-01-12 Polymeric composition
CN89100171A CN1033915C (en) 1988-01-13 1989-01-12 Styrene-based resin composition
KR1019890000379A KR940010825B1 (en) 1988-01-13 1989-01-13 Styrene-based resin composition
US07/510,110 US5395890A (en) 1987-09-14 1990-04-17 Styrene-based resin composition
US08/463,900 US6087435A (en) 1987-09-14 1995-06-05 Composition of styrene resin, thermoplastic resin and rubber particles
US08/463,897 US6051655A (en) 1987-09-14 1995-06-05 Styrene-based resin composition with thermoplastic resin
US08/462,858 US6046275A (en) 1987-09-14 1995-06-05 Styrene resin with rubber polymer particles
US08/463,898 US6008293A (en) 1987-09-14 1995-06-05 Syndiotactic polystyrene and polycarbonate resin compositions
US08/463,899 US6013726A (en) 1987-04-12 1995-06-05 Composition of styrene resin, thermoplastic resin and rubber
US08/464,356 US6093768A (en) 1987-09-14 1995-06-05 Syndiotactic styrene resin, thermoplastic resin and rubber
US08/463,927 US5891951A (en) 1987-09-14 1995-06-05 Styrene-based resin composition
US08/487,708 US6043307A (en) 1987-09-14 1995-06-07 Styrene-based resin composition
US09/075,867 US5990217A (en) 1986-05-06 1998-05-12 Styrene based resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004923A JP2681642B2 (en) 1988-01-14 1988-01-14 Styrene polymer resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9100812A Division JP2919429B2 (en) 1997-04-04 1997-04-04 Styrene polymer resin composition

Publications (2)

Publication Number Publication Date
JPH01182344A true JPH01182344A (en) 1989-07-20
JP2681642B2 JP2681642B2 (en) 1997-11-26

Family

ID=11597130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004923A Expired - Fee Related JP2681642B2 (en) 1986-05-06 1988-01-14 Styrene polymer resin composition

Country Status (1)

Country Link
JP (1) JP2681642B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197546A (en) * 1988-02-01 1989-08-09 Asahi Chem Ind Co Ltd Heat-resistant resin composition
JPH0386755A (en) * 1989-08-31 1991-04-11 Idemitsu Kosan Co Ltd Polyester resin composition
WO1993018087A1 (en) * 1992-03-04 1993-09-16 Idemitsu Kosan Co., Ltd. Styrenic resin composition
WO1994020571A1 (en) * 1993-03-03 1994-09-15 Idemitsu Kosan Co., Ltd. High-impact polystyrene resin compositions
JPH0892444A (en) * 1994-09-20 1996-04-09 Asahi Chem Ind Co Ltd Styrenic resin composition and molded article
WO1996011233A1 (en) * 1994-10-05 1996-04-18 Idemitsu Kosan Co., Ltd. High-impact polystyrene resin composition
JPH1095886A (en) * 1996-09-23 1998-04-14 Bridgestone Corp Extended polymer composition formed from blend of elastomer with syndiotactic polystyrene
WO2014125745A1 (en) * 2013-02-13 2014-08-21 矢崎総業株式会社 Resin composition and covered wire using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257950A (en) * 1986-05-06 1987-11-10 Idemitsu Kosan Co Ltd Thermoplastic resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257950A (en) * 1986-05-06 1987-11-10 Idemitsu Kosan Co Ltd Thermoplastic resin composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197546A (en) * 1988-02-01 1989-08-09 Asahi Chem Ind Co Ltd Heat-resistant resin composition
JPH0386755A (en) * 1989-08-31 1991-04-11 Idemitsu Kosan Co Ltd Polyester resin composition
WO1993018087A1 (en) * 1992-03-04 1993-09-16 Idemitsu Kosan Co., Ltd. Styrenic resin composition
US5391611A (en) * 1992-03-04 1995-02-21 Idemitsu Kosan Co., Ltd. Styrenic resin composition
WO1994020571A1 (en) * 1993-03-03 1994-09-15 Idemitsu Kosan Co., Ltd. High-impact polystyrene resin compositions
US5543462A (en) * 1993-03-03 1996-08-06 Idemitsu Kosan Co., Ltd. Impact resistant polystyrene composition
JPH0892444A (en) * 1994-09-20 1996-04-09 Asahi Chem Ind Co Ltd Styrenic resin composition and molded article
WO1996011233A1 (en) * 1994-10-05 1996-04-18 Idemitsu Kosan Co., Ltd. High-impact polystyrene resin composition
JPH1095886A (en) * 1996-09-23 1998-04-14 Bridgestone Corp Extended polymer composition formed from blend of elastomer with syndiotactic polystyrene
WO2014125745A1 (en) * 2013-02-13 2014-08-21 矢崎総業株式会社 Resin composition and covered wire using same

Also Published As

Publication number Publication date
JP2681642B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
US5109068A (en) Styrene-based polymer composition, stretched molding thereof and process for producing the same
US5395890A (en) Styrene-based resin composition
US5200454A (en) Flame-retardant resin composition
JPH01182346A (en) Molded body of styrene based resin and production thereof
JPH08104785A (en) Impact-resistant polystyrene resin composition
CA1336625C (en) Styrene-based resin composition
CA1336624C (en) Styrene-based resin composition
EP0324392B1 (en) Flame-retardant resin composition
JPS62257948A (en) Polystyrene resin composition
JPH01182344A (en) Styrene based polymer resin composition
JPH07138433A (en) Polystyrenic resin composition
US6046275A (en) Styrene resin with rubber polymer particles
US6008293A (en) Syndiotactic polystyrene and polycarbonate resin compositions
JP2824067B2 (en) Flame retardant resin composition
JP2744254B2 (en) Flame retardant resin composition
JP2681643B2 (en) Polystyrene resin composition
JP2768483B2 (en) Thermoplastic resin composition
JP2632538B2 (en) Polystyrene resin composition
JP2919429B2 (en) Styrene polymer resin composition
JP3264468B2 (en) Impact resistant polystyrene resin composition
JPH111589A (en) Resin composition and heat-resistant tray for ic
JP2885432B2 (en) Polyester resin composition
JPH0762176A (en) High-impact polystyrene resin composition
JPH0264140A (en) Styrene-based resin composition
JP2927753B2 (en) Polystyrene resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees