JPH01181043A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01181043A
JPH01181043A JP63004239A JP423988A JPH01181043A JP H01181043 A JPH01181043 A JP H01181043A JP 63004239 A JP63004239 A JP 63004239A JP 423988 A JP423988 A JP 423988A JP H01181043 A JPH01181043 A JP H01181043A
Authority
JP
Japan
Prior art keywords
temperature
solenoid valve
switch
compressor
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63004239A
Other languages
Japanese (ja)
Inventor
Yutaka Taki
瀧 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP63004239A priority Critical patent/JPH01181043A/en
Publication of JPH01181043A publication Critical patent/JPH01181043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To shorten the exciting time of a solenoid valve by providing the air conditioner with a pipeline temperature detector and a pipeline temperature switch, and further with a control circuit in which an external air temperature switch actuating a solenoid valve and the pipeline temperature switch are connected in series. CONSTITUTION:When a space heating operation is started, a pipeline temperature thermo-unit 28 is turned on, and an external air temperature is lowered, an external air temperature switch 25 is set on the low temperature side, and a solenoid valve 11 is excited, a gas coolant is injected to a compressor 1 through an injection circuit. When the external air temperature becomes high, the external air temperature switch 25 is set on the high temperature side, and the solenoid valve 11 is deenergized, thus the injection is stopped. When the room temperature rises up a room temperature thermostat 20 is turned off, a compressor relay 18 is deenergized and an outdoor motor 21 is stopped. Further, a constant close contact 19 of the compressor relay 18 is turned on, and power is supplied to a crankcase heater 17 and the solenoid valve 11 is excited through a pipeline temperature thermo-unit 28 and the external air temperature switch 25. When the pipeline temperature rises up, the pressure within the system is balanced, and the pipeline temperature thermo-unit 28 is turned off to deenergize the solenoid valve 11.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、インジエクS/=Iン用の圧縮機と備えた空
気調和機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an air conditioner equipped with a compressor for an engine.

従来の技術 近年、空気調和機は、暖房運転における低外気温時の能
力向上を図るため膨張過程の冷媒を圧縮機に一部回収す
るインジェクション方式が利用されている。
BACKGROUND OF THE INVENTION In recent years, air conditioners have been using an injection method in which a portion of the refrigerant in the expansion process is recovered by a compressor in order to improve performance during heating operations at low outside temperatures.

以下図面を参照しながら、上述した従来の空気調和機の
一例について説明する。
An example of the conventional air conditioner mentioned above will be described below with reference to the drawings.

第3図、第4図は従来の空気調和機の冷凍サイクル及び
、冷凍サイクμを制御する制御回路を示したものである
。第3図において、1は能力可変の圧縮機で、この圧縮
機1によシ吐゛出された冷媒は、四方弁2を介して室外
側熱交換器3に入り室外ファン4によシ熱交換が行われ
る。つぎに、減圧装置6を介して、気液分離器6に流入
し、気液二相の状態で入ってきた冷媒をガスと液に分離
し、液冷媒を室内側熱交換器8で室内ファン9により熱
交換される。この室内側熱交換器8に入った冷媒は四方
弁2を介して圧縮機1の吸込口に入る冷凍サイクルをと
る。10はインジェクション回路であり、電磁弁11の
作動により気液分離器eにより分離されたガス冷媒を圧
縮機1のインジェクションポート12にインジェクショ
ンさせるものである。
FIGS. 3 and 4 show a refrigeration cycle of a conventional air conditioner and a control circuit for controlling the refrigeration cycle μ. In FIG. 3, reference numeral 1 denotes a variable capacity compressor, and the refrigerant discharged by the compressor 1 enters the outdoor heat exchanger 3 via the four-way valve 2 and is heated by the outdoor fan 4. An exchange takes place. Next, the refrigerant flows into the gas-liquid separator 6 via the pressure reducing device 6, and the refrigerant that has entered in the gas-liquid two-phase state is separated into gas and liquid, and the liquid refrigerant is passed through the indoor heat exchanger 8 to the indoor fan. 9 to exchange heat. The refrigerant that has entered the indoor heat exchanger 8 enters the suction port of the compressor 1 via the four-way valve 2, forming a refrigeration cycle. Reference numeral 10 denotes an injection circuit, which injects the gas refrigerant separated by the gas-liquid separator e into the injection port 12 of the compressor 1 by operating the solenoid valve 11.

第4図は前述した冷凍サイクルを制御する空気調和機の
制御回路である。13,14,15は三相電源のR相、
S相、T相であシ、その内の一線13には運転スイッチ
16が設けられ、二線13.14の間には圧縮機1の保
温のためのクランクケース17と圧縮機リレー18によ
って励磁される常閉接点19との直列回路が接続されて
いる。20は室温を検知する室温サーモであり、この室
温サーモ20と直列に圧縮機リレー18と室外モータ2
1の並列回路が接続されている。22は冷暖切換スイッ
チであり、四方弁2と直列に接続されている。
FIG. 4 shows a control circuit for an air conditioner that controls the refrigeration cycle described above. 13, 14, 15 are the R phase of the three-phase power supply,
An operation switch 16 is provided on one line 13 of the S phase and T phase, and an excitation switch 16 is provided between the two lines 13 and 14 by a crankcase 17 for keeping the compressor 1 warm and a compressor relay 18. A series circuit with a normally closed contact 19 is connected. 20 is a room temperature thermostat for detecting the room temperature, and a compressor relay 18 and an outdoor motor 2 are connected in series with this room temperature thermostat 20.
1 parallel circuit is connected. 22 is a heating/cooling changeover switch, which is connected in series with the four-way valve 2.

23は室内ファン9を駆動する室内モータである。23 is an indoor motor that drives the indoor fan 9.

さらに、三相電源13,14.15には、圧縮機リレー
18の常開接点24を介して、圧縮膿1が接続されてい
る。26は低温側接点26と高温側接点27をもつ外気
温スイッチであシ、インジェクションを制御する電磁弁
11と直列に接続される。またこの外気温スイッチ26
の高温側接点27はクランクケースヒーター17と圧縮
機リレー18の常閉接点19の直列回路に並列に接続さ
れ、低温側接点26は電源の一線14に接続されている
Furthermore, compressed pus 1 is connected to the three-phase power supply 13, 14, 15 via a normally open contact 24 of a compressor relay 18. 26 is an outside temperature switch having a low temperature side contact 26 and a high temperature side contact 27, and is connected in series with the solenoid valve 11 that controls injection. Also, this outside temperature switch 26
The hot side contact 27 of is connected in parallel to the series circuit of the normally closed contact 19 of the crankcase heater 17 and the compressor relay 18, and the cold side contact 26 is connected to the power line 14.

以上のように構成された空気調和機について、以下その
動作について説明する。
The operation of the air conditioner configured as above will be described below.

まず、暖房運転起動時は通常室温が低く室温サーモ2o
はON しておシ、この状態で運転スイッチ1eおよび
冷暖切換用スイッチ22をONすると四方弁2および圧
縮機リレー18が励磁されることにより、この常開接点
24がON L圧縮機1は駆動する。また同時に圧縮機
リレー18の常閉接点19が0FFj、クランクケース
ヒータ17は通電されなくなる。つぎに外気温が低くた
とえば5℃以下になると外気温スイッチ25は低温側に
なり電磁弁11が励磁される。この電磁弁11が励磁さ
れることによシインジエクション回路1oを介して気液
分離器6で分離されたガス冷媒は圧縮機1のインジェク
ションポート12にインジェクションされる。つぎに外
気温が高くなると、外気温スイッチ26は高温側になシ
ミ磁弁11が消磁され、インジェクションは停止し、通
常能力運転となる。このようにして、外気温によりイン
ジェクション回路は0N−OFFすることができる。ま
た、外気温が高く外気温スイッチ26が高温側にある状
態で室温が上昇し、室温サーモ2oがOFFした場合、
圧縮機リレー18は消磁され室外モータ21は停止する
。圧縮機リレー18が消磁されることで、その常開接点
24はOFFし圧縮機は停止する。圧縮機1が停止する
ことによシシステム内の圧力が高圧側と低圧側でバラン
スするため短時間ではあるが電磁弁11には冷媒圧力と
してインジェクションポート12側で高く気液分離器e
側で低くなるため電磁弁11内部の弁座(図示せず)に
逆圧がかかシ”カチ、カチ”という異常音を発する。こ
の異常音を防止するため、外気温スイッチ26が高温側
にある状態で、圧縮機1が停止する場合は、圧縮機リレ
ー18の常閉接点19がON L、電磁弁11が強制的
に励磁され、外気温には無関係に強制的に開くことでこ
の電磁弁11にかかる逆圧による異常音の発生を防止し
ている。
First, when starting heating operation, the room temperature is usually low and the room temperature thermometer is set to 2o.
is turned on, and in this state, when the operation switch 1e and the cooling/heating switch 22 are turned on, the four-way valve 2 and the compressor relay 18 are energized, and this normally open contact 24 is turned on, and the L compressor 1 is driven. do. At the same time, the normally closed contact 19 of the compressor relay 18 is set to 0FFj, and the crankcase heater 17 is no longer energized. Next, when the outside temperature is low, for example below 5° C., the outside temperature switch 25 is set to the low temperature side and the solenoid valve 11 is energized. By energizing this electromagnetic valve 11, the gas refrigerant separated by the gas-liquid separator 6 is injected into the injection port 12 of the compressor 1 via the injection circuit 1o. Next, when the outside temperature rises, the outside temperature switch 26 is set to the high temperature side, and the stain valve 11 is demagnetized, injection is stopped, and normal capacity operation is resumed. In this way, the injection circuit can be turned ON-OFF depending on the outside temperature. Furthermore, if the room temperature rises while the outside temperature is high and the outside temperature switch 26 is on the high temperature side, and the room temperature thermometer 2o is turned off,
The compressor relay 18 is demagnetized and the outdoor motor 21 is stopped. When the compressor relay 18 is demagnetized, its normally open contact 24 is turned off and the compressor is stopped. When the compressor 1 is stopped, the pressure in the system is balanced between the high pressure side and the low pressure side, so the solenoid valve 11 has a high refrigerant pressure on the injection port 12 side, although for a short time.
Since the pressure becomes lower at the side, a back pressure is applied to the valve seat (not shown) inside the solenoid valve 11, causing an abnormal "click, click" sound. In order to prevent this abnormal noise, when the compressor 1 is stopped while the outside temperature switch 26 is on the high temperature side, the normally closed contact 19 of the compressor relay 18 is turned ON L and the solenoid valve 11 is forcibly energized. By forcibly opening the solenoid valve 11 regardless of the outside temperature, abnormal noise due to the back pressure applied to the solenoid valve 11 is prevented.

発明が解決しようとする問題点 しかしながら上記のような構成では、外気温スイッチ2
6が高温側による状態で、圧縮機1が停止している場合
は、システム内の圧力バランスとは無関係に電磁弁11
は、常時励磁されているため、システム内の圧力バラン
スがとれた後は、不必要な電力を電磁弁11で消費し、
また励磁時間の延長により電磁弁11の耐久性を損うと
いう問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, the outside temperature switch 2
6 is on the high temperature side and the compressor 1 is stopped, the solenoid valve 11 is closed regardless of the pressure balance in the system.
is constantly excited, so after the pressure in the system is balanced, unnecessary power is consumed by the solenoid valve 11,
Furthermore, there is a problem in that the durability of the solenoid valve 11 is impaired due to the extension of the excitation time.

本発明は上記問題点に鑑み、室温サーモがOFFし、圧
縮機が停止した時のシステム内の圧力バランス中に起る
インジェクション回路に設けた電磁弁を、省エネルギー
と励磁時間の短縮との目的から、システム内の圧力バラ
ンス後は消磁する制御回路を備えた空気調和機を提供す
るものである。
In view of the above problems, the present invention aims to save energy and shorten the excitation time by installing a solenoid valve in the injection circuit that occurs during pressure balance in the system when the room temperature thermostat is turned off and the compressor is stopped. The present invention provides an air conditioner equipped with a control circuit that demagnetizes the system after the pressure is balanced.

問題点を解決するための手段 上記問題点を解決するために本発明の空気調和機は、電
磁弁で0N7OFFするインジェクション回路で、室外
側熱交換器の配管温度を検出する配管温度検出器と、上
記配管温度検出器が所定の温度を検出し動作させるスイ
ッチとを備え、上記電磁弁を作動させるスイッチと、上
記配管温度検出器が所定の温度を検出し動作させるスイ
ッチとを直列に接続したという構成を備えたものである
Means for Solving the Problems In order to solve the above problems, the air conditioner of the present invention includes a pipe temperature detector that detects the pipe temperature of the outdoor heat exchanger using an injection circuit that turns 0N7OFF using a solenoid valve; The piping temperature detector includes a switch that detects a predetermined temperature and operates the valve, and a switch that operates the solenoid valve and a switch that causes the piping temperature detector to detect a predetermined temperature and operate the valve are connected in series. It has a configuration.

作  用 本発明は上記した構成によって、電磁弁にかかる逆圧に
よる異常音を防止するために、圧縮機リレーが0FFI
、圧縮機が停止した時には、圧縮機リレーの常閉接点が
ONすることによシ、これに接続され強制的に励磁され
た電磁弁を、圧力バランスを配管温度によシ検出し、圧
力バランス検出後は電磁弁を消磁することとなる。
Effect The present invention has the above-described configuration, so that the compressor relay is set to 0FFI in order to prevent abnormal noise due to the back pressure applied to the solenoid valve.
When the compressor stops, the normally closed contact of the compressor relay turns on, and the solenoid valve connected to it and forcibly excited detects the pressure balance depending on the piping temperature and adjusts the pressure balance. After detection, the solenoid valve will be demagnetized.

実施例 以下本発明の一実施例の空気調和機について図面を参照
しながら説明する。
EXAMPLE Hereinafter, an air conditioner according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における空気調和機の制御回
路を示すものである。第1図において、1は圧縮機、2
は四方弁、13,14.15は三相電源のR相、S相お
よびT相、16は運転スイッチ、17はクランクケース
ヒータ、18は圧縮機リレー、19は圧縮機リレーの常
閉接点、20は室温サーモ、21は室外モータ、22は
冷暖切換スイッチ、23は室内モータ、24は圧縮機リ
レー18の常開接点、26は低温側接点26と高温側接
点27をもつ外気温スイッチで、以上は第4図の構成と
同じもので詳細な説明は省略する。
FIG. 1 shows a control circuit for an air conditioner according to an embodiment of the present invention. In Figure 1, 1 is a compressor, 2
is a four-way valve, 13, 14, 15 is the R phase, S phase and T phase of the three-phase power supply, 16 is the operation switch, 17 is the crankcase heater, 18 is the compressor relay, 19 is the normally closed contact of the compressor relay, 20 is a room temperature thermometer, 21 is an outdoor motor, 22 is a cooling/heating switch, 23 is an indoor motor, 24 is a normally open contact of the compressor relay 18, 26 is an outside temperature switch having a low temperature side contact 26 and a high temperature side contact 27, The above configuration is the same as the configuration shown in FIG. 4, and detailed explanation will be omitted.

28は配管長サーモユニットで、内部に配管温度を検出
する配管温度検出器29と、配管温度検出器が所定の温
度を検出し動作させる配管温度スイッチ3oを備えてい
る。三相電源の二線13.14の間に、電磁弁11と配
管長サーモユニット28と外気温スイッチ26とが直列
に接続されている。
Reference numeral 28 denotes a pipe length thermo unit, which includes a pipe temperature detector 29 for detecting pipe temperature, and a pipe temperature switch 3o for operating when the pipe temperature detector detects a predetermined temperature. A solenoid valve 11, a pipe length thermostat unit 28, and an outside temperature switch 26 are connected in series between the two wires 13 and 14 of the three-phase power supply.

以上のように構成された空気調和機について以下第1図
、第2図を用いてその動作を説明する。
The operation of the air conditioner configured as described above will be explained below with reference to FIGS. 1 and 2.

まず第2図は、圧縮機停止後の配管温度と、インジェク
ション制御用の電磁弁にかかる圧力との経時変化を示し
たものである。時間0秒で圧縮機が、停止したとすると
、その直後は電磁弁には正方向の圧力がかかっているが
、時間経過とともにその圧力は減少し、t1秒後には逆
圧力となる。そして、徐々にシステム内の圧力バランス
がとれ、t2秒後には、完全に圧力バランスがとれる。
First, FIG. 2 shows changes over time in the pipe temperature and the pressure applied to the solenoid valve for injection control after the compressor is stopped. Assuming that the compressor stops at a time of 0 seconds, a positive pressure is applied to the solenoid valve immediately after that, but the pressure decreases as time passes, and becomes a reverse pressure after t1 seconds. Then, the pressure within the system is gradually balanced, and after t2 seconds, the pressure is completely balanced.

−方、配管温度は、暖房運転時には、外気温度T2℃よ
シも低くなっている。圧縮機の停止とともに上昇し、シ
ステム内の圧力バランスが完全にとれるt2 秒後には
T1 ℃に達し、その後は外気温度T2℃に徐々に近づ
いていく。この図に示すように、インジェクション制御
用の電磁弁にかかる圧力と配管温度には相関関係があシ
、配管温度T4℃を検出することによシ、システム内の
圧力バランスを検知することができる。
On the other hand, during heating operation, the pipe temperature is lower than the outside air temperature T2°C. It rises when the compressor stops, reaches T1°C after t2 seconds when the pressure balance in the system is completely balanced, and thereafter gradually approaches the outside air temperature T2°C. As shown in this figure, there is a correlation between the pressure applied to the solenoid valve for injection control and the pipe temperature, and by detecting the pipe temperature T4°C, the pressure balance in the system can be detected. .

第1図の動作について説明する。まず、暖房運転起動時
は通常室温が低く室温サーモ20はON l。
The operation shown in FIG. 1 will be explained. First, when heating operation is started, the room temperature is usually low and the room temperature thermometer 20 is turned on.

ておシ、この状態で運転スイッチ16および冷暖切換用
スイッチ22をONすると四方弁2および圧縮機用リレ
ー18が励磁されると共に、室内モータ23および室外
モータ21が駆動する。圧縮機リレー18が励磁される
ことによシ、この常開接点24がON L圧縮機1は駆
動する。また、同時に圧縮機リレー18の常閉接点19
がOFFしクランクケースヒータ17は通電されなくな
る。このように暖房運転が開始されると、配管温度はT
In this state, when the operation switch 16 and the cooling/heating switch 22 are turned on, the four-way valve 2 and the compressor relay 18 are excited, and the indoor motor 23 and the outdoor motor 21 are driven. When the compressor relay 18 is energized, the normally open contact 24 is turned ON and the L compressor 1 is driven. At the same time, the normally closed contact 19 of the compressor relay 18
is turned off, and the crankcase heater 17 is no longer energized. When heating operation is started in this way, the pipe temperature becomes T
.

℃以下に低下し、配管長サーモユニット28は謝する。℃ or less, and the pipe length thermo unit 28 will be interrupted.

つぎに、外気温が低くたとえば6℃以下になると外気温
スイッチ25は低温側になシ、配管長サーモユニット2
8を介して電磁弁11が励磁される。この電磁弁11が
励磁されることによりインジェクション回路10を介し
て気液分離器6で分離されたガス冷媒は圧縮機1のイン
ジェクションポート12にインジェクションされる。そ
して、外気温が高くなると、外気温スイッチ26は高温
側になり電磁弁11が消磁され、インジェクションは停
止する。このようにして、外気温スイッチ26が0N−
OFFすることによりインジェクション回路10は制御
される。また、外気温が高く、外気温スイッチ26が高
温側にある状態で、室温が上昇し、室温サーモ2oがO
FFした場合、圧縮機リレー18は消磁され、室外モー
タ21は停止する。圧縮機リレー18が消磁されること
で、その常開接点24はOFFし圧縮機は停止する。ま
た、圧縮機リレー18の常閉接点19はON L、クラ
ンクケースヒータ1了に通電されると共に、配管温サー
モユニット28と外気温スイッチ26とを介して電磁弁
11が励磁される。そして、徐々に配管温度が上昇し、
システム内の圧力バランスがとれ配管温度が11℃に達
すると配管温サーモユニット28がOFF  L電磁弁
11が消磁される。
Next, when the outside temperature is low, for example below 6°C, the outside temperature switch 25 is turned to the low temperature side, and the pipe length thermo unit 2 is turned off.
The solenoid valve 11 is energized via the solenoid valve 8 . By energizing this electromagnetic valve 11, the gas refrigerant separated by the gas-liquid separator 6 is injected into the injection port 12 of the compressor 1 via the injection circuit 10. When the outside temperature becomes high, the outside temperature switch 26 is set to the high temperature side, the solenoid valve 11 is demagnetized, and the injection is stopped. In this way, the outside temperature switch 26 is set to 0N-
The injection circuit 10 is controlled by turning it off. In addition, when the outside temperature is high and the outside temperature switch 26 is on the high temperature side, the room temperature rises and the room temperature thermometer 2o is set to 0.
When it is FF, the compressor relay 18 is demagnetized and the outdoor motor 21 is stopped. When the compressor relay 18 is demagnetized, its normally open contact 24 is turned off and the compressor is stopped. In addition, the normally closed contact 19 of the compressor relay 18 is turned ON, energizing the crankcase heater 1, and the solenoid valve 11 is energized via the pipe temperature thermostat unit 28 and the outside temperature switch 26. Then, the pipe temperature gradually rises,
When the pressure within the system is balanced and the pipe temperature reaches 11° C., the pipe temperature thermostat unit 28 is turned off and the L solenoid valve 11 is demagnetized.

以上のように本実施例によれば、電磁弁で0N−OFF
 fるインジェクション回路で、上記電磁弁を作動させ
る外気温スイッチと直列に配管温を検知する配管温サー
モユニットを接続することによシ、圧縮機停止時のシス
テム内の圧力バランスによる電磁弁の異常音を防止する
ために励磁する上記電磁弁の励磁時間を短縮させること
ができ、この効果として、制御回路の消費電力を低減し
、上記電磁弁の劣化を遅滞することができる。
As described above, according to this embodiment, the solenoid valve allows 0N-OFF.
By connecting a piping temperature thermostat unit that detects piping temperature in series with the outside temperature switch that activates the solenoid valve in the injection circuit, it is possible to prevent abnormalities in the solenoid valve due to pressure balance in the system when the compressor is stopped. The excitation time of the electromagnetic valve that is excited to prevent noise can be shortened, and as a result, the power consumption of the control circuit can be reduced and deterioration of the electromagnetic valve can be delayed.

なお、本実施例では室温サーモ32の0N−OFFによ
る挙動について述べたが、運転スイッチ16の0N−O
FFでも同様の効果を得られる。
In this embodiment, the behavior due to ON-OFF of the room temperature thermostat 32 has been described, but when the operation switch 16 is ON-OFF,
A similar effect can be obtained with FF.

発明の効果 以上のように本発明は電磁弁で○N−0FFするインジ
ェクション回路で、室外側熱交換器の配管温度を検出す
る配管温度検出器と、上記配管温度検出器が所定の温度
を検出し動作させる配管温スイッチとを備え、上記電磁
弁を作動させる外気温スイッチと、上記配管温スイッチ
とを直列に接続した制御回路を設けることにより、シス
テム内の圧力バランスによる電磁弁の異常音を防止する
ために励磁させた電磁弁を、圧力バランスがとれた時点
で消磁し、電磁弁の励磁時間を短縮することにより、制
御回路の消費電力の低減と、電磁弁の劣化を遅滞するこ
とができる。
Effects of the Invention As described above, the present invention is an injection circuit that turns ○N-OFF using a solenoid valve, and includes a pipe temperature detector that detects the pipe temperature of the outdoor heat exchanger, and the pipe temperature detector that detects a predetermined temperature. By providing a control circuit that connects in series the outside temperature switch that operates the solenoid valve and the piping temperature switch that operates the solenoid valve, abnormal noises of the solenoid valve due to pressure balance in the system can be suppressed. By demagnetizing the solenoid valve that has been energized to prevent this problem once the pressure is balanced and shortening the energization time of the solenoid valve, it is possible to reduce the power consumption of the control circuit and delay the deterioration of the solenoid valve. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す空気調和機の制御回路
図、第2図はシステム内の圧力バランスと配管温度の経
時変化を示す特性図、第3図は従来例に係る冷凍サイク
ル図、第4図は従来例を示す空気調和機の制御回路図で
ある。 1・・・・・・圧縮機、2・・・・・・四方弁、3・・
・・・・室外側熱交換器、5・・・・・・減圧装置、8
・・・・・・室内側熱交換器、11・・・・・・電磁弁
、1o・・・・・・インジェクション回路、29・・・
・・・配管温度検出器、30・・・・・・配管温スイッ
チ、26・・・・・・外気温スイッチ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名!−
圧趨機 2−−wt方弁 3−・・望/)lll熱性性 器−−一威圧装置 8・−・室内@熱交換轟 IO−インジスクシ1ソ H−一一電礒井 25−外気温スイヅチ 29−一配管温屓検田益 30−・−配管温スイッチ 第1 図 1              ″   6第 2 図 ス2     呼量〔秒J 第 3 図
Fig. 1 is a control circuit diagram of an air conditioner showing an embodiment of the present invention, Fig. 2 is a characteristic diagram showing pressure balance in the system and changes in piping temperature over time, and Fig. 3 is a refrigeration cycle according to a conventional example. 4 are control circuit diagrams of an air conditioner showing a conventional example. 1... Compressor, 2... Four-way valve, 3...
... Outdoor heat exchanger, 5 ... Pressure reduction device, 8
... Indoor heat exchanger, 11 ... Solenoid valve, 1o ... Injection circuit, 29 ...
...Piping temperature detector, 30...Piping temperature switch, 26...Outside temperature switch. Name of agent: Patent attorney Toshio Nakao and 1 other person! −
Pressure device 2 - wt valve 3 -.../) lll Fever genitalia - - Intimidation device 8 - Indoor @ heat exchange Todoroki IO - Injikushi 1 So H - 11 Electric Isoui 25 - Outside temperature switch 29-1 Piping Temperature Test 30--Piping Temperature Switch 1 Fig. 1'' 6 Fig. 2 Fig. 2 Volume [Second J Fig. 3]

Claims (1)

【特許請求の範囲】[Claims] インジェクション用の圧縮機、四方弁、室外側熱交換器
、減圧装置、室内側熱交換器を順次接続し、上記圧縮機
に電磁弁を有するインジェクション回路を接続した冷凍
サイクルを構成し、上記室外側熱交換器の配管温度を検
出する配管温度検出器と、上記配管温度検出器が所定の
温度を検出し動作させる配管温度スイッチとを備え、上
記電磁弁を作動させる外気温スイッチと、上記配管温度
スイッチとを直列に接続した制御回路を備えたことを特
徴とする空気調和機。
A compressor for injection, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are connected in sequence, and a refrigeration cycle is constructed in which an injection circuit having a solenoid valve is connected to the compressor, and the outdoor side A pipe temperature detector that detects the pipe temperature of the heat exchanger, a pipe temperature switch that operates when the pipe temperature detector detects a predetermined temperature, and an outside temperature switch that operates the solenoid valve, An air conditioner characterized by comprising a control circuit connected in series with a switch.
JP63004239A 1988-01-12 1988-01-12 Air conditioner Pending JPH01181043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004239A JPH01181043A (en) 1988-01-12 1988-01-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004239A JPH01181043A (en) 1988-01-12 1988-01-12 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01181043A true JPH01181043A (en) 1989-07-19

Family

ID=11578998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004239A Pending JPH01181043A (en) 1988-01-12 1988-01-12 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01181043A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210566A (en) * 1985-07-08 1987-01-19 松下冷機株式会社 Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210566A (en) * 1985-07-08 1987-01-19 松下冷機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JPH0828969A (en) Cooling system
JPS6325471A (en) Air conditioner
JP2597634Y2 (en) Pressure equalizer in multi-room air-conditioning heat pump system
JPH01181043A (en) Air conditioner
JPH06265242A (en) Engine driven heat pump
JPH08285393A (en) Air conditioner for multi-room
JPH0359358A (en) Air conditioner
JPS62186157A (en) Defrosting control unit of air conditioner
JPH04320753A (en) Air conditioner
JP3099574B2 (en) Air conditioner pressure equalizer
JPS59183255A (en) Air conditioner
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof
JPH03211349A (en) Air conditioner
JPH03211380A (en) Air conditioner
JPS6217572A (en) Defroster for air-cooled heat pump type refrigerator
JP3337264B2 (en) Air conditioner defroster
JPH0341751B2 (en)
JP3401873B2 (en) Control device for air conditioner
JPS5852458Y2 (en) Defrost device
JPH035506B2 (en)
JPH062979A (en) Air conditioner
JP3451918B2 (en) Operation control device for air conditioner
JPS6193357A (en) Air conditioner
JPS6210566A (en) Air conditioner
JPS62129659A (en) Air conditioner