JPH0118092B2 - - Google Patents

Info

Publication number
JPH0118092B2
JPH0118092B2 JP10239380A JP10239380A JPH0118092B2 JP H0118092 B2 JPH0118092 B2 JP H0118092B2 JP 10239380 A JP10239380 A JP 10239380A JP 10239380 A JP10239380 A JP 10239380A JP H0118092 B2 JPH0118092 B2 JP H0118092B2
Authority
JP
Japan
Prior art keywords
acid
foam
maleic anhydride
styrene
copolymer resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10239380A
Other languages
Japanese (ja)
Other versions
JPS5728138A (en
Inventor
Nagaro Ariga
Kyotaro Shimazu
Hiroyuki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP10239380A priority Critical patent/JPS5728138A/en
Publication of JPS5728138A publication Critical patent/JPS5728138A/en
Priority to US06/724,509 priority patent/US4596832A/en
Publication of JPH0118092B2 publication Critical patent/JPH0118092B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 本発明は、高発泡化されたスチレン―無水マレ
イン酸共重合樹脂発泡体の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a highly expanded styrene-maleic anhydride copolymer resin foam.

一般に、熱可塑性樹脂発泡体の製造方法として
は、押出し成形を例にとれば、発泡剤を含む溶融
可塑化された樹脂組成物を高圧状態から常圧雰囲
気下に押出し、その圧力変化によつて膨張させ
て、所望する成形品を得る方法がとられている。
In general, extrusion molding is an example of a method for manufacturing thermoplastic resin foam, in which a molten plasticized resin composition containing a blowing agent is extruded from a high pressure state into a normal pressure atmosphere, and the pressure changes A method is used to obtain a desired molded product by expanding it.

この様な方法に用いられている代表的な汎用熱
可塑性樹脂としては、ポリスチレン、ポリエチレ
ンなどが良く知られている。特にポリスチレン
は、溶融粘度の温度依存性が小さく、低温押出し
が可能であるために、発泡剤の選択も容易である
と同時に、発泡に適した粘度が得られやすいこと
から、蒸発形発泡剤を使用することによつて比較
的容易に高発泡体を形成することができる。上記
発泡剤としては、炭酸ガス、窒素ガス、ヘリウム
ガス等の如き不活性ガス;メタン、エタン、ブタ
ン等の如き炭素数8以下の飽和脂肪族炭化水素;
シクロヘキサンエチルシクロペンタン等の如き飽
和脂環族炭化水素;ベンゼン、キシレン等の如き
芳香族炭化水素;アセトン、メチルエチルケトン
等の如きケトン;及び石油エーテル等が使用され
ている。
Polystyrene, polyethylene, and the like are well known as typical general-purpose thermoplastic resins used in such methods. In particular, polystyrene has a small temperature dependence of its melt viscosity and can be extruded at low temperatures, making it easy to select a blowing agent.At the same time, it is easy to obtain a viscosity suitable for foaming, so evaporative blowing agents are used. By using this, a highly foamed body can be formed relatively easily. As the blowing agent, inert gas such as carbon dioxide, nitrogen gas, helium gas, etc.; saturated aliphatic hydrocarbon having 8 or less carbon atoms such as methane, ethane, butane, etc.;
Saturated alicyclic hydrocarbons such as cyclohexane, ethylcyclopentane, etc.; aromatic hydrocarbons, such as benzene, xylene, etc.; ketones, such as acetone, methyl ethyl ketone, etc.; and petroleum ether.

蒸発形発泡剤を使用するには、高圧ガスをボン
ベから押出機に定量的に導入するような高価な装
置が必要であり、また発泡剤ガスの漏洩による爆
発の危険、中毒の危険等に対する配慮も必要であ
る。
Using an evaporative blowing agent requires expensive equipment to quantitatively introduce high-pressure gas from a cylinder into the extruder, and consideration must be given to the risk of explosion and poisoning due to leakage of blowing agent gas. is also necessary.

一方、高価な装置や爆発、中毒等の危険に対す
る配慮がほとんど必要のないものとして、分解形
発泡剤がある。無機系分解形発泡剤としては、例
えば、炭酸水素ナトリウム、炭酸アンモニウム、
炭酸水素アンモニウム、ほう水素化ナトリウム、
軽金属(Mg,Zn,Alなど)などがあり、有機系
分解形発泡剤としては、例えば、アゾジカルボン
アミド、アゾビスホルムアミド、イソブチロニト
リル、ジアゾアミノベンゼン、N,N′―ジニト
ロソペンタメチレンテトラミン、N,N′―ジメ
チルN,N′―ジニトロテレフタルアミド、ベン
ゼンスルホニルヒドラジド、p―トルエンフルフ
ホニルヒドラジド、p,p′―オキシビスベンゼン
スルホニルヒドラジドなどが用いられている。し
かし、この方法では、樹脂中に溶解したガスの分
離会合による気泡生成のため、気泡膜を急冷固化
する働きもなく、発生ガスの透過性も大きいた
め、高発泡体は容易には得られない。
On the other hand, there is a decomposable foaming agent that requires little consideration for expensive equipment or dangers such as explosion and poisoning. Examples of inorganic decomposable blowing agents include sodium hydrogen carbonate, ammonium carbonate,
ammonium bicarbonate, sodium borohydride,
Examples include light metals (Mg, Zn, Al, etc.), and examples of organic decomposition foaming agents include azodicarbonamide, azobisformamide, isobutyronitrile, diazoaminobenzene, and N,N'-dinitrosopentamethylene. Tetramine, N,N'-dimethyl N,N'-dinitroterephthalamide, benzenesulfonyl hydrazide, p-toluenesulfonyl hydrazide, p,p'-oxybisbenzenesulfonyl hydrazide, etc. are used. However, with this method, bubbles are generated by the separation and association of gas dissolved in the resin, so it does not work to rapidly solidify the bubble membrane, and the permeability of the generated gas is high, so it is not easy to obtain highly foamed products. .

しかるに、本発明者等は、蒸発形発泡剤を用い
ることなしに高発泡体を得るべく鋭意研究した結
果、スチレン―無水マレイン酸共重合樹脂と周期
律表の第a族金属及び/又は第a族金属(以
下、両者を併せて「アルカリ金属」ともいう。)
のカルボン酸塩とをあらかじめドライブレンドし
た樹脂組成物を例えば押出し成形することによ
り、従来分解形発泡剤のみでは不可能であるよう
な発泡倍率8倍以上の高発泡体を製造し得ること
を見出し、本発明に到達した。
However, as a result of intensive research in order to obtain a highly foamed product without using an evaporative foaming agent, the present inventors found that styrene-maleic anhydride copolymer resin and group a metals of the periodic table and/or group a metals of the periodic table. Group metals (hereinafter both are also referred to as "alkali metals")
We have discovered that by extrusion molding a resin composition that has been dry-blended in advance with a carboxylic acid salt of , arrived at the present invention.

具体的には、本発明は、あらかじめ粉末状態に
したアルカリ金属のカルボン酸塩を0.1重量%〜
10重量%、更に好ましくは、0.5重量%〜5重量
%と、少量の油でコーテイングしたスチレン―無
水マレイン酸共重合樹脂99.9重量%〜90重量%、
更に好ましくは99.5重量%〜95重量%とを、ドラ
イブレンドしたのち溶融加熱して、例えば押出し
成形、射出成形などにより発泡体を得る際に、ス
チレン―無水マレイン酸共重合樹脂とアルカリ金
属のカルボン酸塩とが反応して生ずる発泡性ガス
によつて高発泡体を得ることを特徴とするもので
ある。
Specifically, the present invention uses 0.1% by weight to 0.1% by weight of an alkali metal carboxylate salt that has been powdered in advance.
10% by weight, more preferably 0.5% to 5% by weight, and 99.9% to 90% by weight of a styrene-maleic anhydride copolymer resin coated with a small amount of oil;
More preferably, 99.5% to 95% by weight of the styrene-maleic anhydride copolymer resin and the alkali metal carboxylic acid are dry blended and then melted and heated to obtain a foam by, for example, extrusion molding or injection molding. It is characterized by obtaining a highly foamed product by the foaming gas produced by the reaction with the acid salt.

ここにおいて、スチレン―無水マレイン酸共重
合樹脂とは、連鎖移動剤及びラジカル発生剤の存
在下に、スチレンモノマーと無水マレイン酸モノ
マーとを熱重合せしめて得られるものを指称す
る。例えば、モル比1.4〜4.9好ましくは4.6〜17.0
のスチレンモノマー/無水マレイン酸モノマー混
合物、公知慣用のラジカル発生剤及び連鎖移動剤
をアセトン又はメチルイソブチルケトンの如きケ
トン系溶媒中に加え、60〜180℃、好ましくは75
〜140℃の温度条件下で熱重合せしめる。得られ
る重合物は、例えば、石油ベンジン又はメタノー
ルの如き貧溶媒を用いて析出させる。必要に応じ
て酸化防止剤などを添加して、押出機などにより
造粒したものを用いることもできる。
Here, the styrene-maleic anhydride copolymer resin refers to a resin obtained by thermally polymerizing a styrene monomer and a maleic anhydride monomer in the presence of a chain transfer agent and a radical generator. For example, molar ratio 1.4-4.9 preferably 4.6-17.0
A styrene monomer/maleic anhydride monomer mixture, a known and commonly used radical generator and a chain transfer agent are added to a ketone solvent such as acetone or methyl isobutyl ketone, and heated to 60 to 180°C, preferably 75°C.
Thermal polymerization is carried out at a temperature of ~140°C. The resulting polymer is precipitated using a poor solvent such as petroleum benzene or methanol. It is also possible to use granules obtained by adding an antioxidant or the like as necessary and granulating them using an extruder or the like.

前記したアルカリ金属のカルボン酸を形成する
アルカリ金属とは周期律表の第a族金属と第
a族金属とを指称するが、前者金属としてはリチ
ウム、ナトリウムまたはカリウムが、後者金属と
してはマグネシウム、カルシウムまたはストロン
チウムが代表的なものであり、またカルボン酸の
代表例としては蟻酸、酢酸、プロピオン酸、酪
酸、カプリル酸、カプリン酸、ラウリル酸、ステ
アリン酸もしくはミリスチン酸の如き脂肪族モノ
カルボン酸;シユウ酸、マロン酸、コハク酸、グ
ルタル酸、マレイン酸、フマル酸もしくはグルタ
コン酸の如き脂肪族飽和もしくは不飽和ジカルボ
ン酸;グリコール酸、乳酸、エチレン乳酸もしく
はグリセリン酸の如きオキシモノカルボン酸;リ
ンゴ酸、酒石酸もしくはクエン酸の如きオキシポ
リカルボン酸;あるいは安息香酸もしくはテレフ
タル酸の如き芳香族カルボン酸などである。
The alkali metals that form the alkali metal carboxylic acids mentioned above refer to group a metals and group a metals of the periodic table, and the former metals include lithium, sodium, or potassium, and the latter metals include magnesium, Calcium or strontium are typical, and representative examples of carboxylic acids include aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, caprylic acid, capric acid, lauric acid, stearic acid or myristic acid; Aliphatic saturated or unsaturated dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, maleic acid, fumaric acid or glutaconic acid; oxymonocarboxylic acids such as glycolic acid, lactic acid, ethylene lactic acid or glyceric acid; malic acid , oxypolycarboxylic acids such as tartaric acid or citric acid; or aromatic carboxylic acids such as benzoic acid or terephthalic acid.

かかるアルカリ金属のカルボン酸塩はそれぞれ
単独で、あるいは相互に組み合わせられた形で使
用される。
These alkali metal carboxylates may be used alone or in combination with each other.

そして、これらのアルカリ金属塩類は特に、結
晶水を含むものが好ましく用いられる。
Among these alkali metal salts, those containing water of crystallization are particularly preferably used.

次に、本発明を実施例により具体的に説明す
る。
Next, the present invention will be specifically explained using examples.

実施例 1 メルトフローレート(JIS K7210―1976、荷
重:5Kg、温度:200℃―以下、MFRと省略す
る。)が1.2g/10分であるスチレン―無水マレイ
ン酸共重合樹脂(無水マレイン酸成分含有率8重
量%)990gを少量の油で表面コーテイングした
ものと、酢酸ナトリウム(和光純薬工業(株)社製、
和光一級)10gを粉末にしたものとを十分にブレ
ンドした。次いで、このブレンド物を26mmφ押出
機(山城精機(株)社製、L/D=14、圧縮比2.2)
で押出し成形した。押出し条件は、ダイス温度:
125℃、C1:225℃、C2:180℃、スクリユー回転
数:40rpmであつた。
Example 1 Styrene-maleic anhydride copolymer resin (maleic anhydride component 990g of 8% by weight) surface-coated with a small amount of oil, and sodium acetate (manufactured by Wako Pure Chemical Industries, Ltd.).
10g of Wako grade 1) was powdered and thoroughly blended. Next, this blend was passed through a 26 mmφ extruder (manufactured by Yamashiro Seiki Co., Ltd., L/D=14, compression ratio 2.2).
Extrusion molded. The extrusion conditions are die temperature:
The temperature was 125°C, C 1 : 225°C, C 2 : 180°C, and screw rotation speed: 40 rpm.

押出し成形された発泡体は、表面に良好なスキ
ン層を有し、内部に0.1〜0.3mmの粒径の微細な気
泡を持つものであつた。また、この発泡体の発泡
倍率は9.8であつた。なお、この発泡倍率は、式 発泡倍率= スチレン―無水マレイン酸共重合樹脂の比重/発泡体の
比重 に従つて算出されたものである(以下の各例にお
いても同じ)。
The extruded foam had a good skin layer on the surface and had fine cells with a particle size of 0.1 to 0.3 mm inside. Further, the foaming ratio of this foam was 9.8. Note that this expansion ratio was calculated according to the formula: expansion ratio = specific gravity of styrene-maleic anhydride copolymer resin/specific gravity of foam (the same applies to each example below).

実施例 2 MFRが0.41g/10分であるスチレン―無水マ
レイン酸共重合樹脂(無水マレイン酸成分含有率
15%)に変更する以外は、実施例1と同様に押出
し成形を行なつた。
Example 2 Styrene-maleic anhydride copolymer resin with MFR of 0.41 g/10 min (maleic anhydride component content
Extrusion molding was carried out in the same manner as in Example 1, except that the amount was changed to 15%).

押出し成形された発泡体は、表面に良好なスキ
ン層を有し、内部に0.1〜0.3mmの粒径の微細な気
泡を持ち、発泡体の発泡倍率は14であつた。
The extruded foam had a good skin layer on the surface, fine cells with a particle size of 0.1 to 0.3 mm inside, and the expansion ratio of the foam was 14.

実施例 3 MFRが0.41g/10分であるスチレン―無水マ
レイン酸共重合樹脂970gおよびシユウ酸ナトリ
ウム(和光純薬工業(株)製、和光一級)30gに変更
する以外は、実施例1と同様に押出し成形を行な
つた。
Example 3 Same as Example 1 except that 970 g of styrene-maleic anhydride copolymer resin with MFR of 0.41 g/10 minutes and 30 g of sodium oxalate (manufactured by Wako Pure Chemical Industries, Ltd., Wako Grade 1) were used. Extrusion molding was performed.

押出し成形された発泡体は、表面に良好なスキ
ン層を有し、内部に0.2〜0.5mmの粒径の微細な気
泡を持ち、発泡体の発泡倍率は9.2であつた。
The extruded foam had a good skin layer on the surface, fine cells with a particle size of 0.2 to 0.5 mm inside, and the expansion ratio of the foam was 9.2.

実施例 4 スチレン―無水マレイン酸共重合樹脂の量を
990gとし、かつ、シユウ酸ナトリウムに替えて
10gの乳酸ナトリウムを使用した以外は、実施例
3と同様の操作を行なつた。
Example 4 The amount of styrene-maleic anhydride copolymer resin
990g and replaced with sodium oxalate
The same procedure as in Example 3 was carried out except that 10 g of sodium lactate was used.

押出し成形された発泡体は、表面に良好なスキ
ン層を有し、内部に0.2〜0.5mmの粒径の微細な気
泡を持ち、発泡体の発泡倍率は8.5であつた。
The extruded foam had a good skin layer on the surface, had fine cells with a particle size of 0.2 to 0.5 mm inside, and the expansion ratio of the foam was 8.5.

実施例 5 シユウ酸ナトリウムの代わりに同量の酒石酸ナ
トリウム(和光純薬工業(株)製、和光一級)を用い
た以外は、実施例3と同様に押出し成形を行なつ
た処、表面に良好なスキン層を有し、内部に0.2
〜0.5mmなる粒径の微細な気泡をもつた発泡体が
得られた。この発泡体の発泡倍率は9.0であつた。
Example 5 Extrusion molding was carried out in the same manner as in Example 3, except that the same amount of sodium tartrate (manufactured by Wako Pure Chemical Industries, Ltd., Wako 1st grade) was used instead of sodium oxalate. It has a skin layer of 0.2
A foam with fine cells having a particle size of ~0.5 mm was obtained. The foaming ratio of this foam was 9.0.

実施例 6 乳酸ナトリウムの代わりに同量の安息香酸ナト
リウム(和光純薬工業(株)製、和光一級)を使用し
た以外は、実施例4と同様の操作を繰り返した
処、表面に良好なスキン層を有し、内部に0.1〜
0.4mmなる粒径の微細な気泡をもつた発泡体が得
られ、この発泡体の発泡倍率は8.3であつた。
Example 6 The same operation as in Example 4 was repeated except that the same amount of sodium benzoate (manufactured by Wako Pure Chemical Industries, Ltd., Wako Grade 1) was used instead of sodium lactate, and a good skin was obtained on the surface. Has a layer, 0.1~
A foam having fine cells with a particle size of 0.4 mm was obtained, and the expansion ratio of this foam was 8.3.

実施例 7 乳酸ナトリウムの代わりに同量の酢酸マグネシ
ウム(和光純薬工業、和光一級)を使用した以外
は、実施例4と同様の操作を繰り返えした処、表
面に良好なスキン層をもち、径が0.2〜0.5mmなる
微細な気泡をもつた、発泡倍率が13倍なる発泡体
が得られた。
Example 7 The same operation as in Example 4 was repeated except that the same amount of magnesium acetate (Wako Pure Chemical Industries, Wako 1st grade) was used instead of sodium lactate, and a good skin layer was obtained on the surface. A foam with a foaming ratio of 13 times was obtained, which had fine bubbles with a diameter of 0.2 to 0.5 mm.

実施例 8 シユウ酸ナトリウムの代わりに同量のシユウ酸
カルシウムを用いた以外は、実施例3と同様の操
作を繰り返した処、表面に良好なスキン層を有
し、内部に0.2〜0.5mmなる径の微細な気泡をもつ
た、発泡倍率が9.2倍なる発泡体が得られた。
Example 8 The same operation as in Example 3 was repeated except that the same amount of calcium oxalate was used instead of sodium oxalate, and a good skin layer was formed on the surface and a thickness of 0.2 to 0.5 mm inside. A foam with a foaming ratio of 9.2 times and having bubbles with a fine diameter was obtained.

比較例 1 酢酸鉛(和光純薬工業(株)製、和光一級)に変更
する以外は、実施例1と同様に押出し成形を行な
つた。
Comparative Example 1 Extrusion molding was carried out in the same manner as in Example 1, except that lead acetate (manufactured by Wako Pure Chemical Industries, Ltd., Wako Grade 1) was used.

押出し成形された発泡体は、表面に良好なスキ
ン層を有し、内部に比較的径の大きい気泡を持
ち、発泡体の発泡倍率は3.2であつた。
The extruded foam had a good skin layer on the surface, relatively large-diameter cells inside, and the expansion ratio of the foam was 3.2.

比較例 2 MFRが1.6g/10分である「デイツクスチレン
XC―510」(大日本インキ化学工業(株)社製、スチ
レン樹脂)に変更する以外は、実施例1と同様に
押出し成形を行なつた。
Comparative Example 2 "Dick Styrene" with MFR of 1.6g/10min
Extrusion molding was carried out in the same manner as in Example 1, except that the material was changed to "XC-510" (manufactured by Dainippon Ink & Chemicals Co., Ltd., styrene resin).

押出し成形された発泡体は、表面がザラザラで
あり、内部発泡は不規則であり、発泡体の発泡倍
率は1.5であつた。
The extruded foam had a rough surface, irregular internal foaming, and an expansion ratio of 1.5.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融可塑化されたスチレン―無水マレイン酸
共重合樹脂を発泡せしめて発泡体を製造する際
に、周期律表の第a族金属及び/又は第a族
金属のカルボン酸塩を用いることを特徴とする、
高発泡化されたスチレン―無水マレイン酸共重合
樹脂発泡体の製造方法。
1. When manufacturing a foam by foaming a melt-plasticized styrene-maleic anhydride copolymer resin, a group a metal and/or a carboxylic acid salt of a group a metal of the periodic table is used. and
A method for producing a highly expanded styrene-maleic anhydride copolymer resin foam.
JP10239380A 1980-07-28 1980-07-28 Preparation of thermoplastic resin foam Granted JPS5728138A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10239380A JPS5728138A (en) 1980-07-28 1980-07-28 Preparation of thermoplastic resin foam
US06/724,509 US4596832A (en) 1980-07-28 1985-04-19 Process for producing thermoplastic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10239380A JPS5728138A (en) 1980-07-28 1980-07-28 Preparation of thermoplastic resin foam

Publications (2)

Publication Number Publication Date
JPS5728138A JPS5728138A (en) 1982-02-15
JPH0118092B2 true JPH0118092B2 (en) 1989-04-04

Family

ID=14326195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10239380A Granted JPS5728138A (en) 1980-07-28 1980-07-28 Preparation of thermoplastic resin foam

Country Status (1)

Country Link
JP (1) JPS5728138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730192U (en) * 1993-11-18 1995-06-06 水雲 林 Foldable bicycle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194930A (en) * 1982-05-11 1983-11-14 Dainippon Ink & Chem Inc Production of thermoplastic resin foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730192U (en) * 1993-11-18 1995-06-06 水雲 林 Foldable bicycle

Also Published As

Publication number Publication date
JPS5728138A (en) 1982-02-15

Similar Documents

Publication Publication Date Title
US3808300A (en) Process for the preparation of closed-cellular shaped products of olefin polymers using a mixture of a citric acid salt and a carbonate or bicarbonate as the nucleation agent
US3962154A (en) Method for producing an improved molded thermoplastic article
US4596832A (en) Process for producing thermoplastic resin foam
US5045570A (en) Endothermic blowing agents for surface migration of components in foamed products, compositions and applications
US3810964A (en) Process for extruding a foamed closed-cell polyolefin extrudate substantially free from cell collapse by use of a barrier material
US3950484A (en) Method for injection molding a foamed thermoplastic polymer article substantially free from swirl-patterns in its surface
JPH0386736A (en) Production of foamed polyolefin resin particle
KR910001017B1 (en) Process for making low density chlorinated polyvinyl chloride foam
JPS6245254B2 (en)
US5106534A (en) Endothermic blowing agents compositions and applications
US3466353A (en) Foamed resin extrusion process employing microencapsulated blowing agents
JPH0118092B2 (en)
US4749725A (en) Production process of pre-foamed particles
US4413065A (en) Process for making low density chlorinated polyvinyl chloride foam
US3385804A (en) Foamable polystyrene compositions containing fatty acid amide lubricants
JPH0224857B2 (en)
JP3653319B2 (en) Foamed particles, in-mold molded product thereof, laminate of the molded product and thermosetting resin, and method for producing the laminate
US20150197612A1 (en) Novel Blowing Agents and Process
US4273880A (en) Foamed polyethylene films
US3213043A (en) Method of foaming oxidized polyethylene
JPS58194930A (en) Production of thermoplastic resin foam
JP2020158608A (en) Polylactic resin foam sheet, resin molding, and method for producing polylactic resin foam sheet
US3798188A (en) Expandable polymeric composition
JPS6367494B2 (en)
JPH0219140B2 (en)