JPH01180928A - Manufacture of metal-based composite material - Google Patents

Manufacture of metal-based composite material

Info

Publication number
JPH01180928A
JPH01180928A JP243988A JP243988A JPH01180928A JP H01180928 A JPH01180928 A JP H01180928A JP 243988 A JP243988 A JP 243988A JP 243988 A JP243988 A JP 243988A JP H01180928 A JPH01180928 A JP H01180928A
Authority
JP
Japan
Prior art keywords
preform
water
reinforcing material
organic solvent
fiber volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP243988A
Other languages
Japanese (ja)
Inventor
Yutaka Ishiwatari
裕 石渡
Akinori Nagata
永田 晃則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP243988A priority Critical patent/JPH01180928A/en
Publication of JPH01180928A publication Critical patent/JPH01180928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To improve the quality of the title material at the time of the forming stage of a preform to which the molten metal of matrix metal is infiltrated by spraying specific amounts of water or others a reinforcing material in a form of whisker or inorganic short fiber. CONSTITUTION:The reinforcing material consisting of whisker or inorganic short fiber is sprayed with water or organic solvent, is pressurized and is dried to form a preform. At this time, the water or organic solvent contg. the amounts equivalent to the clearance volume in the reinforcing material in the compressive state at time of the above pressure forming is used. The molten metal of the matrix metal is then pressure-infiltrated to the obtd. preform, by which the metal-based composite material can be obtd.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はマトリクス金属溶湯をプリフォームに含浸させ
ることによって金属基複合材料を製造する方法に係り、
特にプリフォームの形成工程を改良した金属基複合材料
の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a metal matrix composite material by impregnating a preform with a matrix metal molten metal.
In particular, the present invention relates to a method of manufacturing a metal matrix composite material with an improved preform forming process.

(従来の技術) 近年、例えばアルミナ(A、f203)、炭化ケイ素(
S i C)の繊維またはウィスカ等のセラミクス材料
を強化材とし、アルミニウム(Δ1)、マグネシウム(
Mg)合金等の軽合金をマトリクスとした金属基複合材
料が開発され、これらは、軽量で、高強度かつ高弾性率
を有することに加え、耐熱性、耐摩耗性にも優れている
ため、航空機、自動車、FAロボット部品等への適用が
期待されている。
(Prior art) In recent years, for example, alumina (A, f203), silicon carbide (
S i C) fibers or ceramic materials such as whiskers are used as reinforcing materials, and aluminum (Δ1), magnesium (
Metal matrix composite materials with a matrix of light alloys such as Mg) alloys have been developed, and in addition to being lightweight, having high strength and high modulus of elasticity, they also have excellent heat resistance and abrasion resistance. It is expected to be applied to aircraft, automobiles, FA robot parts, etc.

この金属基複合材料の製造方法として種々の方法が考え
られているが、そのうちマトリクス金属溶湯をプリフオ
ームに含浸さぜる溶浸法は大量生産に適した製造方法で
ある。
Various methods have been considered for manufacturing this metal matrix composite material, among which the infiltration method, in which a preform is impregnated with a matrix metal molten metal, is a manufacturing method suitable for mass production.

溶浸払による金属基複合材料の製造方法は、まず強化材
で実製品に近い形状のプリフォーム(m紺予備成形体)
を作り、十分乾燥後、金型内に挿入し、ヒータで予熱後
、マトリクス金属溶湯を注入し、その溶湯をピストンに
より加圧し、プリフォーム内に含浸させ、金型内で加圧
、凝固させることにより金属基複合材料を得る方法であ
る。
The manufacturing method of metal matrix composite material by infiltration and removal begins with the preparation of a preform (m dark blue preform) with a shape close to the actual product using reinforcing material.
After sufficiently drying, insert into the mold, preheat with a heater, inject molten matrix metal, pressurize the molten metal with a piston, impregnate the preform, and pressurize and solidify in the mold. This is a method for obtaining a metal matrix composite material.

この溶浸法にあっては、他の製造方法、例えばマ[〜リ
クス金属溶湯中への繊維の直接添加法等に比べて種々の
利点が得られる。例えば直接添加法では強化材の繊維体
積率が5%程度のものしか得られないのに対し、溶浸法
では約40%の繊維体積率のものを得ることが可能であ
る。また、繊維や・クイスカとマトリクス金属溶湯との
接触時間が短く、溶湯との反応による繊維劣化が少ない
This infiltration method offers various advantages over other manufacturing methods, such as direct addition of fibers into molten matrix metal. For example, with the direct addition method, a reinforcing material with a fiber volume percentage of only about 5% can be obtained, whereas with the infiltration method, it is possible to obtain a reinforcing material with a fiber volume percentage of about 40%. In addition, the contact time between the fibers and the molten matrix metal is short, and there is little fiber deterioration due to reaction with the molten metal.

ところて、プリフオームの成形方法には、特開昭59−
121196号公報で開示されているように、強化材を
予め水または有機溶媒に懸濁さけたスラリーを、減圧、
加圧ろ過する方法や、特開昭61−147824号公報
で開示されているJ、うに強化繊維の10〜20重量%
の水または有機溶媒を噴霧した後、金型内で加圧成形り
る方法等が知られている。
By the way, the preform molding method is disclosed in Japanese Unexamined Patent Application Publication No. 1986-
As disclosed in Japanese Patent No. 121196, a slurry in which a reinforcing material is suspended in water or an organic solvent is heated under reduced pressure.
10 to 20% by weight of sea urchin reinforced fibers using the pressure filtration method, J disclosed in JP-A No. 61-147824;
A method of spraying water or an organic solvent and then press-molding in a mold is known.

(発明が解決しようとげる課題) しかしながら、前者の強化材懸濁スラリーをろ過覆る方
法では、#A紐体積率か高くなると多大なろ過時間を必
要とし、また成形時にプリフォーム内部に残留リ−ろ水
または有機溶媒のすhが多くなり、プリフォームの強度
低下、乾燥工程の長時間化または乾燥時のクラック発生
などの問題があり、予備成形体の製作効率が低い。
(Problems to be Solved by the Invention) However, in the former method of filtering and covering the reinforcing material suspension slurry, a large amount of filtration time is required when the #A string volume ratio becomes high, and there is also a problem that residual leakage may occur inside the preform during molding. This increases the amount of water or organic solvent, leading to problems such as a decrease in the strength of the preform, a prolonged drying process, or the occurrence of cracks during drying, resulting in low production efficiency of the preform.

一方、強化Hに10〜20重量%の水または有機溶媒を
噴霧した後、加圧成形する後との方法では、前者の方法
に比へて成形時間が短縮できるどともに、乾燥時間が短
くてすみ、かつ乾燥時のクラック発生を防止できるが、
得られたプリフォームの加圧面近傍と中心部との繊維体
積率の差が大ぎくなり、均一なプリフォームが作成でき
ず、特に繊維体積率の低いプリフォームを得ることが困
難で、それだ(プ金属基複合材料の品質が低下し、また
利用範囲が制約されるという問題があった。
On the other hand, the method of spraying 10 to 20% by weight of water or organic solvent on reinforced H and then pressure molding can shorten the molding time and shorten the drying time compared to the former method. Although it can prevent cracks from occurring during drying,
The difference in fiber volume percentage between the area near the pressurized surface and the center of the obtained preform becomes large, making it impossible to create a uniform preform, and in particular, it is difficult to obtain a preform with a low fiber volume percentage. (There were problems in that the quality of the metal matrix composite material deteriorated and the range of use was restricted.

本発明はこのような事情に鑑みてなされたもので、繊維
体積率の低いプリフォームが容易に、かつ全体として均
一な繊維体積率の状態で、クラックの発生なく得られ、
金属基複合材料の品質向上および利用範囲の拡大が図れ
る金属基複合材料の製造方法を提供することを目的とづ
る。
The present invention has been made in view of the above circumstances, and it is possible to easily obtain a preform with a low fiber volume percentage, and with a uniform fiber volume percentage as a whole, without the occurrence of cracks.
The purpose of this invention is to provide a method for manufacturing metal matrix composite materials that can improve the quality of metal matrix composite materials and expand the range of their use.

(発明の構成) (課題を解決J−るための手段と作用)前記の目的を達
成でるために、本発明は、無機質知繊紺またはウィスカ
からなる強化材に水または有機溶媒を噴霧して加圧およ
び乾燥することによりプリフォームを形成し、このプリ
フォームにマトリクス金属の溶湯を加圧含浸させて金属
基複合材料を製造する方法において、前記グリフ4−ム
形成の際に強化材に添加する水または有機溶媒の量を、
そのプリフォーム加圧時の圧縮状態下におj−する強化
材内の隙間容積に相当する量に設定したことを特徴とす
る。
(Structure of the Invention) (Means and Effects for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides a method of spraying water or an organic solvent onto a reinforcing material made of inorganic fibers or whiskers. In a method of manufacturing a metal matrix composite material by forming a preform by pressurizing and drying and impregnating the preform with a molten matrix metal under pressure, the reinforcing material is added to the reinforcing material during the formation of the glyph 4-me. the amount of water or organic solvent to
It is characterized in that the amount is set to correspond to the volume of the gap in the reinforcing material under the compressed state when the preform is pressurized.

このような本発明の方法は以下の知見に基づいてなされ
たものである。即ち、発明者においては、プリフォーム
形成時に強化材に添加する水または有機溶媒の量が少な
い場合のクラック発生原因について研究を行なってきた
。その結果、プリフォームの圧縮成形工程において、強
化材中に噴霧される水または有機溶媒の機能として、次
のことが明らかとなった。
Such a method of the present invention was made based on the following findings. That is, the inventors have been conducting research on the causes of cracks occurring when the amount of water or organic solvent added to the reinforcing material during preform formation is small. As a result, the following was clarified as a function of water or organic solvent sprayed into the reinforcing material during the preform compression molding process.

(1)水また有機溶媒は、圧縮成形時にプリフォームの
プレス面にかかる圧力をプリフォーム内部に伝達するた
めの圧力媒体となる。
(1) Water or an organic solvent serves as a pressure medium for transmitting the pressure applied to the press surface of the preform to the inside of the preform during compression molding.

(2)水または有機溶媒は、プリフォーム圧縮成形時の
強化材同士または強化材ど金型との間の接触部の摩擦を
減少させ、これによりプリフォーム収縮時の強化材の動
きを円滑にし、プリフ71−ム加圧による強化月のたわ
みを小さくする。したがって、プリフォームの除圧時に
生じるスプリングバック量は添加する水または有機溶媒
の量と逆比例的な関係となり、その添加量が少ない場合
にはスプリングバック量が多く、不均一となる。このス
プリングバック量が大きいと、プリフォーム表面にクラ
ック等の欠陥が発生することになる。
(2) Water or organic solvent reduces the friction at the contact points between the reinforcing materials or between the reinforcing materials and the mold during preform compression molding, thereby smoothing the movement of the reinforcing materials during preform contraction. , the deflection of the reinforcing moon due to pressurization of the prism 71-m is reduced. Therefore, the amount of springback that occurs when the preform is depressurized is inversely proportional to the amount of water or organic solvent added, and when the amount added is small, the amount of springback is large and becomes non-uniform. If the amount of springback is large, defects such as cracks will occur on the surface of the preform.

第1図はこのような水または有機溶媒の機能を説明する
ためにプリフォーム内部を拡大して示した模式図で、同
図(a)は、水または有機溶媒の添加量が少ない場合の
もの、また同図(b)は添加量が多い場合のものである
Figure 1 is an enlarged schematic diagram of the inside of the preform to explain the function of water or organic solvent, and Figure (a) shows the case where the amount of water or organic solvent added is small. , and (b) in the same figure shows the case where the amount added is large.

これらの図に示すように、繊維やウィスカ等の強化材1
間の隙間に水や有機溶媒(以下、溶媒という)2が介在
する。
As shown in these figures, reinforcing materials such as fibers and whiskers 1
Water or an organic solvent (hereinafter referred to as solvent) 2 is present in the gap between them.

溶媒2の添加量が少ない場合には、第1図(a)に示ず
ように、溶媒2は表面張力によって強化材1間の隙間に
点在状態で分布し、プリフォーム内には多数の空隙3が
存在する。したがって、溶媒2の圧力媒体としての機能
が十分発揮できず、圧縮時の加圧力がプリフォーム内部
まで十分に伝達されない。その結果、得られるプリフォ
ームの加圧方向の繊維体積率は加圧面近傍で大きく、逆
に中央部で著しく小さくなる。さらに強化材1同士また
は強化材と金型との間の潤滑も不十分となり、スプリン
グバック量が大きく、かつ不均一になるため、除圧時に
クラックが発生し、良好なプリフォームが形成されない
When the amount of solvent 2 added is small, as shown in Figure 1(a), the solvent 2 is distributed in a scattered manner in the gaps between the reinforcing materials 1 due to surface tension, and there are many particles inside the preform. A void 3 exists. Therefore, the function of the solvent 2 as a pressure medium cannot be fully exhibited, and the pressurizing force during compression is not sufficiently transmitted to the inside of the preform. As a result, the fiber volume fraction in the pressing direction of the obtained preform is large in the vicinity of the pressing surface, and conversely becomes significantly small in the central portion. Furthermore, the lubrication between the reinforcing materials 1 or between the reinforcing materials and the mold becomes insufficient, and the amount of springback becomes large and uneven, which causes cracks to occur during pressure removal, making it impossible to form a good preform.

これに対し、溶媒2の添加量が多い場合には、第1図(
b)に示すように、強化材1間に溶媒2が均一かつ十分
に分散する。これにより、プリフォーム表面に作用する
圧力は、強化材1間の溶媒2によって、プリフォーム内
部へ十分に伝達され、圧力均一化によって繊維体積率の
分布を一様にすることができる。また、強化材1同士の
界面および強化材と金型との接触界面の摩擦も小さくな
り、スプリングバック量を低減、均一化でさるため、除
圧時のプリフォームの破損、欠陥発生等が防1:される
On the other hand, when the amount of solvent 2 added is large, Figure 1 (
As shown in b), the solvent 2 is uniformly and sufficiently dispersed between the reinforcing materials 1. Thereby, the pressure acting on the preform surface is sufficiently transmitted to the inside of the preform by the solvent 2 between the reinforcing materials 1, and the distribution of the fiber volume fraction can be made uniform by equalizing the pressure. In addition, the friction at the interface between the reinforcing materials 1 and the contact interface between the reinforcing material and the mold is reduced, reducing the amount of springback and making it more uniform, which prevents damage to the preform and the occurrence of defects when pressure is removed. 1: To be done.

次に溶媒の最適添加量について考察する。繊維体積率が
高くなるにつれてプリフォーム中の強化材が占める割合
は高くなり、また除圧時に大きなスプリングバック量が
生じるためプリフォーム加圧成形時の圧縮率を大ぎくと
ることを考慮すると、溶媒保持用のI!i維間の隙間は
繊維体積率が高い程減少する。
Next, the optimum amount of solvent to be added will be considered. As the fiber volume percentage increases, the proportion of reinforcing material in the preform increases, and a large amount of springback occurs when the pressure is removed, which increases the compression ratio during pressure molding of the preform. I for retention! The gap between the i-fibers decreases as the fiber volume fraction increases.

したがって、溶媒添加量の最適範囲は除圧時のスプリン
グバック量を見込み、その分だけ所望プリフォーム高さ
よりも多く圧縮した場合の繊維体積以外の部分、即ち水
が侵入する空間部の体積にほぼ等しい範囲で設定するこ
とが望ましい。これにより、加圧時においては繊維間は
水でほとんど充填されている状態となり、プリフオーム
に加わる圧力は非常に良く伝達されることになる。
Therefore, the optimal range for the amount of solvent added is based on the amount of springback when the pressure is removed, and is approximately equal to the volume of the part other than the fiber volume when the preform is compressed to an amount higher than the desired preform height, that is, the volume of the space where water enters. It is desirable to set them within the same range. As a result, during pressurization, the spaces between the fibers are almost filled with water, and the pressure applied to the preform is transmitted very well.

なお、溶媒の添加量が多過ぎ゛ると、溶媒噴霧中に強化
材が凝集して粒状化し、強化材の均一な微細分散が行な
えなくなる。
Note that if the amount of solvent added is too large, the reinforcing material will aggregate and become granular during solvent spraying, making it impossible to uniformly and finely disperse the reinforcing material.

具体的には、強化材1への溶媒添加量は、第2図に示す
ように、プリフォームの繊維体積率を横軸にとり、溶媒
の添加率を縦軸にとったグラフ上で、繊維体積率が15
%のときに添加率が100〜130%の範囲と、繊維体
積率が30%のときに添加率が40〜70%の範囲とに
収容される帯状領域内およびぞの延長領域内(仮想線の
領域)内、望ましくは繊維体積率が15%のときに添加
率が100〜130%、繊維体積率が30%のときに添
加率が40〜60%の範囲(斜線の領域)内である。
Specifically, the amount of solvent added to the reinforcing material 1 is determined by the fiber volume on a graph with the fiber volume ratio of the preform on the horizontal axis and the solvent addition rate on the vertical axis, as shown in Figure 2. rate is 15
%, the addition rate is in the range of 100 to 130%, and the addition rate is in the range of 40 to 70% when the fiber volume percentage is 30%. The addition rate is preferably within the range of 100 to 130% when the fiber volume percentage is 15%, and 40 to 60% when the fiber volume percentage is 30% (shaded area). .

この範囲における溶媒添加率に設定してプリフォーム成
形を行なえば、第1図(b)に示すように強化材1間の
隙間に溶媒2が十分に介在し、プリフォームの加圧成形
工程での加圧面と内部との繊維体積率が10%程度に収
まる。即ち、プリフォーム内の繊維体積率の分布が均一
になり、その結果低い繊維体積率を有するプリフォーム
や高さの高いプリフォームでも、クラック発生等のない
高品質のものとして成形することができ、ひいては金属
基複合材料製品の品質向上、多様化等が図れるようにな
る。
If the preform molding is performed with the solvent addition rate set within this range, the solvent 2 will be sufficiently present in the gaps between the reinforcing materials 1, as shown in Figure 1(b), and the preform will be formed in the pressure molding process. The fiber volume ratio between the pressurized surface and the inside is about 10%. In other words, the distribution of the fiber volume percentage within the preform becomes uniform, and as a result, even preforms with a low fiber volume percentage or high height can be molded into high quality products without cracking. In turn, it will be possible to improve the quality and diversify metal matrix composite material products.

(実施例) 以下、本発明の一実施例を第3図〜第5図を参照して説
明する。
(Example) An example of the present invention will be described below with reference to FIGS. 3 to 5.

まず第3図(a)〜(d)によってプリフォームの成形
工程を説明する。
First, the preform molding process will be explained with reference to FIGS. 3(a) to 3(d).

強化材1を任意量秤量後、撹f$ IN 4 r撹拌し
ながら溶媒2を噴霧する(同図(a))。この時、噴霧
する溶媒2の量は、成形するプリフォームの繊維体積率
や、強化材1の材質、アスペクト比に応じて設定する。
After weighing an arbitrary amount of the reinforcing material 1, the solvent 2 is sprayed while stirring (FIG. 4(a)). At this time, the amount of the solvent 2 to be sprayed is set depending on the fiber volume ratio of the preform to be molded, the material of the reinforcing material 1, and the aspect ratio.

次に均一かつ微細に強化材1を分布させるため、所定メ
ツシュのふるい5にか(プ、凝集した塊状の強化材を除
去覆る(同図(b))。
Next, in order to uniformly and finely distribute the reinforcing material 1, it is covered with a sieve 5 having a predetermined mesh to remove aggregated lump-like reinforcing material (FIG. 2(b)).

そして、均一化した強化材1の湿潤体1aを金型6に収
容し、ピストン7.8で所定用法まで加圧する(同図(
C))。この加圧状態で、ピストン7.8の変位が一定
となるまで保持した後、離形し、乾燥してプリフォーム
9を得る(同図(d))。
Then, the homogenized wetted body 1a of the reinforcing material 1 is placed in a mold 6, and pressurized to a predetermined usage level with a piston 7.8 (see FIG.
C)). This pressurized state is maintained until the displacement of the piston 7.8 becomes constant, and then the mold is released and dried to obtain a preform 9 (FIG. 4(d)).

次に第4図(a)〜(d)によって溶浸]ニ稈を説明す
る。
Next, the infiltrated culm will be explained with reference to FIGS. 4(a) to 4(d).

前記のブリフオーム成形T稈にJζり得た実製品に近い
形状のプリフォーム9く同図(a))を、十分乾燥後、
金型10内に挿入し、ヒータ11で゛予熱する(同図(
b))。この後、金型10内に71〜リクス金属溶湯1
2を注入し、ピストン13で溶湯加圧を行ない、プリフ
オーム9に加圧含浸ざUる(斜線部分9aは初期含浸部
分を示す。)しかして金型11内での凝固品を離形させ
、余分な71ヘリクス金属部分を切断除去等することに
より、マトリクス金属と強化材との金属基複合材料14
を1qる(同図(d))。
After sufficiently drying the preform 9 (Fig. 9(a)), which has a shape close to the actual product obtained from the above-mentioned Briform molded T culm,
Insert it into the mold 10 and preheat it with the heater 11 (see the same figure).
b)). After this, molten metal 1 to 71 is placed in the mold 10.
2 is injected, the molten metal is pressurized by the piston 13, and the preform 9 is impregnated under pressure (the shaded area 9a indicates the initial impregnation area).The solidified product in the mold 11 is then released, By cutting and removing the excess 71 helix metal parts, a metal matrix composite material 14 of matrix metal and reinforcing material is obtained.
1q ((d) in the same figure).

強化材1としての無機質短繊維またはウィスカには、炭
素(C)、炭化ケイ素(SiC)、窒化ケイ素く513
N4)、アルミナ(A1203)、ホウ化ヂタン(Ti
B2)、またはヂタン酸ノノリウム(K2O・r)T 
i 02 ) ’F;−の単体、混合体もしくはこれら
を主体どする各種混合材料を使用覆ることができる。
The inorganic short fibers or whiskers as the reinforcing material 1 include carbon (C), silicon carbide (SiC), and silicon nitride.
N4), alumina (A1203), titanium boride (Ti
B2), or nonolium ditanate (K2O・r)T
i 02 ) 'F;- can be used alone, in mixtures, or in various mixed materials mainly composed of these.

また、71ヘリクス金属としてはアルミニウム(、’l
)、マグネシウム(Mg)またはこれらの 。
In addition, the 71 helix metal is aluminum (,'l
), magnesium (Mg) or these.

合金、その他の軽金属もしくは合金が適用できる。Alloys, other light metals or alloys are applicable.

〈実施例1〉 強化材1としてSiCウィスカ(長さ10〜50μ、径
0.05〜0.2μ)を使用し、これに溶媒として水を
添加率100%で噴霧し、第2図に示す方法で高さ10
0 an、直径100#の円柱状のプリフォームを作成
した。ふるいとしては50メツシユのものを用い、加圧
力は10Kg/ciに設定し、ブリフΔ−ムの繊維体積
率は全体とし−C15%に設定した。
<Example 1> SiC whiskers (length 10 to 50 μm, diameter 0.05 to 0.2 μm) were used as the reinforcing material 1, and water was sprayed thereon as a solvent at an addition rate of 100%, as shown in Fig. 2. height 10 in the way
A cylindrical preform with a diameter of 0 an and a diameter of 100# was prepared. A 50 mesh sieve was used, the pressing force was set at 10 kg/ci, and the fiber volume fraction of the brief Δ-me was set at -C 15% as a whole.

この結果、第5図に示すように、プリフォームの一端面
(一方の加圧面)側から他端面(他方の加圧面)に向っ
て数個所■〜■の繊維体積率を調べたところ、加圧面に
最も近い点■、■の繊維体積率は約15.5%であり、
中心部■の繊維体積率は約14.5%であり、その差は
10%以下であった。
As a result, as shown in Fig. 5, we investigated the fiber volume percentages at several locations ■ to ■ from one end surface (one pressure surface) to the other end surface (the other pressure surface) of the preform. The fiber volume percentage at points ■ and ■ closest to the pressure surface is approximately 15.5%,
The fiber volume percentage in the center part (■) was approximately 14.5%, and the difference therebetween was less than 10%.

この場合のクラック発生率は下記の第1表に示づように
、5%であり、殆ど割れのない良好なプリフォームが形
成できることが認められた。
The crack occurrence rate in this case was 5%, as shown in Table 1 below, and it was confirmed that a good preform with almost no cracks could be formed.

そして、このようなプリフォームを用い、マトリクス金
属としてA6061△1合金を第3図に示す加圧溶浸法
で金属基複合材料を製造したところ、強化材が均一に配
置された良質の製品が1qられた。
Using such a preform, a metal matrix composite material was manufactured using A6061Δ1 alloy as a matrix metal by the pressure infiltration method shown in Figure 3, and a high-quality product with uniform reinforcement was obtained. I was given 1q.

〈実施例2〉 水の添加率を130%とし、その他の条件は実施例1と
同様にして全体の繊維体積率が15%のプリフォームを
作成した。
<Example 2> A preform with a total fiber volume percentage of 15% was produced in the same manner as in Example 1 except that the water addition rate was 130%.

この場合、第5図に示すように、プリフォームの加圧面
に最も近い点のI紐体積率は前記同様に約15.5%、
中心部のぞれは約14.5%であり、その差は10%以
下であった。
In this case, as shown in FIG. 5, the I string volume percentage at the point closest to the pressurizing surface of the preform is about 15.5%, as described above.
Each center portion was about 14.5%, and the difference was less than 10%.

クラック発生率は下記の第1表に示すように、5%であ
り、この場合にも実施例1と同様の効宋が認められた。
As shown in Table 1 below, the crack occurrence rate was 5%, and the same effect as in Example 1 was observed in this case as well.

〈比較例1〉 水の添加率を80%とし、その他の条件は実施例1と略
同様にして全体の繊維体積率が15%のプリフォームを
作成した。
<Comparative Example 1> A preform having a total fiber volume ratio of 15% was prepared using substantially the same conditions as in Example 1 except that the water addition rate was 80%.

この場合、第5図に示すように、プリフォームの加圧面
に最も近い点の繊維体積率は約18%と高く、中心部の
それは約11%と低く、その差は40%を超えた。
In this case, as shown in FIG. 5, the fiber volume percentage at the point closest to the pressurizing surface of the preform was high at about 18%, and that at the center was low at about 11%, the difference being over 40%.

クラック発生率は下記の第1表に示すように80%もあ
り、割れの発生率が高い。このようなプリフォームを用
いて金属基複合材料を製造した場合には、プリフォーム
の割れに相当する部分がマトリクス金属のみとなり、繊
維強化の効果が減少する。
The crack occurrence rate was as high as 80% as shown in Table 1 below, indicating a high crack occurrence rate. When a metal matrix composite material is manufactured using such a preform, the portion corresponding to the crack in the preform becomes only the matrix metal, and the effect of fiber reinforcement is reduced.

〈比較例2〉 実施例1と同様のSICウィスカに添加率140%で水
を噴霧した。この場合には、SICウィスカの凝集塊の
発生量が95%以上となり、ろ過困難となって実用性が
低下する。
<Comparative Example 2> SIC whiskers similar to those in Example 1 were sprayed with water at an addition rate of 140%. In this case, the amount of SIC whisker aggregates generated is 95% or more, making filtration difficult and reducing practicality.

〈実施例3〉 水の添加率を50%とし、その他の条件は実施例1と略
同様にして繊維繊維体積率が25%のブリフオームを作
成した。
<Example 3> A brifform having a fiber volume percentage of 25% was prepared in substantially the same manner as in Example 1 except that the water addition rate was 50%.

この場合、第5図に示すように、プリフォームの加圧面
に最も近い点の繊維体積率は約26%、中心部のそれは
約24%であり、その差は10%以下であった。
In this case, as shown in FIG. 5, the fiber volume percentage at the point closest to the pressurizing surface of the preform was about 26%, and that at the center was about 24%, with a difference of less than 10%.

クラック発生率は下記の第1表に示すように10%であ
り、この場合にも前記各実施例と同様の効果が認められ
た。
The crack occurrence rate was 10% as shown in Table 1 below, and the same effects as in each of the aforementioned Examples were observed in this case as well.

〈実施例4〉 水の添加率を80%とし、その他の条件は実施例1と略
同様にして繊維繊維体積率が25%のプリフォームを作
成した。
<Example 4> A preform having a fiber volume percentage of 25% was prepared in substantially the same manner as in Example 1 except that the water addition rate was 80%.

この場合、第5図に示すJ:うに、プリフォームの加圧
面に最も近い点のm紐体積率は約26%、中心部のそれ
は約24%であり、その差は10%以下であった。
In this case, as shown in Figure 5, the m string volume fraction at the point closest to the pressure surface of the preform was approximately 26%, and that at the center was approximately 24%, with a difference of less than 10%. .

クラック発生率は下記の第1表に示すように5%であり
、この場合にも前記各実施例と同様の効果が認められた
The crack occurrence rate was 5% as shown in Table 1 below, and the same effects as in the above-mentioned Examples were observed in this case as well.

〈比較例3〉 水の添加率を40%とし、その他の条件は実施例1と略
同様にして全体の繊維体積率が25%のプリフォームを
作成した。
<Comparative Example 3> A preform having a total fiber volume percentage of 25% was produced using substantially the same conditions as in Example 1 except that the water addition rate was 40%.

この場合、第5図に示ずように、プリフォームの加圧面
に最も近い点の繊維体積率は約32%と高く、中心部の
それは約18%と低く、その差は50%を超えた。
In this case, as shown in Figure 5, the fiber volume percentage at the point closest to the pressurized surface of the preform was high at about 32%, and that at the center was low at about 18%, the difference being over 50%. .

クラック発生率は下記の第1表に示すように75%もあ
り、割れの発生率が高い。このようなプリフォームを用
いて金属基複合材料を製造した場合には、プリフォーム
の割れに相当する部分がマトリクス金属のみとなり、繊
維強化の効果が減少ターる。
The crack occurrence rate was as high as 75% as shown in Table 1 below, indicating a high crack occurrence rate. When a metal matrix composite material is manufactured using such a preform, the portion corresponding to the crack in the preform becomes only the matrix metal, and the effect of fiber reinforcement is reduced.

〈比較例4〉 実施例1と同様のSiCウィスカに添加率90%で水を
噴霧した。この場合には、加圧成形時にSICウィスカ
が粘土状となり、離型が困難となるだけでなく、離型後
、プリフォームの流動性が高く、変形する。
<Comparative Example 4> Water was sprayed onto the same SiC whiskers as in Example 1 at an addition rate of 90%. In this case, the SIC whiskers become clay-like during pressure molding, making it difficult to release from the mold, and after release, the preform has high fluidity and deforms.

〈実施例5〉 水の添加率を40%とし、その他の条件は実施例1と略
同様にして繊維繊維体積率が30%のプリフォームを作
成した。
<Example 5> A preform having a fiber volume percentage of 30% was prepared using substantially the same conditions as in Example 1 except that the water addition rate was 40%.

この場合、第5図に示すように、プリフォームの加圧面
に最も近い点の繊維体積率は約32%、中心部のそれは
約28%であり、その差は10%以下であった。
In this case, as shown in FIG. 5, the fiber volume percentage at the point closest to the pressurized surface of the preform was about 32%, and that at the center was about 28%, with a difference of less than 10%.

クラック発生率は下記の第1表に示すように5%であり
、この場合にも前記各実施例と同様の効果が認められた
The crack occurrence rate was 5% as shown in Table 1 below, and the same effects as in the above-mentioned Examples were observed in this case as well.

〈実施例6〉 水の添加率を60%とし、その他の条件は実施例1と略
同様にして繊維繊維体積率が30%のプリフォームを作
成した。
<Example 6> A preform having a fiber volume percentage of 30% was prepared in substantially the same manner as in Example 1 except that the water addition rate was 60%.

この場合、第5図に示すように、プリフォームの加圧面
に最も近い点の繊維体積率は約32%、中心部のそれは
約28%であり、その差は10%以下であった。
In this case, as shown in FIG. 5, the fiber volume percentage at the point closest to the pressurized surface of the preform was about 32%, and that at the center was about 28%, with a difference of less than 10%.

クラック発生率は下記の第1表に示すように5%であり
、この場合にも前記各実施例と同様の効果が認められた
The crack occurrence rate was 5% as shown in Table 1 below, and the same effects as in the above-mentioned Examples were observed in this case as well.

〈比較例5〉 水の添加率を30%とし、その他の条件は実施例1と略
同様にして全体の繊維体積率が30%のプリフォームを
作成した。
<Comparative Example 5> A preform having a total fiber volume percentage of 30% was prepared using substantially the same conditions as in Example 1 except that the water addition rate was 30%.

この場合、第5図に示すように、プリフォームのJIG
圧面に最も近い点のX&維に積率は約37%と高く、中
心部のそれは約26%と低く、その差は35%を超えた
In this case, as shown in FIG.
The product fraction of the X&fibre at the point closest to the pressure surface was high at about 37%, and that at the center was low at about 26%, with a difference of more than 35%.

クラック発生率は下記の第1表に示すように95%もあ
り、割れの発生率が高い。このようなプリフォームを用
いて金属基複合材料を製造した場合には、プリフォーム
の割れに相当する部分がマトリクス金属のみとなり、繊
維強化の効果が減少ηる。
The crack occurrence rate was as high as 95% as shown in Table 1 below, indicating a high crack occurrence rate. When a metal matrix composite material is manufactured using such a preform, the portion corresponding to the crack in the preform becomes only the matrix metal, and the effect of fiber reinforcement is reduced.

〈比較例6〉 実施例1と同様のSiCウィスカに添加率70%で水を
噴霧した。この場合には、加圧成形時にSiCウィスノ
Jが粘土状となり、離型が困難となるだ()てなく、離
型後、プリフォームの流動性が高く、変形J−る。
<Comparative Example 6> Water was sprayed onto the same SiC whiskers as in Example 1 at an addition rate of 70%. In this case, SiC Wisno J becomes clay-like during pressure molding, making it difficult to release from the mold, and after release, the preform has high fluidity and deforms.

第1表 以上の実施例1〜6によれば、プリフォームの繊維体積
率の差は10%以内となり、Il雑重蚤の20%程度し
か添加しない従来の方法(比較例1゜3.5)と比べて
圧力伝達媒体である溶媒量が最適となり、プリフォーム
の繊維体積率が均一化し、より高さの高いプリフォーム
や、より繊維体積率の小さいプリフオームを高品質で得
られるようになり、従来見られたプリフォーム中央部の
強度低下や離形時の破断等が解消できる。また、比較例
2.4.6で見られたような強化材の凝縮や変形も生し
ない。
According to Examples 1 to 6 shown in Table 1 and above, the difference in the fiber volume percentage of the preforms is within 10%, and the conventional method of adding only about 20% of the Il miscellaneous weight (Comparative Example 1゜3.5 ), the amount of solvent that is the pressure transmission medium is optimized, the fiber volume ratio of the preform is made uniform, and it is possible to obtain high quality preforms with a higher height and a smaller fiber volume ratio. , it is possible to eliminate problems such as a decrease in strength at the center of the preform and breakage during demolding, which have been observed in the past. Further, no condensation or deformation of the reinforcing material occurs as seen in Comparative Example 2.4.6.

なお、前記実施例1〜6では、強化材をSiCウィスカ
、マトリクス金属を△で合金、溶媒を水にした場合につ
いて述べたが、強化材を他の無機知繊維またはウィスカ
とし、マトリクス金属をMQ合金とし、あるいは強化材
を有機溶媒とした場合についても、前記実施例と略同様
の効果が得られる。
In Examples 1 to 6, the reinforcing material was SiC whiskers, the matrix metal was alloyed with Δ, and the solvent was water. However, the reinforcing material was other inorganic fibers or whiskers, and the matrix metal was MQ. Even when an alloy is used or an organic solvent is used as the reinforcing material, substantially the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、プリ77t −ム加圧
形成時の空隙を予め考慮して、最適な水または有機溶媒
を噴霧することにより、従来方法に比べてプリフォーム
内の繊維体積率の分布が均一になり、その結果、従来方
法では成形できなかった低い繊維体積率を有するプリフ
ォームや、背の高いプリフォームを、クラック等の発生
なく形成でき、高品質かつ利用範囲の広い金属基複合材
料が製造できるようになるという効果が奏される。
As described above, according to the present invention, the fiber volume in the preform is increased compared to the conventional method by spraying the optimum water or organic solvent, taking into consideration the voids in advance when forming the preform under pressure. As a result, preforms with a low fiber volume ratio and tall preforms that could not be molded using conventional methods can be formed without cracking, resulting in high quality and a wide range of applications. The effect is that a metal matrix composite material can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の詳細な説明するための
プリフォーム内部の模式図、第2図は本発明による水ま
たは有機溶媒の添加ωを示すグラフ、第3図(a)〜(
d>および第4図(a)〜(d)は本発明の一実施例を
示す工程図、第5図は前記実施例の効果を示すグラフで
ある。 1・・・強化材、2・・・溶媒(水、有機溶媒)、9・
・・プリフォーム。 績緯体相圭C7,) 第2図 ■■■■■ う制定装置 第5図 (a)           (b) 第3図 、i。 第4図
Figures 1 (a) and (b) are schematic diagrams of the inside of the preform for detailed explanation of the present invention, Figure 2 is a graph showing the addition ω of water or organic solvent according to the present invention, and Figure 3 (a). )~(
d> and FIGS. 4(a) to 4(d) are process diagrams showing one embodiment of the present invention, and FIG. 5 is a graph showing the effects of the embodiment. 1... Reinforcing material, 2... Solvent (water, organic solvent), 9.
··preform. Figure 2 ■■■■■ Enactment device Figure 5 (a) (b) Figure 3, i. Figure 4

Claims (1)

【特許請求の範囲】 1、無機質短繊維またはウィスカからなる強化材に水ま
たは有機溶媒を噴霧して加圧および乾燥することにより
プリフォームを形成し、このプリフォームにマトリクス
金属の溶湯を加圧含浸させて金属基複合材料を製造する
方法において、前記プリフォーム形成の際に強化材に添
加する水または有機溶媒の量を、そのプリフォーム加圧
形成時の圧縮状態下における強化材内の隙間容積に相当
する量に設定したことを特徴とする金属基複合材料の製
造方法。 2、水または有機溶媒の添加量は、プリフオームの繊維
体積率を横軸にとり水または有機溶媒の添加率を縦軸に
とったグラフ上で、繊維体積率が15%のときに添加率
が100〜130%の範囲と、繊維体積率が30%のと
きに添加率が40〜70%の範囲とに収容される帯状領
域内およびその延長領域内で設定する請求項1記載の金
属基複合材料の製造方法。
[Claims] 1. A preform is formed by spraying water or an organic solvent onto a reinforcing material made of inorganic short fibers or whiskers, pressurizing and drying the same, and pressurizing a molten matrix metal onto this preform. In the method of manufacturing a metal matrix composite material by impregnation, the amount of water or organic solvent added to the reinforcing material during the preform formation is adjusted to reduce the amount of water or organic solvent added to the reinforcing material to reduce the gap in the reinforcing material under the compressed state during the pressurized forming of the preform. A method for manufacturing a metal matrix composite material, characterized in that the amount is set to correspond to the volume. 2. The amount of water or organic solvent added is determined on a graph where the horizontal axis is the fiber volume fraction of the preform and the vertical axis is the addition rate of water or organic solvent. When the fiber volume fraction is 15%, the addition rate is 100%. The metal matrix composite material according to claim 1, wherein the metal matrix composite material is set within a band-shaped region and an extension region thereof, which are accommodated in a range of 130% to 130% and a range of 40 to 70% when the fiber volume percentage is 30%. manufacturing method.
JP243988A 1988-01-11 1988-01-11 Manufacture of metal-based composite material Pending JPH01180928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP243988A JPH01180928A (en) 1988-01-11 1988-01-11 Manufacture of metal-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP243988A JPH01180928A (en) 1988-01-11 1988-01-11 Manufacture of metal-based composite material

Publications (1)

Publication Number Publication Date
JPH01180928A true JPH01180928A (en) 1989-07-18

Family

ID=11529306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP243988A Pending JPH01180928A (en) 1988-01-11 1988-01-11 Manufacture of metal-based composite material

Country Status (1)

Country Link
JP (1) JPH01180928A (en)

Similar Documents

Publication Publication Date Title
US4874564A (en) Molding process and device therefor
US4995444A (en) Method for producing metal or alloy casting composites reinforced with fibrous or particulate materials
US4158687A (en) Method for producing heat-resistant composite materials reinforced with continuous silicon carbide fibers
CN107000249A (en) Ceramic preform and method
NO172449B (en) METAL MATRIX COMPOSITION WITH PERSONALLY ORIENTED, INCORPORATED, INORGANIC OXYGEN FIBERS, PRELAGED BODY, AND PROCEDURES FOR PRODUCING THESE
JPH0747986B2 (en) Reinforced piston and manufacturing method thereof
US5791397A (en) Processes for producing Mg-based composite materials
US10830296B2 (en) Ceramic preform and method
JP3547078B2 (en) Manufacturing method of cylinder block
JP2004515647A (en) Ceramic oxide preforms, metal matrix composites, and methods of making them and disc brakes
US6571858B2 (en) Method of manufacturing preform for compounding use
US4320079A (en) Method for making shaped carbon fiber structures
US8906289B2 (en) Method for manufacturing friction disks with ceramic materials with improved friction layer
JPH01180928A (en) Manufacture of metal-based composite material
JP2504199B2 (en) Method for producing fiber-reinforced metal composite material
US6183876B1 (en) Preform and production method therefor
JP2000046078A (en) Backing plate for brake pad and manufacture of backing plate
JPS6187835A (en) Production of fiber reinforced metallic material
JP4048581B2 (en) Method for producing aluminum matrix composite material
JPH02259031A (en) Manufacture of reinforced metallic composite material
JPH0564692B2 (en)
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JPH02301533A (en) Manufacture of composite material
JP3619258B2 (en) Manufacturing method of composite reinforcement for functionally graded metal matrix composite
JP3547077B2 (en) Method of manufacturing preform for metal matrix composite