JPH0118034B2 - - Google Patents

Info

Publication number
JPH0118034B2
JPH0118034B2 JP57202409A JP20240982A JPH0118034B2 JP H0118034 B2 JPH0118034 B2 JP H0118034B2 JP 57202409 A JP57202409 A JP 57202409A JP 20240982 A JP20240982 A JP 20240982A JP H0118034 B2 JPH0118034 B2 JP H0118034B2
Authority
JP
Japan
Prior art keywords
weight
cement
alc
raw material
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57202409A
Other languages
Japanese (ja)
Other versions
JPS5992964A (en
Inventor
Isao Shiozaki
Maho Nakatsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP20240982A priority Critical patent/JPS5992964A/en
Publication of JPS5992964A publication Critical patent/JPS5992964A/en
Publication of JPH0118034B2 publication Critical patent/JPH0118034B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水蒸気養生軽量気泡コンクリート(以
下ALCと略す)の製造法の改良に関するもので
ある。 ALCは、珪砂、珪石などの珪酸質原料と石灰
及びセメントの石灰質原料を粉砕したものに、水
を適当な割合に混合し、次いでアルミニウム等の
金属粉末を加えて撹拌し、あるいは空気を混入す
るなどの方法によつて気泡を含有せしめたのち、
凝固半硬化させ更にオートクレーブに移して高温
高圧水蒸気養生を行つて製造されている。 このようにして製造されるALCは建築用材料
として使用可能な物理的性能を備えていることが
必要である。このALCの物理的性能改善の手段
として、過去に我々はALCの主要である珪酸質
原料と石灰及びセメントよりなる石灰質原料のス
ラリー中に、その全固形分に対し約0.5重量%の
水酸化アルカリを添加して該スラリーが正常な気
泡を生成するよう発泡調整を試みたことがある。 ところが、このアルカリの添加は確かに発泡調
整には効果的であつたが、反面製品の湿乾燥収縮
率等を悪化させるという結果に終つた。 この結果から、主要原料であるCaとSiO2は、
CaO/SiO2=0.4〜0.8の比率が好ましいため、そ
の使用量も多い珪酸質原料中に含まれるアルカリ
分(Na2O+0.658K2O)がALCの物理的性能に対
して影響を及ぼすか否かの検討をおこなつたとこ
ろ、所定量以上のアルカリの存在はALCの強度
を低下させるということを解明した。 今日では、既に珪酸質原料中のアルカリ分は1
重量%以下好ましくは0.5重量%以下のものを使
用することは公知である。 しかし上記のようにCaO/SiO2の比率と珪酸
質原料中のアルカリ分を規制しても尚圧縮強度や
湿乾収縮率が不充分であるため現在では、珪酸カ
ルシウム水和物の結晶化性改良のため鉱物性のア
ルミナ物質例えばカリオン、高炉水砕スラグ等を
原料の全固形物に対して内割りで2〜4重量%程
度添加することが行われている。 このカオリン等の添加によれば一応圧縮強度等
は向上するが、発泡段階で気泡の乱れが起り、そ
れに起因するためか製品の吸水率が高くなるとい
う欠点があり、コスト高にもなるという問題点が
ある。これはカオリン等は良質のものは得難いと
いうことも一因であろう。 またALCの圧縮強度を改善するため、(1)モル
タル混合物に硫酸カルシウムをSO3として2.5〜
3.5重量%添加する蒸気養生のガスコンクリート
の製造法(特公昭47−15359号公報)、(2)主要原料
混合物に硫酸カルシウムを6.5〜12重量%添加す
るALCの製造法(特公昭55−27030号公報)等の
提案がある。 しかしながら本願出願人が種々検討したところ
によると、上記2つの方法においても原料構成物
質が増えるため、実操業ではその管理が煩雑とな
る等の問題がある。 本発明は、発泡の際に気泡の乱れを生ずること
なく、実操業の管理も容易で、特に湿乾収縮率を
従来よりも小さく出来、圧縮強度、全面吸水率も
共に改善できるALCの製造法を提供することを
課題とする。 この課題を達成するため、従来はセメント製造
業者から出荷されるセメントについて、含有率の
表示の無かつたセメント中のアルカリ分
(Na2SO4あるいはK2SO4として含有されている)
について着目し、アルカリ分の変動と圧縮強度、
湿乾収縮率等との関係について調べた結果、アル
カリ含有率が約1.2重量%を超えるセメントを使
用した場合には、アルカリ含有率がこれよりも少
ないセメントを使用した場合よりも圧縮強度、湿
乾収縮率等が良くないことを見いだした。 しかし一般に市販されているセメントはアルカ
リ含有率が約1重量%以上のものが殆どである。
その理由は、セメント中のアルカリ分は、セメン
トの原料である粘土に殆どが由来するが、アルカ
リ分の少ない粘土原料が少なく、アルカリ分の少
ない粘土原料を使用しようとすると、セメントの
価格が高くなるためである。 しかしながら、良質のALCを提供するために、
本発明は、アルカリ分が0.5重量%以下の珪酸質
原料を使用すると同時に、アルカリ分が0.8重量
%以下のセメントを使用してALCを製造するこ
とを課題解決の手段とするものである。 本発明によれば、常に圧縮強度、湿乾収縮率、
全面吸水率が従来よりも改良されたALCを確実
に提供することが可能となる。また本発明によれ
ば特にカオリン等を添加しなくても充分圧縮強度
や湿乾収縮率等を改善できるので、コストの減少
はもとより添加剤を使用した場合に起こる副作用
のがない等の利点が得られる。 実施例 55重量部の微粉砕した珪石〔アルカリ含有率
(Na2O+0.658K2O)0.15重量%〕と、10重量部
の粉末生石灰と、35重量部のアルカリ含有率の変
動した普通ポルトランドセメントとを混合し、こ
の混合物100重量部に対して水60重量部、金属ア
ルミニウム粉末0.07重量部、凝結調節剤として焼
石膏1.0重量部と、0.02重量部の発泡安定剤とを
添加し、以下通常の方法に従つて高温高圧水蒸気
養生(180℃、10Kgf/cm2)して、かさ比重0.5の
ALCを製造し、その圧縮強度、湿乾収縮率、全
面吸水率を調べた。 その結果を、比較のため微粉末のカオリンを上
記混合物の固形分100重量部に対し2.1重量部(内
割で2重量%)添加して製造したALCと比較し
て次表に示す。
The present invention relates to an improvement in the manufacturing method of steam-cured lightweight cellular concrete (hereinafter abbreviated as ALC). ALC is made by mixing siliceous raw materials such as silica sand and silica stone and calcareous raw materials such as lime and cement with water in an appropriate ratio, then adding metal powder such as aluminum and stirring, or mixing air. After containing air bubbles by a method such as
It is manufactured by solidifying and semi-hardening, transferring it to an autoclave, and curing it with high temperature and high pressure steam. The ALC produced in this way must have physical properties that allow it to be used as a building material. As a means of improving the physical performance of ALC, in the past we have added approximately 0.5% by weight of alkali hydroxide to the total solid content of the slurry of the silicic raw material, which is the main component of ALC, and the calcareous raw material consisting of lime and cement. Attempts have been made to adjust foaming so that the slurry generates normal bubbles by adding . However, although the addition of this alkali was certainly effective in controlling foaming, it ended up worsening the wet-drying shrinkage rate of the product. From this result, the main raw materials Ca and SiO 2 are
Since the ratio of CaO/SiO 2 = 0.4 to 0.8 is preferable, it is important to know whether the alkaline content (Na 2 O + 0.658K 2 O) contained in the silicic raw material, which is used in large quantities, will affect the physical performance of ALC. After conducting a study to determine whether or not this was the case, we found that the presence of alkali in excess of a predetermined amount reduces the strength of ALC. Today, the alkaline content in silicic raw materials is already 1
It is known to use up to 0.5% by weight, preferably up to 0.5% by weight. However, as mentioned above, even if the ratio of CaO/SiO 2 and the alkali content in the silicate raw material are regulated, the compressive strength and wet-dry shrinkage rate are still insufficient, so at present, the crystallization of calcium silicate hydrate is For improvement, mineral alumina substances such as carrion, granulated blast furnace slag, etc. are added in an amount of about 2 to 4% by weight based on the total solids of the raw material. Although the addition of kaolin and the like improves the compressive strength, etc., it has the disadvantage that the bubbles become disordered during the foaming stage, which increases the water absorption rate of the product, which also increases the cost. There is a point. This is probably due to the fact that kaolin and other materials are difficult to obtain. In addition, in order to improve the compressive strength of ALC, (1) add calcium sulfate to the mortar mixture as SO 3 to
(2) Method for producing ALC by adding 6.5 to 12% by weight of calcium sulfate to the main raw material mixture (Japanese Patent Publication No. 15359/1983), (2) Method for producing ALC by adding 6.5 to 12% by weight of calcium sulfate to the main raw material mixture (Japanese Patent Publication No. 15359/1983). There are proposals such as the following. However, according to various studies conducted by the applicant of the present invention, the above two methods also have problems such as the increase in raw material constituent substances, which makes their management complicated in actual operation. The present invention is an ALC manufacturing method that does not cause bubble disturbance during foaming, is easy to manage in actual operation, and in particular can reduce the wet-dry shrinkage rate compared to conventional methods, and improves both the compressive strength and overall water absorption rate. The challenge is to provide the following. In order to achieve this goal, the alkaline content (contained as Na 2 SO 4 or K 2 SO 4 ) in cement that was shipped from cement manufacturers without any indication of its content
We focused on changes in alkali content and compressive strength,
As a result of investigating the relationship with wet-dry shrinkage rate, etc., it was found that when cement with an alkali content of more than 1.2% by weight was used, the compressive strength and wet-dry shrinkage were lower than when using cement with a lower alkali content. It was found that the dry shrinkage rate etc. were not good. However, most commercially available cements have an alkali content of about 1% by weight or more.
The reason for this is that most of the alkaline content in cement comes from the clay that is the raw material for cement, but there are few clay raw materials with low alkaline content, and if you try to use clay raw materials with low alkaline content, the price of cement will be high. This is to become. However, in order to provide high quality ALC,
The present invention aims to solve the problem by manufacturing ALC using a siliceous raw material with an alkali content of 0.5% by weight or less and at the same time using cement with an alkali content of 0.8% by weight or less. According to the present invention, compressive strength, wet-dry shrinkage rate,
It becomes possible to reliably provide ALC with improved overall water absorption rate than before. Furthermore, according to the present invention, it is possible to sufficiently improve compressive strength, wet-dry shrinkage, etc. without adding kaolin, etc., so there are advantages such as cost reduction and no side effects that occur when using additives. can get. Example 55 parts by weight of finely ground silica (alkali content (Na 2 O + 0.658K 2 O) 0.15% by weight), 10 parts by weight of powdered quicklime, and 35 parts by weight of ordinary Portland cement with varying alkali content. and to 100 parts by weight of this mixture, 60 parts by weight of water, 0.07 parts by weight of metal aluminum powder, 1.0 parts by weight of calcined gypsum as a setting regulator, and 0.02 parts by weight of a foaming stabilizer, High temperature and high pressure steam curing (180℃, 10Kgf/cm 2 ) according to the method of
ALC was manufactured and its compressive strength, wet-dry shrinkage rate, and overall water absorption rate were investigated. The results are shown in the following table for comparison with ALC produced by adding 2.1 parts by weight (2% by weight) of finely powdered kaolin to 100 parts by weight of the solid content of the above mixture.

【表】【table】

【表】 上記の表の比較例と本発明との圧縮強度、湿乾
収縮率、全面吸水率を比較すれば判るように、本
発明製造法によれば、従来よりも圧縮強度、湿乾
収縮率、全面吸水率を再現性よく向上したALC
を提供できる。
[Table] As can be seen by comparing the compressive strength, wet-dry shrinkage rate, and overall water absorption rate between the comparative example in the table above and the present invention, the manufacturing method of the present invention has a higher compressive strength, wet-dry shrinkage rate, and wet-dry shrinkage rate than the conventional method. ALC with improved reproducibility in water absorption rate and overall water absorption rate
can be provided.

Claims (1)

【特許請求の範囲】[Claims] 1 珪酸質原料としてアルカリ含有率が0.5重量
%以下の粉末状の珪石又は珪砂と、石灰質原料と
してセメント、又はセメント及び石灰質粉末を主
要原料とする水蒸気養生軽量気泡コンクリートの
製造法において、アルカリ含有率が0.8重量%以
下のセメントを使用することを特徴とする水蒸気
養生軽量気泡コンクリートの製造法。
1. In the manufacturing method of steam-cured lightweight cellular concrete using powdered silica stone or silica sand with an alkali content of 0.5% by weight or less as a siliceous raw material and cement as a calcareous raw material, or cement and calcareous powder as the main raw materials, the alkali content A method for producing steam-cured lightweight aerated concrete characterized by using 0.8% by weight or less of cement.
JP20240982A 1982-11-18 1982-11-18 Manufacture of steam-cured lightweight foamed concrete Granted JPS5992964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20240982A JPS5992964A (en) 1982-11-18 1982-11-18 Manufacture of steam-cured lightweight foamed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20240982A JPS5992964A (en) 1982-11-18 1982-11-18 Manufacture of steam-cured lightweight foamed concrete

Publications (2)

Publication Number Publication Date
JPS5992964A JPS5992964A (en) 1984-05-29
JPH0118034B2 true JPH0118034B2 (en) 1989-04-03

Family

ID=16457022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20240982A Granted JPS5992964A (en) 1982-11-18 1982-11-18 Manufacture of steam-cured lightweight foamed concrete

Country Status (1)

Country Link
JP (1) JPS5992964A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319610A (en) * 1976-08-06 1978-02-23 Nat Jutaku Kenzai Apparatus for building foundation
JPS56104766A (en) * 1980-01-25 1981-08-20 Narukawa Concrete Kk Manufacture of lightweight foamed concrete

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319610A (en) * 1976-08-06 1978-02-23 Nat Jutaku Kenzai Apparatus for building foundation
JPS56104766A (en) * 1980-01-25 1981-08-20 Narukawa Concrete Kk Manufacture of lightweight foamed concrete

Also Published As

Publication number Publication date
JPS5992964A (en) 1984-05-29

Similar Documents

Publication Publication Date Title
US4501830A (en) Rapid set lightweight cement product
JP3607291B2 (en) Coagulation and curing accelerators for silica based hydraulic binders
JP5567778B2 (en) Aqueous suspension based on hydraulic binder and process for its production
JPH06500525A (en) Reinforced cement mixed with selected aggregates
US5073198A (en) Method of preparing building materials
JPH0135789B2 (en)
JPH0148237B2 (en)
JPH07126048A (en) Inorganic curing composition
US4505753A (en) Cementitious composite material
US4655837A (en) Building material and manufacture thereof
JPH07501038A (en) Method of production of concrete with thermal insulation properties, lightweight ballast concrete or mortar and its use
KR910005426B1 (en) Process for producing autoclaved light weight aerated concrete
CN112960924B (en) High-chlorine fly ash cementing material and preparation method thereof
JPH0118034B2 (en)
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
JPH03115148A (en) Hydraulic cement
JP2624266B2 (en) Alumina cementitious composition
JPH0667791B2 (en) ALC manufacturing method
JP3222390B2 (en) Lightweight mortar
US1185775A (en) Composite strength-accelerating material.
SU1065373A1 (en) Raw mix for preparing porous mortar
JPS6144835B2 (en)
JP6933422B2 (en) How to manufacture lightweight cellular concrete panels
SU1608154A1 (en) Method of producing cement
JPH0155219B2 (en)