JPH01180309A - Method for crystallization of copolymer polyester resin - Google Patents

Method for crystallization of copolymer polyester resin

Info

Publication number
JPH01180309A
JPH01180309A JP431688A JP431688A JPH01180309A JP H01180309 A JPH01180309 A JP H01180309A JP 431688 A JP431688 A JP 431688A JP 431688 A JP431688 A JP 431688A JP H01180309 A JPH01180309 A JP H01180309A
Authority
JP
Japan
Prior art keywords
temperature
polyester resin
resin
linear velocity
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP431688A
Other languages
Japanese (ja)
Inventor
Gen Hayashi
玄 林
Kunihiko Katsumata
勝間田 邦彦
Otonao Tanba
丹波 己直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP431688A priority Critical patent/JPH01180309A/en
Publication of JPH01180309A publication Critical patent/JPH01180309A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To enable resin pieces to be crystallized without making them fused each other by soaking polyester resin into the warm water agitated up to the specific linear velocity and raising the temperature up to the proper temperature through a proper velocity. CONSTITUTION:The polyester resin is thrown and soaked into the warm water which is under the state of being agitated up to the linear velocity, at least, above 0.01 times of the sedimentation rate of the polyester resin in warm water, following this, the temperature raising is started while giving linear velocity continuously from the temperature lower 10 deg.C than the glass transferring temperature (Tg) of the drying period of the polyester resin, furthermore, the temperature raising is performed at the velocity not exceeding 100 deg.C per an hour up to the temperature higher at 15 deg.C than the (Tg) for the crystallization. After the resin treated through this manner is taken out of the hot water, lit is sufficiently removed with the moisture by the use of, for instance, a centrifugal dehydrator, and then transferred to the drying process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、共重合ポリエステル樹脂の結晶化方法に関す
るものである。ざらに詳しくは共重合ポリエステル樹脂
を乾燥時の加熱処理に際して、樹脂が互いに融着するの
を防止する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for crystallizing a copolyester resin. More specifically, the present invention relates to a method for preventing copolymerized polyester resins from fusing together during heat treatment during drying.

[従来の技術] ポリエステル樹脂は、優れた物理的および化学的特性を
有するため、今日巾広く使用されている。樹脂を形成す
る場合は重合反応の終了した重合体を重合反応槽から吐
出、固化せしめて切断し、−旦重合体粒子となした後、
紡糸、製膜、押出成形射出成形等、の溶融、成形工程に
供するのが普通である。この場合、共重合粒子には普通
的0.2重量%の水分が含まれており、そのまま溶融す
ると加水分解が起って品質の劣化や成型工程のトラブル
が発生するため、溶融成型前に加熱乾燥する必要がある
BACKGROUND OF THE INVENTION Polyester resins are widely used today because they have excellent physical and chemical properties. When forming a resin, the polymer after the polymerization reaction is discharged from the polymerization reaction tank, solidified and cut to form polymer particles, and then
It is usually subjected to melting and molding processes such as spinning, film forming, extrusion molding, and injection molding. In this case, copolymer particles usually contain 0.2% by weight of water, and if they are melted as is, hydrolysis will occur, resulting in quality deterioration and problems in the molding process. Needs to dry.

しかし、特にポリエステルに第3成分を共重合させた、
いわゆる共重合ポリエステルの乾燥にはポリエステルに
比べて乾燥時に樹脂粒子が互いに融着し易く通常の乾燥
方法では@看なく乾燥することは困難である。この問題
を解決する方法として例えば乾燥前に無定型シリカをト
ライブレンドしておく方法(特開昭55−66948@
公報)、易結晶性粒子を混合した後乾燥する方法(特開
昭51−11854号公報)、揮発性有機溶媒に浸漬す
ることにより樹脂表面を結晶化さ、せる方法(特開昭6
1−81433号公報)等が提案されている。
However, especially when polyester is copolymerized with a third component,
When drying so-called copolymerized polyesters, the resin particles tend to fuse to each other during drying compared to polyesters, and it is difficult to dry them without care using normal drying methods. One way to solve this problem is, for example, by triblending amorphous silica before drying (Japanese Patent Application Laid-open No. 55-66948@
(Japanese Unexamined Patent Publication No. 11854/1982), a method of crystallizing the resin surface by immersing it in a volatile organic solvent (Japanese Unexamined Patent Publication No. 11854/1982),
1-81433) etc. have been proposed.

L発明が解決しようとする問題点] しかし上記従来例においては、結晶化時に異成分による
汚染を生じたり、除去に時間がかかり、また防炎、衛生
上の対策が必要などの欠点があり、十分満足できるもの
ではなかった。
L Problems to be Solved by the Invention] However, the above conventional examples have drawbacks such as contamination caused by foreign components during crystallization, time required for removal, and the need for fireproofing and sanitary measures. It wasn't completely satisfying.

[問題点を解決するための手段] 本発明は、ポリエステル樹脂を該ポリエステル樹脂の温
水中における平均沈降速度の少なくとも0.01倍以上
の線速を有し、該ポリエステル樹脂の乾燥時のTlガラ
ス転移温度)より10℃以上低い温度に浸漬し、引き続
き水に線速を与えながら該Tgより、15℃を越える温
度まで一時間当り100℃を越えない速度で昇温するこ
とを特徴とする共重合ポリエステル樹脂の結晶化方法に
関するものである。
[Means for Solving the Problems] The present invention provides a polyester resin having a linear velocity that is at least 0.01 times the average sedimentation velocity of the polyester resin in hot water, and a Tl glass when the polyester resin is dried. The water is immersed at a temperature 10°C or more lower than the water transition temperature (transition temperature), and then heated at a rate not exceeding 100°C per hour to a temperature exceeding 15°C, while continuing to apply a linear velocity to the water. The present invention relates to a method for crystallizing polymerized polyester resin.

次(、本発明をさらに詳細に説明する。In the following, the present invention will be described in further detail.

本発明における共重合ポリエステルとは、テレフタル酸
を主たる酸成分とし、エチレングリコールを主たるグリ
コール成分とするものであり、以下に示す酸成分及び/
またはグリコール成分を含む共重合体あるいは該共重合
体と他のポリマとの混合、ブレンド物等である。
The copolymerized polyester in the present invention has terephthalic acid as the main acid component and ethylene glycol as the main glycol component, and contains the following acid components and/or
Alternatively, it is a copolymer containing a glycol component, or a mixture or blend of the copolymer and another polymer.

テレフタル酸以外の酸成分としては、イソフタル酸、ナ
フタレンジカルボン酸、アジピン酸、セバシン酸、ヘキ
サヒドロキシテレフタル酸等があげられ、その共重合量
は通常0〜40モル%である。エチレングリコール以外
のグリコール成分としては、ネオペンチルグリコール、
トリメチレングリコール、テトラメチレングリコール、
シクロヘキサンジメタツール、ポリエチレングリコール
等があげられ、その共重合量は通常0〜40モル%であ
る。本発明は、特にイソフタル酸共重合ポリエステルに
有効であり、その共重合率は40モル%以下、好ましく
は10〜30モル%、より好ましくは15〜25モル%
である。また、この他にトリメシン酸、トリメチロール
プロパン等の多官能性化合物を共重合ポリエステルの酸
成分及びグリコール成分として用いてもよい。
Examples of acid components other than terephthalic acid include isophthalic acid, naphthalene dicarboxylic acid, adipic acid, sebacic acid, and hexahydroxyterephthalic acid, and the copolymerized amount thereof is usually 0 to 40 mol%. Glycol components other than ethylene glycol include neopentyl glycol,
trimethylene glycol, tetramethylene glycol,
Examples include cyclohexane dimetatool and polyethylene glycol, and the amount of copolymerization thereof is usually 0 to 40 mol%. The present invention is particularly effective for isophthalic acid copolymerized polyesters, and the copolymerization rate thereof is 40 mol% or less, preferably 10 to 30 mol%, more preferably 15 to 25 mol%.
It is. In addition, polyfunctional compounds such as trimesic acid and trimethylolpropane may be used as the acid component and glycol component of the copolyester.

上記共重合ポリエステルにはシリカ、酸化チタン、カオ
リン、タルク、炭酸カルシウム等の顔料、充填剤、さら
に耐候性向上剤、蛍光増白剤、帯電防止剤、増粘剤、難
燃剤その他を含んでいてもよい。
The above copolyester contains pigments such as silica, titanium oxide, kaolin, talc, and calcium carbonate, fillers, as well as weather resistance improvers, optical brighteners, antistatic agents, thickeners, flame retardants, and others. Good too.

またポリエステル樹脂の形状は特に限定されるものでは
なく、パウダー、フレーク、粒状等に形成された成形体
であればいずれの形状のものであってもよく、またこれ
らが混合されたものであってもよい。
Further, the shape of the polyester resin is not particularly limited, and it may be any shape as long as it is a molded product formed into powder, flakes, granules, etc., or a mixture of these. Good too.

本発明におけるガラス転移温度Toは該ポリエステル樹
脂を含有水分率が0.2%以下になるように40℃の熱
風中で24時間乾燥した後、DSC(示差走査熱量測定
装置)によって測定することにより求められる。
The glass transition temperature To in the present invention is determined by drying the polyester resin in hot air at 40° C. for 24 hours so that the moisture content becomes 0.2% or less, and then measuring it with a DSC (differential scanning calorimeter). Desired.

本発明の目的を達成するためにはTQより10℃以上低
い温度から昇温を開始する必要がある。Tgより10℃
以上低い温度よりも高い温度から昇温を開始すると開始
直後から温水中でポリエステル樹脂が互いに融着するこ
とになり好ましくない。温度が低すぎると昇温時間が長
く、そのために運転に長時間を要することになる。ここ
で、Toよりも10〜40℃、より好ましくは20〜3
0℃低い温度から昇温するのが好ましい。
In order to achieve the object of the present invention, it is necessary to start increasing the temperature at a temperature that is 10° C. or more lower than TQ. 10℃ below Tg
If the temperature rise is started from a temperature higher than the lower temperature, the polyester resins will fuse together in the hot water immediately after the start, which is not preferable. If the temperature is too low, it takes a long time to raise the temperature, resulting in a long operation time. Here, 10 to 40°C, more preferably 20 to 3
It is preferable to raise the temperature from a temperature lower than 0°C.

さらに結晶化のためにはTCIより15℃以上高い温度
まで昇温する必要があり、好ましくはToより20℃以
上高い温度まで昇温するのが望ましい。温水を100℃
以上に昇温すると加圧装置が必要であるが処理時間は短
縮できるので好ましい。160℃以上に昇温するとポリ
エステル樹脂の加水分解による劣化が大きくなり好まし
くない。ポリエステル樹脂は、少なくとも該ポリエステ
ル樹脂の温水中における沈降速度の0.01倍以上の線
速まで攪拌した状態の温水中に投入する必要がある。水
の線速がこれより遅い温水中にポリエステル樹脂を投入
すると装置の底部に樹脂が沈降し弱い融着が発生し、さ
らには樹脂同志が互いに接する時間が長くなり引き続き
8行なわれる昇温時あるいは処理期間中に融着を引き越
こすことになり好ましくない。
Furthermore, for crystallization, it is necessary to raise the temperature to a temperature higher than TCI by 15°C or more, and preferably to a temperature higher than To by 20°C or more. warm water to 100℃
If the temperature is raised above this level, a pressurizing device is required, but the processing time can be shortened, which is preferable. If the temperature is increased to 160° C. or higher, the polyester resin will deteriorate significantly due to hydrolysis, which is not preferable. The polyester resin must be stirred into warm water at a linear velocity that is at least 0.01 times the sedimentation velocity of the polyester resin in the warm water. If polyester resin is poured into warm water where the linear velocity of water is slower than this, the resin will settle at the bottom of the device and weak fusion will occur, and furthermore, the time that the resins will be in contact with each other will be longer, resulting in a lower temperature during the subsequent temperature rise or This is undesirable because the fusion will be carried over during the treatment period.

より好ましくは沈降速度の0.10倍以上の線速を与え
ることが好ましい。なお、5倍以上の線速度を与えるこ
とは装置の大型化、複雑化等を伴うために好ましくない
。ここでいう沈降速度は該樹脂を静止温水中に投入した
ときの平均沈降速度をいう。水に線速を与える方法は上
記線速を与えるものならどのような方法でもさしつかえ
ない。例えば、回転攪拌翼による方法、下部からの空気
、窒素ガス等の吹き込みによる方法等が考えられるが、
温水および樹脂の全量に線速か与えられるように設計す
る必要がある。
More preferably, it is preferable to provide a linear velocity of 0.10 times or more the sedimentation velocity. Note that it is not preferable to apply a linear velocity of five times or more because it increases the size and complexity of the apparatus. The sedimentation rate here refers to the average sedimentation rate when the resin is placed in still warm water. Any method that gives the linear velocity to the water can be used. For example, methods using rotating stirring blades, methods using blowing air, nitrogen gas, etc. from below, etc. can be considered.
It is necessary to design the system so that the total amount of hot water and resin can be applied at linear velocity.

水に線速の与えられないデッドスペースがあると樹脂が
固着し、融着の原因となる。
If there is a dead space where the water is not given a linear velocity, the resin will stick and cause fusion.

ざらに昇温は1時間当り100℃を越えない速度で昇温
することが必要である。1時間あたり100℃を越える
速度で昇温を進めるとポリエステル樹脂の結晶化が追従
せず、温水中での融着の原因となる。好ましくは1時間
当り30〜80℃の速度で昇温するのが望ましい。昇温
速度が特に遅いと結晶化の目的は達成されるが設備の使
用時間が長くなり経済的でない。昇温後ざらに樹脂の品
質劣化を起さない範囲で到達温度のままに保持してもよ
い。
Roughly speaking, it is necessary to raise the temperature at a rate not exceeding 100°C per hour. If the temperature is increased at a rate exceeding 100° C. per hour, the crystallization of the polyester resin will not follow, resulting in fusion in hot water. Preferably, it is desirable to raise the temperature at a rate of 30 to 80°C per hour. If the heating rate is particularly slow, the purpose of crystallization can be achieved, but the equipment will be used for a long time, which is not economical. After the temperature is raised, the temperature may be maintained at the reached temperature within a range that does not significantly deteriorate the quality of the resin.

前述の条件で処理された樹脂は熱水の中から取り出され
た後、適当な方法、例えば遠心式脱水機を用いて十分水
分を除去した後、乾燥工程に供することができる。
After the resin treated under the above-mentioned conditions is taken out of the hot water and water is sufficiently removed using an appropriate method, for example, a centrifugal dehydrator, it can be subjected to a drying process.

乾燥方法は特に限定されるものではなく通常の方法が採
用される。乾燥は通常樹脂の触点以下で行なわれるが具
体的な乾燥方法としては、乾燥機内に70〜200℃の
熱風を吹き込む方法、熱風を樹脂の流動床へ吹き込む方
法、あるいは乾燥機を70〜200℃に加温し乾燥機内
を減圧にしながら乾燥する方法等によって行なわれる。
The drying method is not particularly limited and a conventional method can be used. Drying is usually carried out below the contact point of the resin, but specific drying methods include blowing hot air at 70 to 200°C into a dryer, blowing hot air into a fluidized bed of resin, or drying at a temperature of 70 to 200°C. This is done by heating the product to ℃ and drying while reducing the pressure inside the dryer.

[実施例] 以下実施例および比較実施例によって本発明をさらに詳
しく説明する。なお実施例中の部とは重量部であり、ま
た攪拌特性の測定法は次のとおりである。
[Examples] The present invention will be explained in more detail with reference to Examples and Comparative Examples below. Note that parts in the examples are parts by weight, and the method for measuring stirring characteristics is as follows.

A、ポリマの固有粘度(IV) ポリエステル樹脂を105℃で20分乾燥した後、0−
クロロフェノールを溶媒として25℃で測定した。
A. Polymer intrinsic viscosity (IV) After drying the polyester resin at 105°C for 20 minutes, the 0-
Measurement was carried out at 25°C using chlorophenol as a solvent.

B、ポリマのTO(ガラス転移点) 該ポリエステル樹脂を含有水分率が0.2%以下になる
まで40℃の熱風中で24時間乾燥した後、DSC(示
差走査熱量計、パーキンエルマー社製DSC−2型)を
用い、窒素シール下で15℃/分の条件で昇温し、70
℃付近における吸熱ピークの中央値をTQとした。
B. TO (glass transition point) of the polymer After drying the polyester resin in hot air at 40°C for 24 hours until the moisture content becomes 0.2% or less, the polyester resin was dried using a DSC (differential scanning calorimeter, manufactured by PerkinElmer) for 24 hours. -2 type), the temperature was raised at 15°C/min under a nitrogen seal, and the temperature was increased to 70°C.
The median value of the endothermic peak near °C was defined as TQ.

C9樹脂の平均沈降速度 径5C11、高さ1TrLのガラス円筒に25℃の水を
満し、樹脂を1粒づつ落下させ平均沈降速度を求めた。
Average sedimentation speed of C9 resin A glass cylinder with a diameter of 5C11 and a height of 1 TrL was filled with water at 25° C., and the resin was dropped one by one to determine the average sedimentation speed.

D、予備結晶化時の融雪率 予備結晶化したチップをとり出し下記の式に基づいて融
着率を算出した。
D. Snow melting rate during pre-crystallization The pre-crystallized chips were taken out and the fusion rate was calculated based on the following formula.

予備結晶化時の融着率− 二粒以上が付着したチップの重量 xio。Fusion rate during preliminary crystallization - Weight of chip with two or more particles attached xio.

処理したチップの総重量 予備結晶化時の融着率は2%以内であれば事実上問題は
ない。
There is virtually no problem if the fusion rate during preliminary crystallization of the total weight of the treated chips is within 2%.

実施例1 全酸成分に対しイソフタル酸を20モル%共重合した5
X5X2mの立方形のTOが72℃のポリエチレンテレ
フタレート/イソフタレート共重合樹脂100部を、底
部に攪拌翼を設け、ioorpmで攪拌している56℃
の温水200部に浸漬した。この時の樹脂の沈降速度は
10ca1秒であった。水の線速は1 、0cll/s
ecであり、樹脂沈降速度の0.10倍であった。
Example 1 5 in which 20 mol% of isophthalic acid was copolymerized based on the total acid components
100 parts of a polyethylene terephthalate/isophthalate copolymer resin having a cubic TO size of 72°C and a size of 5x5x2m was stirred at 56°C with a stirring blade at the bottom at ioorpm.
It was immersed in 200 parts of warm water. The sedimentation rate of the resin at this time was 10 cal and 1 second. The linear velocity of water is 1,0 cll/s
ec, which was 0.10 times the resin sedimentation rate.

攪拌を続けながら1時間で95℃まで昇温(昇温速度4
5℃/時間)、ざらに9b℃到達後1時間保持した債、
熱水を排出し、次いで樹脂を取り出して、遠心式の脱水
機により脱水処理を行なった。
While stirring continuously, the temperature was raised to 95°C in 1 hour (heating rate 4
5℃/hour), a bond held for 1 hour after reaching 9b℃,
The hot water was discharged, and then the resin was taken out and dehydrated using a centrifugal dehydrator.

この樹脂を回転式の乾燥機に入れて2m1−IQ以下の
減圧下160℃〜180℃で2時間の乾燥を行なったが
、樹脂相互あるいは樹脂と乾燥機内壁部との融着は見ら
れなかった。
This resin was placed in a rotary dryer and dried for 2 hours at 160°C to 180°C under reduced pressure below 2m1-IQ, but no fusion was observed between the resins or between the resin and the inner wall of the dryer. Ta.

実施例2 実施例1と同様な条件で昇温開始温度のみを60℃にし
たところ、結晶化処理中の融着率は1.2%であったが
、本乾燥時のa着は見られなかった。
Example 2 When only the heating start temperature was set to 60°C under the same conditions as in Example 1, the fusion rate during the crystallization process was 1.2%, but no a-adhesion was observed during the main drying. There wasn't.

実施例3゜ 実施例1と同様な条件で昇温速度のみを95℃/時間に
したところ、予備結晶化処理中の融着は1.8%であっ
た。なお、本乾燥時の融着は見られなかった。
Example 3 Under the same conditions as Example 1, only the temperature increase rate was 95° C./hour, and the fusion during the preliminary crystallization treatment was 1.8%. Note that no fusion was observed during the main drying.

実施例4 実施例1と同様な条件で水の線速のみを0゜5菌/秒に
したところ、予備結晶化処理中の融着率は0.2%であ
った。なお、本乾燥時の融着は見られなかった。
Example 4 Under the same conditions as in Example 1, only the linear velocity of water was set to 0°5 bacteria/second, and the fusion rate during the preliminary crystallization treatment was 0.2%. Note that no fusion was observed during the main drying.

実施例5 実施例1と同様な条件で昇温終了後の温度を120℃昇
温終了後の保持時間を30分としたところ、結晶化の融
着はなく本乾燥でも融着は見られなかった。
Example 5 Under the same conditions as in Example 1, the temperature after the temperature increase was 120°C and the holding time after the temperature increase was 30 minutes. There was no fusion of crystallization and no fusion was observed during the main drying. Ta.

比較実施例1 実施例1と同様な条件で水に線速を与えなかったところ
、結晶化中の融着率は53%であり、本乾燥に供するこ
とができなかった。
Comparative Example 1 When water was not subjected to linear velocity under the same conditions as in Example 1, the fusion rate during crystallization was 53%, and it could not be used for main drying.

比較実施例2 実施例1と同様な条件で昇温開始温度のみを65℃とし
たところ、結晶化時に30%の融着が生じ樹脂を本乾燥
に供することができなかった。
Comparative Example 2 When the same conditions as Example 1 were used, with only the heating start temperature set to 65° C., 30% fusion occurred during crystallization and the resin could not be subjected to main drying.

比較実施例3 実施例1と同様な条件で昇温終了後の温度を85℃昇温
終了後の保持時間を100分としたところ、結晶化時の
融着率は0.2%であったが、この樹脂片を本乾燥した
ところ、樹脂片相互及び樹脂片と乾燥IN器壁との―着
を生じた。
Comparative Example 3 When the temperature after heating was 85°C under the same conditions as Example 1 and the holding time after heating was 100 minutes, the fusion rate during crystallization was 0.2%. However, when this resin piece was subjected to main drying, adhesion occurred between the resin pieces and between the resin piece and the wall of the drying unit.

比較実施例4 実施例1と同様な条件で昇温速度を120℃/時間とし
たところ、結晶化時に75%の融着を生じ、樹脂を本乾
燥に供することができなかった。
Comparative Example 4 When the heating rate was set to 120° C./hour under the same conditions as in Example 1, 75% fusion occurred during crystallization, and the resin could not be subjected to main drying.

実施例6 共重合成分としてジエチレングリコール5モル%共重合
し、実施例1と同様にして7077℃の共重合ポリエス
テル樹脂試験片を11造し、予備結晶化処理を行なった
(沈降線速15cM秒)。結果を表1に示した。
Example 6 5 mol% diethylene glycol was copolymerized as a copolymerization component, and 11 copolymerized polyester resin test specimens were prepared at 7077°C in the same manner as in Example 1, and pre-crystallization treatment was performed (linear sedimentation velocity 15 cM seconds). . The results are shown in Table 1.

実施例フ イソフタル酸共重合量を5モル%とした以外、実施例1
と同様にして7075℃の共重合ポリエステル樹脂試験
片を製造し、予備結晶化処理を行なった(沈降線速10
C1a/秒)。結果を表1に示した。
Example Example 1 except that the copolymerized amount of fisophthalic acid was 5 mol%.
Copolymerized polyester resin specimens were produced at 7075°C in the same manner as above, and pre-crystallization treatment was performed (sedimentation linear velocity 10
C1a/sec). The results are shown in Table 1.

[発明の効果コ 本願発明による結晶化方法は次のような効果を有する。[Effects of invention The crystallization method according to the present invention has the following effects.

(1)  樹脂片を相互に融着させることなく結晶化さ
せることが可能であるため、その後の製膜、紡糸などに
おける取扱い性が良好である。
(1) Since it is possible to crystallize the resin pieces without mutually fusing them, handling in subsequent film forming, spinning, etc. is good.

(2)特殊な薬品等を使用することもなく、温水処理す
るために経済的である。
(2) It is economical because it does not require special chemicals and treats hot water.

(3)  温水のみで処理できるため、処理御会媒体の
混入がない。
(3) Since it can be treated using only hot water, there is no contamination with treatment media.

(4)有機溶剤等を使用しないので、安全ぺであり、か
つ廃液などの処理の問題がない。
(4) Since no organic solvents are used, it is safe and there are no problems with disposal of waste liquid.

Claims (1)

【特許請求の範囲】[Claims] ポリエステル樹脂を該ポリエステル樹脂の温水中におけ
る平均沈降速度の少なくとも0.01倍以上の線速を有
し、該ポリエステル樹脂の乾燥時のTg(ガラス転移温
度)より10℃以上低い温度の温水に浸漬し、引き続き
水に線速を与えながら該Tgより15℃を越える温度ま
で1時間当り100℃を越えない速度で昇温することを
特徴とする共重合ポリエステル樹脂の結晶化方法。
Immersing a polyester resin in hot water having a linear velocity that is at least 0.01 times the average sedimentation velocity of the polyester resin in hot water and at a temperature that is 10°C or more lower than the dry Tg (glass transition temperature) of the polyester resin. A method for crystallizing a copolyester resin, which comprises raising the temperature of water at a rate not exceeding 100° C. per hour to a temperature exceeding 15° C. above the Tg while subsequently applying a linear velocity to the water.
JP431688A 1988-01-11 1988-01-11 Method for crystallization of copolymer polyester resin Pending JPH01180309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP431688A JPH01180309A (en) 1988-01-11 1988-01-11 Method for crystallization of copolymer polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP431688A JPH01180309A (en) 1988-01-11 1988-01-11 Method for crystallization of copolymer polyester resin

Publications (1)

Publication Number Publication Date
JPH01180309A true JPH01180309A (en) 1989-07-18

Family

ID=11581068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP431688A Pending JPH01180309A (en) 1988-01-11 1988-01-11 Method for crystallization of copolymer polyester resin

Country Status (1)

Country Link
JP (1) JPH01180309A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192444A (en) * 1999-10-27 2001-07-17 Mitsui Chemicals Inc Method for polymerizing aliphatic polyester in solid phase
JP2001192445A (en) * 1999-10-27 2001-07-17 Mitsui Chemicals Inc Method for producing polyester
US6740733B2 (en) 2001-11-30 2004-05-25 Shell Oil Company Process and apparatus for crystallization of polytrimethylene terephthalate (PTT)
US7192545B2 (en) 2003-10-10 2007-03-20 Eastman Chemical Company Thermal crystallization of a molten polyester polymer in a fluid
WO2008016114A1 (en) 2006-08-02 2008-02-07 Mitsubishi Chemical Corporation Polyester resin particle and method for producing the same
US7329723B2 (en) 2003-09-18 2008-02-12 Eastman Chemical Company Thermal crystallization of polyester pellets in liquid
DE102007012450A1 (en) * 2007-03-15 2008-09-18 Rieter Automatik Gmbh Process for granulation and crystallization of thermoplastic polymers
US7875184B2 (en) 2005-09-22 2011-01-25 Eastman Chemical Company Crystallized pellet/liquid separator
US8022168B2 (en) 2004-09-02 2011-09-20 Grupo Petrotexmex, S.A. de C.V. Spheroidal polyester polymer particles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192444A (en) * 1999-10-27 2001-07-17 Mitsui Chemicals Inc Method for polymerizing aliphatic polyester in solid phase
JP2001192445A (en) * 1999-10-27 2001-07-17 Mitsui Chemicals Inc Method for producing polyester
US6740733B2 (en) 2001-11-30 2004-05-25 Shell Oil Company Process and apparatus for crystallization of polytrimethylene terephthalate (PTT)
US6984116B2 (en) 2001-11-30 2006-01-10 Shell Oil Company Process and apparatus for crystallization of polytrimethylene terephthalate (PTT)
US7329723B2 (en) 2003-09-18 2008-02-12 Eastman Chemical Company Thermal crystallization of polyester pellets in liquid
US7674877B2 (en) 2003-09-18 2010-03-09 Eastman Chemical Company Thermal crystallization of polyester pellets in liquid
US7192545B2 (en) 2003-10-10 2007-03-20 Eastman Chemical Company Thermal crystallization of a molten polyester polymer in a fluid
US8039581B2 (en) 2003-10-10 2011-10-18 Grupo Petrotemex, S.A. De C.V. Thermal crystallization of a molten polyester polymer in a fluid
US8309683B2 (en) 2003-10-10 2012-11-13 Grupo Petrotemex, S.A. De C.V. Thermal crystallization of a molten polyester polymer in a fluid
US8022168B2 (en) 2004-09-02 2011-09-20 Grupo Petrotexmex, S.A. de C.V. Spheroidal polyester polymer particles
US7875184B2 (en) 2005-09-22 2011-01-25 Eastman Chemical Company Crystallized pellet/liquid separator
WO2008016114A1 (en) 2006-08-02 2008-02-07 Mitsubishi Chemical Corporation Polyester resin particle and method for producing the same
US8329857B2 (en) 2006-08-02 2012-12-11 Mitsubishi Chemical Corporation Polyester resin particle and method for producing the same
DE102007012450A1 (en) * 2007-03-15 2008-09-18 Rieter Automatik Gmbh Process for granulation and crystallization of thermoplastic polymers

Similar Documents

Publication Publication Date Title
KR101386672B1 (en) White film and A method of manufacturing Opaque White film
JPH0753698A (en) Production of polyethylene terephthalate
JPH01180309A (en) Method for crystallization of copolymer polyester resin
TW200538488A (en) Method for producing highly condensed polyesters in the solid state
JP2005047959A (en) Heat-shrinkable polyester film
JPS59219328A (en) Production of high-polymerization degree polyester
JPH08187777A (en) Production of heat-resistant polyester film
JPH11509573A (en) Method for crystallizing poly (ethylene naphthalene dicarboxylate)
JPH1017683A (en) Polyester film for large-sized molded transfer foil
JP3465764B2 (en) Polyester and method for producing the same
JPH11511489A (en) Method for crystallizing polyethylene naphthalate
JP2000162596A (en) Polyester film for process paper in manufacture of liquid crystal display
JPH07107093B2 (en) Modified modified PET polymers and copolymers suitable for extrusion blow molding
CA2595008C (en) Compartmentalized chips with similar polymers of different viscosities for improved processability
JPH0491126A (en) Production of polyester having high polymerization degree
EA005177B1 (en) Method for increasing solid state polymerization rate
JPH09249744A (en) Method for treatment of polyester resin
JPH06184286A (en) Polyethylene terephthalate and hollow vessel and drawn film composed of the resin
KR20080062468A (en) A polyethylene terephthalate solid-polymerized having low density
JP2008169328A (en) Method for producing polyester composition
JP3750592B2 (en) Method for producing crystalline polymer pellets that are difficult to block
JP4502091B2 (en) Heat-shrinkable polyester film
JPH03200859A (en) Polyester composition
JP2000204145A (en) Production of high molecular weight polyethylene terephthalate
JP5045078B2 (en) Production method of polyester resin