JPH0118027B2 - - Google Patents

Info

Publication number
JPH0118027B2
JPH0118027B2 JP3983383A JP3983383A JPH0118027B2 JP H0118027 B2 JPH0118027 B2 JP H0118027B2 JP 3983383 A JP3983383 A JP 3983383A JP 3983383 A JP3983383 A JP 3983383A JP H0118027 B2 JPH0118027 B2 JP H0118027B2
Authority
JP
Japan
Prior art keywords
temperature
melting
incineration ash
crystallization
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3983383A
Other languages
Japanese (ja)
Other versions
JPS59164668A (en
Inventor
Kazuo Okada
Akitoshi Yamada
Takao Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
TOKYOTO
Original Assignee
NIPPON GAISHI KK
TOKYOTO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK, TOKYOTO filed Critical NIPPON GAISHI KK
Priority to JP58039833A priority Critical patent/JPS59164668A/en
Publication of JPS59164668A publication Critical patent/JPS59164668A/en
Publication of JPH0118027B2 publication Critical patent/JPH0118027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • C04B18/026Melted materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/108Burned or pyrolised refuse involving a melting step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は下水汚泥焼却灰や都市ごみ焼却灰等の
廃棄物焼却灰を原料とする骨材の製造法に関する
ものである。 (従来技術) 従来、各地の下水処理場やごみ処理場から発生
する下水汚泥やごみはそのまま埋立投棄すると衛
生上あるいは悪臭公害上問題があるので大部分は
焼却処理され、焼却灰として埋立投棄されている
が、埋立用地の確保が難しくなつてきているうえ
に焼却灰からの重金属等の溶出、その他埋立処分
にともなう二次公害が大きな社会問題となつてお
り、さらに省資源、省エネルギーの観点からも廃
棄物焼却灰を溶融して有効利用することが検討さ
れている。廃棄物焼却灰を溶融して骨材等に有効
利用しようとする試みとしては、特公昭55−
24010号公報に示されるように溶融物を水封ボツ
クス中に落下させて水中固化させて小塊状のガラ
ス質の骨材を得る方法があるが、この方法によつ
て得られるガラス質骨材は強度が弱い上に化学的
安定性に欠けるという問題を有しており、また、
鋳型中に溶融物を投入し結晶化させることにより
大塊状の完全結晶化物を得たのち破砕して骨材を
得る方法は結晶化に多大の熱量を必要とするうえ
に大規模な機械的破砕装置が必要でコスト高とな
る等の問題点を有するものであつた。 (発明の目的) 本発明は前記のような問題点を解決して機械的
強度および化学的安定性に優れ、しかも、用途に
合致した粒度分布の骨材を安価にかつ極めて容易
に量産できる廃棄物焼却灰を原料とする骨材の製
造法を目的として完成されたものである。 (発明の構成) 本発明は主たる組成がSiO225〜45%(重量%、
以下同じ)、Al2O35〜15%、Fe2O35〜25%、
CaO20〜40%、MgO1〜5%、P2O53〜15%の範
囲内でかつ(CaO+MgO)/SiO2の比を0.8〜1.2
に組成調整した廃棄物焼却灰を1350〜1500℃で溶
融し、この溶融物を急冷して熱衝撃破砕したのち
前記溶融工程で発生した排ガスを循環させた結晶
化炉中において800℃以上1000℃未満に20分以上
保持して結晶化することを特徴とするものであ
る。 本発明において原料となる廃棄物焼却灰は下水
汚泥焼却灰あるいは都市ごみ焼却灰等であつて、
これらの廃棄物焼却灰中にはSiO2、Al2O3
Fe2O3、CaO、MgO、P2O5の外にK2O、Na2O等
が主に含まれており、それらの含有量は焼却灰の
種類等により若干異なる。このような廃棄物焼却
灰の溶融特性すなわち溶融温度に対する粘度の関
係をみると、一般のガラスの成形加工に適した粘
度域に対応する成形温度域は一般のガラスに比較
して極端に狭く、いわゆる「足の短いガラス」の
性質を有しており、また、例えば1350℃以上の溶
融温度域における粘度は一般のガラスに比較して
かなり低いことから溶融したのち該溶融炉の炉底
より自然流下させるのに適しているが、このよう
な組成の廃棄物焼却灰を溶融後破砕し半結晶化し
て骨材にするには、SiO225〜45%好ましくは30
〜40%、Al2O35〜15%好ましくは5〜10%、
Fe2O35〜25%好ましくは5〜15%、CaO20〜40
%好ましくは30〜35%、MgO1〜5%好ましくは
2〜5%、P2O53〜15%好ましくは5〜12%の範
囲内でかつ(CaO+MgO)/SiO2比が0.8〜1.2好
ましくは0.9〜1.1の範囲内であることが重要であ
り、このために焼却炉より得られた前記廃棄物焼
却灰はこれを分析し、組成範囲が前記特定組成範
囲内にないときは、前記の組成範囲に入るように
調整する。なお、組成調整に際しては安価な粘
土、シラス、ベンガラ、石炭、ドロマイト、骨灰
を用いることが好ましい。このようにして組成調
整された廃棄物焼却灰は溶融炉中において1350〜
1500℃程度で溶融し、この溶融物を該溶融炉の炉
底より自然流下させるのに必要な粘度例えば101
ポイズ以下好しくは101/2ポイズ以下の粘度に維持
しながらこれを溶融炉の湯口より最終骨材粒度に
応じた径たとえば直径が3〜10mm程度の棒状もし
くは糸状流下溶融物となるように流下させ、該流
下溶融物に噴霧水を吹付けて冷却したり、冷却気
体を吹付けたりして熱衝撃破砕を行い、引きつづ
いて該破砕物を溶融炉排ガスを循環させた結晶化
炉中において800℃以上1000℃未満好ましくは850
〜950℃の温度範囲の所定温度に20分以上好まし
くは40分以上加熱保持して該破砕物中に結晶核の
形成およびその結晶核を中心として結晶化率が20
〜80%好ましくは40〜60%となるよう部分的に結
晶成長を起こさせる。このようにして得られた粒
状の結晶化物は前工程の熱衝撃破砕により既に破
砕されているから、そのまま或いは分級して製品
とされるもので、製品化までの一連の工程は大幅
に簡略化されることとなる。なお、本発明におい
てSiO2を25〜45%とするのはSiO2が25%未満で
はガラス形成骨格としてのSiO2が不足して高強
度の結晶化物が得られないからであり、45%を越
えると溶融温度が上昇して前記溶融温度では粘度
が高くなつて該溶融物の該炉底からの自然流下が
難しくなるうえ部分的に結晶化させるうえにも悪
影響を及ぼすからであり、また、Al2O3を5〜15
%とするのはAl2O3が5%未満では高強度の結晶
化物が得られず、15%を越えると溶融温度が高く
なりすぎるからであり、さらに、Fe2O3を5〜25
%とするのはFe2O3は融剤としてばかりでなく核
形成剤としても重要な成分であり、その量が5%
未満では融剤としての効果がうすれて溶融温度が
低下しないうえに結晶核の形成も不充分であり、
25%を越えると強度も著しく低下させるからであ
る。また、CaOを20〜40%とするのはCaOが20%
未満では溶融物の粘度が増加するとともに結晶化
に悪影響があるうえ強度が低下し、40%を越える
と化学的安定性を著しく低下させるからであり、
さらに、MgOを1〜5%とするのは、MgOは
CaOに代わる組成調整剤として用いられていて、
化学的安定性を増す効果があるのも拘らずその含
有量が1%未満ではその効果がなく、5%を越え
る量を入れても効果は変らないからであり、ま
た、P2O5を3〜15%とするのはP2O5は核形成剤
として最も重要な成分であつて、その量が3%未
満では800℃以上1000℃未満の温度範囲では結晶
化が起こりにくく、また15%を越えると強度低下
を来たし好ましくない。さらにまた、(CaO+
MgO)/SiO2比を0.8〜1.2とすることは溶融温度
の低下のために重要であるうえに溶融物の結晶化
のためにも重要であつて、この混合物が0.8未満
あるいは1.2を越えると溶融温度が上昇して溶融
炉の炉材の侵蝕や溶融コストの増加が起るので好
ましくない。次に、廃棄物焼却灰の溶融温度を
1350〜1500℃と限定したのは前記組成範囲に調整
された廃棄物焼却灰の溶融物は溶融温度が高くな
ると急激に粘性が低下するいわゆる「足の短いガ
ラス」の性質を有することから、1350℃未満では
溶融炉の湯口から溶融物を流下させるのに必要な
粘度101ポイズ以下好ましくは101/2ポイズ以下の
粘度が得られないため流下溶融物の径が大きくな
つて熱衝撃破砕が充分に行われず、後工程で再度
破砕工程が必須となるからで、また、実プラント
において1500℃を越える溶融温度を維持すること
は設備上からもエネルギーコスト面からもロスが
大きいので上限を1500℃とし、熱破砕後の結晶化
工程において、1350〜1500℃の溶融工程で発生す
る排ガスを結晶化炉中に循環すると、結晶化炉に
おける追焚きはほとんどいらなくなるから800〜
1000℃の温度で熱処理するには溶融温度を1350〜
1500℃の温度範囲に保持することが熱エネルギー
の有効利用の点より最もよい。また、結晶化温度
を800℃以上1000℃未満と限定したのは前記組成
に調整された廃棄物焼却灰は800℃未満では結晶
核形成および結晶成長が起りにくく、1000℃以上
では溶融工程で発生する排ガスを循環するだけで
はこの温度を保持する事が困難で追焚きが必要と
なり、更には結晶成長が進んで分級工程後必要に
応じて設けられる破砕工程において破砕しにくく
なることからである。なお、結晶化に際してはそ
れぞれ特定温度範囲内の一定温度に所定時間保持
するのが均一な結晶核の形成および結晶成長をさ
せるうえでより好ましいが、それぞれの特定温度
範囲内で所定時間かけてゆつくりと降温あるいは
昇温をしてもほぼ同等の結果が得られる。また、
結晶化時間を20分以上としたのは、20分未満の保
持時間では結晶量が少なくて必要とする結晶化を
行うことができないので、所望の強度の結晶化骨
材が得られないためである。このようにして得ら
れる骨材は溶融物を直接水砕することによつて得
られるガラス質骨材に比較して高い強度を有し、
しかも、溶融物を高温で結晶化することによつて
完全結晶化された骨材に比較してエネルギーが大
幅に節減できるため骨材製造コストが低く、しか
も、予め熱破砕することによつて粒状化されてく
るので破砕コストは低減し、結晶化後は殆んど分
級のみで骨材を得ることができる。 (発明の効果) 本発明は以上の説明によつて明らかなように、
廃棄物焼却灰を特定の温度で溶融後熱衝撃破砕し
て細粒状とし、しかる後に溶融炉排ガスを循環さ
せて排熱を有効利用した結晶化炉中において保持
させておくことによつて従来の大塊状の完全結晶
化物を機械破砕により細粒化する場合に比べて燃
料代並びに破砕コストが大幅に節減され、トータ
ルコストで50〜60%のコストダウンも可能となる
うえに粒径も溶融物の流下太さと噴霧水量を調整
するだけで任意の粒度分布とすることができる利
点がある。しかも、本発明によつて得られた骨材
は従来のガラス質の骨材に比べて化学的安定性並
びに機械的強度に優れており、骨材としての性能
並びにコンクリート試験における川砂との比較試
験においても何ら遜色がない事が確認され、従来
埋立処分されてきた廃棄物焼却灰の埋立処分地や
二次公害の心配をなくすことができる等種々の利
点があり、従来の廃棄物焼却灰の処理上の問題点
を解決した産業廃棄物を原料とする骨材の製造法
として産業上極めて有用なものである。 (実施例) 各所の下水処理場の廃棄物焼却灰を下記表に記
載する化学組成および組成比率に組成調整し、そ
れぞれの溶融特性に従つて1380〜1480℃の温度に
維持された溶融炉内において5時間で溶融し、そ
の溶融物の粘度を101/2ポイズ以下に維持しながら
溶融炉の湯口より5〜8mmφの棒状にて流下させ
た。該流下溶融物に噴霧水を3〜5/min吹付
けて急冷して熱衝撃破砕を行ない、引きつづき該
破砕物を溶融炉排ガスを循環させた結晶化炉中に
おいて850〜950℃に40分以上保持して部分的に結
晶化し、これを所定粒径に分級して得た骨材No.1
〜No.9を表−に本発明例として記載した。次に
本発明の数値限定範囲外の組成および熱処理条件
で得られた骨材No.10〜No.15を参考例として記載し
た。さらに以上の様にして製造された骨材を用い
てJIS規格に準じコンクリート強度試験を行つた
結果を本発明の数値限定外の骨材並びに川砂との
対比において表−に記載した。この結果から明
らかなように、本発明によつて得られた骨材は参
考例によつて得られた骨材に比べて機械的強度お
よび化学的安定性に優れていることが確認され
た。
(Field of Industrial Application) The present invention relates to a method for producing aggregate using waste incineration ash such as sewage sludge incineration ash and municipal waste incineration ash as a raw material. (Prior art) Conventionally, sewage sludge and garbage generated from sewage treatment plants and garbage treatment plants in various places have been incinerated and disposed of as incinerated ash in landfills, since dumping them directly in landfills poses hygiene and odor pollution problems. However, it is becoming difficult to secure land for landfills, and the elution of heavy metals from incinerated ash and other secondary pollution associated with landfill disposal have become major social problems. The effective use of waste incineration ash by melting it is also being considered. An attempt was made to melt waste incineration ash and use it effectively as aggregate, etc.
As shown in Publication No. 24010, there is a method of dropping a molten material into a water-sealed box and solidifying it in water to obtain small-sized glass aggregates, but the glass aggregates obtained by this method are It has the problems of low strength and lack of chemical stability, and
This method requires a large amount of heat for crystallization and requires large-scale mechanical crushing. This method had problems such as requiring equipment and increasing costs. (Purpose of the Invention) The present invention solves the above-mentioned problems and provides a waste disposal method that allows mass production of aggregate with excellent mechanical strength and chemical stability, and a particle size distribution that matches the intended use at a low cost. This method was developed for the purpose of producing aggregates using ash from incineration. (Structure of the invention) The main composition of the present invention is SiO 2 25 to 45% (wt%,
(same below), Al 2 O 3 5-15%, Fe 2 O 3 5-25%,
Within the range of CaO20-40%, MgO1-5%, P2O5 3-15 % and the ratio of (CaO + MgO)/SiO2 0.8-1.2
Waste incineration ash whose composition has been adjusted to It is characterized by crystallization after being held for 20 minutes or more. The waste incineration ash used as a raw material in the present invention is sewage sludge incineration ash or municipal waste incineration ash, etc.
These waste incineration ash contains SiO 2 , Al 2 O 3 ,
In addition to Fe 2 O 3 , CaO, MgO, and P 2 O 5 , it mainly contains K 2 O, Na 2 O, etc., and their content varies slightly depending on the type of incineration ash. Looking at the melting characteristics of waste incineration ash, that is, the relationship between viscosity and melting temperature, the forming temperature range corresponding to the viscosity range suitable for forming ordinary glass is extremely narrow compared to ordinary glass. It has the properties of so-called "short-legged glass," and its viscosity in the melting temperature range of 1,350°C or higher is considerably lower than that of ordinary glass. Suitable for flowing down, but in order to melt and then crush waste incineration ash with such a composition and semi-crystallize it into aggregate, SiO 2 25-45%, preferably 30
~40%, Al2O3 5-15 % preferably 5-10%,
Fe 2 O 3 5-25% preferably 5-15%, CaO20-40
% preferably 30-35%, MgO 1-5% preferably 2-5%, P2O5 3-15 % preferably 5-12% and (CaO + MgO)/ SiO2 ratio preferably 0.8-1.2. It is important that the ash is within the range of 0.9 to 1.1, and for this reason, the waste incineration ash obtained from the incinerator is analyzed, and if the composition range is not within the specific composition range, the above-mentioned Adjust to fall within the composition range. In addition, when adjusting the composition, it is preferable to use inexpensive clay, whitebait, red iron, coal, dolomite, and bone ash. The waste incineration ash whose composition has been adjusted in this way is
The viscosity required for melting at approximately 1500°C and allowing the molten material to flow down by gravity from the bottom of the melting furnace is, for example, 10 1
While maintaining the viscosity at less than poise, preferably less than 10 1/2 poise, the melt is poured from the sprue of the melting furnace into a rod-like or filament-like melt with a diameter corresponding to the final aggregate particle size, for example, about 3 to 10 mm in diameter. The falling molten material is cooled by spraying water or cooling gas to perform thermal shock crushing, and then the crushed material is placed in a crystallization furnace in which melting furnace exhaust gas is circulated. 800℃ or more and less than 1000℃, preferably 850℃
By heating and holding at a predetermined temperature in the temperature range of ~950°C for 20 minutes or more, preferably 40 minutes or more, crystal nuclei are formed in the crushed material and the crystallization rate is 20% centered around the crystal nuclei.
Partial crystal growth is caused to reach ~80%, preferably 40-60%. The granular crystallized material obtained in this way has already been crushed by thermal shock crushing in the previous process, so it can be made into a product as it is or after being classified, which greatly simplifies the series of steps to commercialize it. It will be done. In addition, in the present invention, SiO 2 is set to 25 to 45% because if SiO 2 is less than 25%, SiO 2 as a glass-forming skeleton is insufficient and a high-strength crystallized product cannot be obtained. If it exceeds the temperature, the melting temperature will rise, and the viscosity will increase at the melting temperature, making it difficult for the melt to flow down naturally from the bottom of the furnace, and also having an adverse effect on partially crystallizing it. 5-15 Al 2 O 3
% because if Al 2 O 3 is less than 5%, a high-strength crystallized product cannot be obtained, and if it exceeds 15%, the melting temperature becomes too high.
% because Fe 2 O 3 is an important component not only as a fluxing agent but also as a nucleating agent, and its amount is 5%.
If it is less than that, the effect as a flux will be weakened and the melting temperature will not be lowered, and the formation of crystal nuclei will be insufficient.
This is because if it exceeds 25%, the strength will be significantly reduced. Also, CaO is 20% to 40%.
If it is less than 40%, the viscosity of the melt will increase, which will have a negative effect on crystallization and the strength will decrease, and if it exceeds 40%, the chemical stability will be significantly reduced.
Furthermore, setting MgO to 1 to 5% means that MgO is
It is used as a composition adjusting agent in place of CaO,
This is because although it has the effect of increasing chemical stability, it has no effect if the content is less than 1%, and the effect remains unchanged even if it is added in an amount exceeding 5 % . The reason why it is set at 3 to 15% is because P 2 O 5 is the most important component as a nucleating agent, and if its amount is less than 3%, crystallization is difficult to occur in the temperature range of 800°C or higher and lower than 1000°C. If it exceeds %, the strength will decrease, which is not preferable. Furthermore, (CaO+
Setting the MgO)/SiO2 ratio between 0.8 and 1.2 is important not only for lowering the melting temperature but also for crystallizing the melt; if this mixture is less than 0.8 or more than 1.2, This is undesirable because the melting temperature rises, causing corrosion of the furnace material of the melting furnace and an increase in melting costs. Next, the melting temperature of waste incineration ash is
The reason why the temperature was limited to 1350 to 1500°C was because the molten waste incineration ash adjusted to the above composition range has the property of so-called "short-legged glass" in which the viscosity decreases rapidly as the melting temperature increases. If the temperature is below ℃, it will not be possible to obtain a viscosity of 10 1 poise or less, preferably 10 1/2 poise or less, which is necessary for the melt to flow down from the sprue of the melting furnace, so the diameter of the flowing melt will increase and thermal shock fracture will occur. This is because the crushing process is not carried out sufficiently and the crushing process is required again in the subsequent process.Also, maintaining a melting temperature over 1500℃ in an actual plant causes a large loss from both equipment and energy cost perspectives, so the upper limit should be set at 1500℃. ℃, and in the crystallization process after thermal crushing, if the exhaust gas generated in the melting process at 1350 to 1500℃ is circulated through the crystallization furnace, reheating in the crystallization furnace is almost unnecessary, so the temperature is 800 to 800℃.
For heat treatment at a temperature of 1000℃, the melting temperature must be 1350~
It is best to maintain the temperature within the 1500°C range in terms of effective use of thermal energy. In addition, the crystallization temperature was limited to 800°C or more and less than 1000°C because waste incineration ash adjusted to the above composition is difficult to form crystal nuclei and grow when it is below 800°C, and when it is above 1000°C, crystallization occurs during the melting process. This is because it is difficult to maintain this temperature by simply circulating the exhaust gas, which necessitates reheating, and furthermore, crystal growth progresses, making it difficult to crush in the crushing process that is provided as necessary after the classification process. In addition, during crystallization, it is more preferable to hold each temperature at a constant temperature within a specific temperature range for a predetermined period of time in order to form uniform crystal nuclei and grow crystals. Almost the same results can be obtained by changing the structure and lowering or increasing the temperature. Also,
The reason why the crystallization time was set to 20 minutes or more was because if the holding time was less than 20 minutes, the amount of crystals would be small and the necessary crystallization could not be performed, so a crystallized aggregate with the desired strength could not be obtained. be. The aggregate obtained in this way has higher strength than the glassy aggregate obtained by directly crushing the melt,
Moreover, by crystallizing the molten material at high temperatures, energy is significantly saved compared to completely crystallized aggregates, resulting in lower aggregate manufacturing costs. The crushing cost is reduced, and after crystallization, aggregate can be obtained almost only by classification. (Effects of the Invention) As is clear from the above description, the present invention has the following effects:
By melting the waste incineration ash at a specific temperature, thermal shock crushing it into fine particles, and then holding it in a crystallization furnace that circulates the melting furnace exhaust gas and effectively utilizes the exhaust heat, Compared to mechanically crushing a large block of completely crystallized material into fine particles, fuel costs and crushing costs are significantly reduced, making it possible to reduce the total cost by 50 to 60%. It has the advantage that any particle size distribution can be achieved by simply adjusting the thickness of the flow and the amount of water sprayed. In addition, the aggregate obtained by the present invention has superior chemical stability and mechanical strength compared to conventional glassy aggregates, and its performance as an aggregate and comparison test with river sand in concrete tests It has been confirmed that there is no inferiority to conventional waste incineration ash, and there are various advantages such as eliminating the need for landfill sites and secondary pollution for waste incineration ash, which has traditionally been disposed of in landfills. This method is extremely useful industrially as a method for producing aggregates from industrial waste that solves processing problems. (Example) Waste incineration ash from sewage treatment plants in various locations was adjusted to the chemical composition and composition ratio listed in the table below, and was placed in a melting furnace maintained at a temperature of 1380 to 1480°C according to the respective melting characteristics. The melt was melted in 5 hours, and the molten material was flowed down from the sprue of the melting furnace in a rod shape of 5 to 8 mm diameter while maintaining the viscosity of the melt at 10 1/2 poise or less. The falling melt is rapidly cooled by spraying water at 3 to 5 minutes per minute to perform thermal shock crushing, and then the crushed material is heated to 850 to 950°C for 40 minutes in a crystallization furnace in which melting furnace exhaust gas is circulated. Aggregate No. 1 obtained by holding the above, partially crystallizing it, and classifying it into a predetermined particle size.
- No. 9 are listed as examples of the present invention in the table. Next, aggregates No. 10 to No. 15 obtained with compositions and heat treatment conditions outside the numerically limited range of the present invention are described as reference examples. Furthermore, the results of a concrete strength test conducted in accordance with JIS standards using the aggregate produced as described above are shown in Table 1 in comparison with aggregates outside the numerical limits of the present invention and river sand. As is clear from the results, it was confirmed that the aggregate obtained by the present invention was superior in mechanical strength and chemical stability compared to the aggregate obtained by the reference example.

【表】【table】

【表】【table】

【表】【table】

【表】 なお、表−において圧壊強度破砕率は、 オートグラフ試験機による500Kg/cm2圧縮後の1.
2mm以下のスラグ重量/圧縮試験前のスラグ重量(1.2mm
〜2.5mm)×100 の式をもつて算出し、また、硫酸ナトリウム安定
性試験は、JIS A−1132骨材の安定性試験による
5回繰返しの減量率(%)により示す。さらに、
表−において圧縮強度はJIS A−1108、A−
1132に準拠してテストピースサイズ150mm〓×
300mmHn=3の平均値である。
[Table] In addition, in the table, the crushing strength and crushing rate are 1.
Slag weight of 2mm or less/Slag weight before compression test (1.2mm
~2.5mm) x 100, and the sodium sulfate stability test is shown as the weight loss rate (%) of 5 repetitions of the JIS A-1132 aggregate stability test. moreover,
In the table, the compressive strength is JIS A-1108, A-
Test piece size 150 mm 〓× according to 1132
300 mmH This is the average value of n=3.

Claims (1)

【特許請求の範囲】[Claims] 1 主たる組成がSiO225〜45%(重量%、以下
同じ)、Al2O35〜15%、Fe2O35〜25%、CaO20〜
40%、MgO1〜5%、P2O53〜15%の範囲内でか
つ(CaO+MgO)/SiO2の比を0.8〜1.2に組成調
整した廃棄物焼却灰を1350〜1500℃で溶融し、こ
の溶融物を急冷して熱衝撃破砕したのち前記溶融
工程で発生した排ガスを循環させた結晶化炉中に
おいて800℃以上1000℃未満の温度に20分以上保
持して結晶化することを特徴とする骨材の製造
法。
1 Main composition is SiO 2 25-45% (weight%, same below), Al 2 O 3 5-15%, Fe 2 O 3 5-25%, CaO20-
40%, MgO 1-5%, P 2 O 5 3-15% and the composition of (CaO + MgO) / SiO 2 ratio adjusted to 0.8-1.2 is melted at 1350-1500°C, The molten material is rapidly cooled and subjected to thermal shock crushing, and then held at a temperature of 800°C or more and less than 1000°C for 20 minutes or more to crystallize it in a crystallization furnace in which exhaust gas generated in the melting process is circulated. A method for producing aggregate.
JP58039833A 1983-03-10 1983-03-10 Manufacture of aggregate Granted JPS59164668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039833A JPS59164668A (en) 1983-03-10 1983-03-10 Manufacture of aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039833A JPS59164668A (en) 1983-03-10 1983-03-10 Manufacture of aggregate

Publications (2)

Publication Number Publication Date
JPS59164668A JPS59164668A (en) 1984-09-17
JPH0118027B2 true JPH0118027B2 (en) 1989-04-03

Family

ID=12563967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039833A Granted JPS59164668A (en) 1983-03-10 1983-03-10 Manufacture of aggregate

Country Status (1)

Country Link
JP (1) JPS59164668A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699167B2 (en) * 1990-03-23 1994-12-07 川崎重工業株式会社 Method for manufacturing waste molten slag
FR2712214B1 (en) * 1993-11-10 1996-01-19 Emc Services Waste crystallization process.
JPH09328384A (en) * 1996-06-07 1997-12-22 N K K Plant Kensetsu Kk Production of sludge melt-solidified form
JP3490221B2 (en) * 1996-07-18 2004-01-26 Jfeプラント&サービス株式会社 Method for producing molten solid from fly ash generated during sludge incineration
JP7095674B2 (en) * 2019-11-29 2022-07-05 Jfeスチール株式会社 How to make concrete

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152025A (en) * 1978-05-22 1979-11-29 Nichireki Chem Ind Co Production of artificial aggregate by pressure graining sewage sludg burnt ash
JPS57140366A (en) * 1981-02-17 1982-08-30 Gifushi Manufacture of aggregate from incineration ash

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152025A (en) * 1978-05-22 1979-11-29 Nichireki Chem Ind Co Production of artificial aggregate by pressure graining sewage sludg burnt ash
JPS57140366A (en) * 1981-02-17 1982-08-30 Gifushi Manufacture of aggregate from incineration ash

Also Published As

Publication number Publication date
JPS59164668A (en) 1984-09-17

Similar Documents

Publication Publication Date Title
JP2775525B2 (en) Method for producing crystallized glass
Leroy et al. Production of glass-ceramics from coal ashes
Romero et al. Use of vitrified urban incinerator waste as raw material for production of sintered glass-ceramics
US3441396A (en) Process for making cellular materials
CN101302077B (en) Method for directly producing foamed glass by using slag tapping boil slag
CN110482865A (en) A kind of devitrified glass and preparation method thereof and purposes
JPH0118027B2 (en)
JPH0122212B2 (en)
JPS6150895B2 (en)
Agarwal et al. Crystallization behavior of cupola slag glass-ceramics
NO772349L (en) PROCEDURES FOR THE MANUFACTURE OF MINERAL WOOL PLATES
US3743525A (en) Hydraulic cements from glass powders
JPS6124074B2 (en)
JPS5933547B2 (en) Manufacturing method of crystallized aggregate
KR100683834B1 (en) Manufacturing method of glass-ceramics using steel dust in furnace
CN1063853A (en) A kind of tungsten slag sitall and preparation method thereof
JPH0124739B2 (en)
JPS5933546B2 (en) Method for manufacturing crystallized aggregate using sewage sludge residue as raw material
CN113548842A (en) Method for preparing baking-free brick by using ash
RU1815248C (en) Opaque glass
EP1946858A2 (en) Method of producing glass articles
JP3633957B2 (en) Method for producing crystallized product
US4339254A (en) Glass manufacture employing a silicon carbide refining agent
JPH04349180A (en) Production of inorganic foamed granule
WO1991003433A1 (en) Method of manufacturing glass-ceramic articles