JPH0124739B2 - - Google Patents

Info

Publication number
JPH0124739B2
JPH0124739B2 JP3983283A JP3983283A JPH0124739B2 JP H0124739 B2 JPH0124739 B2 JP H0124739B2 JP 3983283 A JP3983283 A JP 3983283A JP 3983283 A JP3983283 A JP 3983283A JP H0124739 B2 JPH0124739 B2 JP H0124739B2
Authority
JP
Japan
Prior art keywords
aggregate
incineration ash
waste incineration
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3983283A
Other languages
Japanese (ja)
Other versions
JPS59164667A (en
Inventor
Kazuo Okada
Akitoshi Yamada
Takao Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
TOKYOTO
Original Assignee
NIPPON GAISHI KK
TOKYOTO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK, TOKYOTO filed Critical NIPPON GAISHI KK
Priority to JP58039832A priority Critical patent/JPS59164667A/en
Publication of JPS59164667A publication Critical patent/JPS59164667A/en
Publication of JPH0124739B2 publication Critical patent/JPH0124739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/108Burned or pyrolised refuse involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • C04B18/026Melted materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は下水汚泥焼却灰や都市ごみ焼却灰等の
廃棄物焼却灰を原料とする結晶化骨材の製造法に
関するものである。 (従来技術) 従来、各地の下水処理場やごみ処理場から発生
する下水汚泥やごみはそのまま埋立投棄すると衛
生上あるい悪臭公害上問題があるので大部分は焼
却処理され、焼却灰として埋立投棄されている
が、埋立用地の確保が難しくなつてきているうえ
に焼却灰からの重金属等の溶出その他埋立処分に
ともなう二次公害が大きな社会問題となつてお
り、さらに省資源、省エネルギーの観点からも廃
棄物焼却灰を溶融して有効利用することが検討さ
れている。廃棄物焼却灰を溶融成形して骨材等に
有効利用しようとする試みとしては、特公昭55−
24010号公報に示されるように、溶融物を水封ボ
ツクス中に落下させて水中固化させて小塊状のガ
ラス質の骨材を得る方法があるが、この方法によ
つて得られるガラス質骨材は強度が弱い上に化学
的安定性に欠けるという問題点を有しており、ま
た、鋳型中に溶融物を投入固化させることにより
大塊状の結晶化物を得たのち破砕して骨材を得る
方法は、骨材とするために大規模な破砕装置が必
要であるうえに多大な破砕コストを必要とする等
の問題点を有するものであつた。 (発明の目的) 本発明は前記のような問題点を解決して機械的
強度および化学的安定性に優れ、しかも、用途に
合致した粒度分布の高強度の結晶化骨材を容易に
量産できる結晶化骨材の製造法を目的として完成
されたものである。 (発明の構成) 本発明は主たる組成がSiO225〜45%(重量%、
以下同じ)、Al2O35〜15%、Fe2O35〜25%、
CaO20〜40%、MgO1〜5%、P2O51〜10%の範
囲内でかつ(CaO+MgO)/SiO2の比を0.8〜1.2
に組成調整した廃棄物焼却灰を1350〜1500℃で溶
融し、この溶融物を急冷して熱衝撃破砕したのち
1000〜1200℃に30分以上保持して結晶化すること
を特徴とするものである。 本発明において原料となる廃棄物焼却灰は下水
汚泥焼却灰あるいは都市ごみ焼却灰等であつて、
これらの廃棄物焼却灰中には、SiO2、Al2O3
Fe2O3、CaO、MgO、P2O5の外にK2O、Na2O等
が主に含まれており、それらの含有量は焼却灰の
種類等により若干異なる。このような廃棄物焼却
灰の溶融特性すなわち溶融温度に対する粘度の関
係をみると一般のガラスの成形加工に適した粘度
域に対応する成形温度域は一般のガラスに比較し
て極端に狭く、いわゆる「足の短いガラス」の性
質を有しており、また、例えば1350℃以上の溶融
温度域における粘度は一般のガラスに比較してか
なり低いことから溶融したのち該溶融炉の炉底よ
り自然流下させるのに適しているがこのような組
成の廃棄物焼却灰を溶融後破砕し結晶化して骨材
にするには、SiO225〜45%好ましくは30〜40%、
Al2O35〜15%好ましくは5〜10%、Fe2O35〜25
%好ましくは5〜15%、CaO20〜40%好ましくは
30〜35%、MgO1〜5%好ましくは2〜5%、
P2O51〜10%好ましくは2〜10%の範囲内でかつ
(CaO+MgO)/SiO2の比を0.8〜1.2好ましくは
0.9〜1.1の範囲内であることが重要であり、この
ために焼却炉より得られた前記廃棄物焼却灰はこ
れを分析し組成範囲が前記特定組成範囲内にない
ときは、前記組成範囲内に入るように調整する。
なお、組成調整に際しては安価な粘土、シラス、
ベンガラ、石炭、ドロマイト、骨灰等を用いるこ
とが好ましい。このようにして組成調整された廃
棄物焼却灰は溶融炉中において1350〜1500℃程度
で溶融し、この溶融物を必要な粘度をたとえば
101ポイズ以下好ましくは101/2ポイズ以下の粘度
に維持しながら溶融炉の湯口より最終骨材粒度に
応じた径たとえば直径を3〜10mm程度の棒状もし
くは糸状の流下溶融物となるよう流下させ、該流
下溶融物に噴霧状を吹付けて冷却したり冷却気体
に吹付けたりして熱衝撃破砕を行い、引きつづい
て該破砕物を例えば前記溶融炉排ガスを熱源の一
部として利用した結晶化炉中において1000〜1200
℃好ましくは1050〜11500℃の温度範囲内の所定
温度に30分以上好ましくは50分以上加熱保持して
該破砕物中に結晶核の形成およびその結晶核を中
心とした結晶成長を起こさせる。このようにして
得られた粒状の結晶化物は前工程の熱衝撃破砕に
より既に破砕されているから、そのまま或いは分
級して製品とすればよく、また、所望の粒径以上
のものができた場合には加熱された状態で分級し
たうえ規定より大径のもののみ再度熱衝撃破砕す
ることにより規格内の製品とすることができるも
ので、一連の製造工程は簡略化される。なお、本
発明においてSiO2を25〜45℃としたのは25%未
満ではガラス形成骨格としてSiO2が不足して高
強度の結晶化物が得られないからであり、45%を
越えると溶融温度が上昇して前記溶融温度では粘
度が高くなつて該溶融物の該炉底からの自然流下
が難しくなるうえ結晶化にも悪影響を及ぼすから
であり、また、Al2O3を5〜15%とするのは
Al2O3が5%未満では高強度の結晶化物が得られ
ず、15%を越えると溶融温度が高くなりすぎるか
らであり、さらに、Fe2O3を5〜25%とするのは
Fe2O3は融剤としてばかりでなく核形成剤として
の重要な成分であり、その量が5%未満では融剤
としての効果がうすくて溶融温度が低下しないう
えに結晶核の形成も不充分であり、25%を越える
と強度を著しく低下させるからである。また、
CaOを20〜40%とするのはCaOが20%未満では溶
融物の粘度が増加するとともに結晶化に悪影響が
あるうえ強度が低下し、40%を越えると化学的安
定性を著しく低下させるからであり、さらに、
MgOを1〜5%とするのはMgOはCaOに代わる
組成調整剤として用いられて化学的安定性を増す
効果があるにも拘らずその含有量が1%未満では
その効果がなく、5%を越える量を入れても効果
は変らないからであり、また、P2O5を1〜10%
とするにはP2O5は核形成剤として最も重要な成
分であつて、その量が1%未満では1000〜1200℃
の温度範囲では結晶核が形成されず、10%を越る
と強度低下をきたし好ましくない。さらにまた、
(CaO+MgO)/SiO2比を0.8〜1.2とすることは
溶融温度の低下のために重要であるうえに溶融物
の結晶化のためにも重要であつて、この混合比が
0.8未満あるいは1.2を越えると溶融温度が上昇し
て溶融炉の炉材の侵蝕や溶融コストの増加が起る
ので好ましくない。次に廃棄物焼却灰の溶融温度
を1350〜1500℃と限定したのは、前記組成範囲に
調整された廃棄物焼却灰の溶融物は溶融温度が高
くなると急激に粘性が低下するいわゆる「足の短
いガラス」の性質を有することから、1350℃未満
では溶融炉の湯口から溶融物を流下させるのに必
要な粘度の101ポイズ以下好ましくは101/2ポイズ
以下の粘度が得られないため流下する溶融物の径
が大きくなつて熱衝撃破砕が充分に行なわれず、
後工程で再度破砕することが必須となるからで、
また、実プラントにおいて1500℃を越える溶融温
度を維持することは設備上からもエネルギーコス
ト面からもロスが大きいので上限を1500℃とし、
さらに、破砕後の結晶化工程において1000〜1200
℃の温度で熱処理する関係上溶融温度を1350〜
1500℃の温度範囲に保持することが熱エネルギー
の有効利用の点より最もよいからである。また、
結晶化温度を1000〜1200℃と限定したのは、前記
組成に調整された廃棄物焼却灰は1000℃未満では
結晶成長が充分に起りにくく、1200℃を越えると
結晶化物の再融解等により安定した結晶成長が妨
げられるからである。結晶化に際してはそれぞれ
特定温度範囲内の一定温度に所定時間保持するの
が均一な結晶核の形成および結晶成長をさせるう
えで好ましいが、前述のとおりそれぞれの特定温
度範囲内で所定時間かけてゆつくりと降温あるい
は昇温してもほぼ同等の結果が得られ、また、結
晶化時間を30分以上としたのは、30分未満の保持
時間では結晶化を完全に行なうことができないの
で、高強度の結晶化骨材が得られないためであ
る。このようにして得られる結晶化骨材は高強度
であるばかりでなく、最終的に利用される骨材状
のものとして最初から所定粒度分布に調整される
から、破砕、切断、加工といつた後処理のための
手間が不要となる。 (発明の効果) 本発明は前記説明から明らかなように、特定組
成範囲の廃棄物焼却灰を特定の溶融条件で溶融し
たのち急冷し熱破砕して骨材形状のものとしてさ
らに、特定の結晶化条件下で処理することによつ
て機械的強度および化学的安定性に優れた結晶化
骨材を容易に得ることができるものであつて、こ
のような優れた特性を持つ結晶化骨材はセメント
と混練して使用される普通骨材、道路の埋め戻し
舗装等に使用される砕石、その他用途は極めて広
く、また、結晶化には溶融炉排ガスを有効利用す
ることもできるうえに破砕化工程を溶融物の急冷
による熱衝撃破砕により行うようにしたので、成
形後に機械的破砕を行う場合に比べコストを20〜
30%低下できるうえに省エネルギー的にも優れ、
さらに、従来埋立処分された廃棄物焼却灰の埋立
処分地や二次公害の心配をなくすることもできる
等種々の利点があり、従来の廃棄物焼却灰処理の
問題点を解決した廃棄物焼却灰を原料とする結晶
化骨材の製造法として業界の発展に寄与するとこ
ろ極めて大なるものである。 (実施例) 各所の下水処理場の廃棄物焼却灰を下記表に記
載する化学組成及び組成比率に組成調整し、それ
ぞれの溶融特性に従つて1380〜1480℃内の温度に
維持された溶融炉内において5時間で溶融してそ
の溶融物の粘度を101/2ポイズ以下に維持しながら
溶融炉の湯口より5〜8mmφ中の棒状に流下さ
せ、該流下溶融物に噴霧水を3〜5/min吹付
けて急冷して熱衝撃破砕を行い、引きつづき該破
砕物を1050〜1150℃に維持された結晶化炉中に50
分保持して結晶化し、これを所定粒径に分級して
得た結晶化骨材No.1〜No.11を表−に本発明例と
して記載した。次に本発明の数値限定範囲外の組
成並びに熱処理条件で得られた骨材No.12〜No.16を
参考例として記載した。また、以上の様にして製
造された結晶化骨材を用いてJIS規格に準じコン
クリート強度試験を行つた結果を本発明の数値限
定外の骨材並びに川砂との対比において表−に
記載した。この結果から明らかなように、本発明
によつて得られた結晶化骨材は参考例によつて得
られた骨材に比べて機械的強度および化学的安定
性に優れていることが確認された。
(Field of Industrial Application) The present invention relates to a method for producing crystallized aggregate using waste incineration ash such as sewage sludge incineration ash and municipal waste incineration ash as a raw material. (Conventional technology) Conventionally, sewage sludge and garbage generated from sewage treatment plants and garbage treatment plants in various places have been incinerated and disposed of as incinerated ash in landfills, since dumping them directly in landfills poses hygiene and odor pollution problems. However, it is becoming difficult to secure land for landfills, and secondary pollution associated with landfill disposal, such as the elution of heavy metals from incinerated ash, has become a major social problem. The effective use of waste incineration ash by melting it is also being considered. An attempt was made to melt and mold waste incineration ash to effectively use it as aggregate, etc.
As shown in Publication No. 24010, there is a method of dropping a molten material into a water-sealed box and solidifying it in water to obtain small-sized vitreous aggregate. has the problems of low strength and lack of chemical stability.Also, by pouring the molten material into a mold and solidifying it, large chunks of crystallized material are obtained and then crushed to obtain aggregate. This method has problems such as requiring a large-scale crushing device to produce aggregate and requiring a large amount of crushing cost. (Objective of the Invention) The present invention solves the above-mentioned problems and enables easy mass production of high-strength crystallized aggregate that has excellent mechanical strength and chemical stability, and has a particle size distribution that matches the intended use. It was completed for the purpose of producing crystallized aggregate. (Structure of the invention) The main composition of the present invention is SiO 2 25 to 45% (wt%,
(same below), Al 2 O 3 5-15%, Fe 2 O 3 5-25%,
Within the range of CaO20-40%, MgO1-5%, P2O5 1-10 % and the ratio of (CaO + MgO)/SiO2 0.8-1.2
Waste incineration ash whose composition has been adjusted to
It is characterized by being crystallized by being held at 1000-1200°C for 30 minutes or more. The waste incineration ash used as a raw material in the present invention is sewage sludge incineration ash or municipal waste incineration ash, etc.
These waste incineration ash contains SiO 2 , Al 2 O 3 ,
In addition to Fe 2 O 3 , CaO, MgO, and P 2 O 5 , it mainly contains K 2 O, Na 2 O, etc., and their content varies slightly depending on the type of incineration ash. Looking at the melting characteristics of waste incineration ash, that is, the relationship between melting temperature and viscosity, the forming temperature range corresponding to the viscosity range suitable for forming ordinary glass is extremely narrow compared to ordinary glass. It has the properties of "short-legged glass," and its viscosity in the melting temperature range of 1350°C or higher is considerably lower than that of ordinary glass. In order to melt and then crush and crystallize waste incineration ash with this composition to make aggregate, SiO 2 25 to 45%, preferably 30 to 40%,
Al 2 O 3 5-15% preferably 5-10%, Fe 2 O 3 5-25
% preferably 5-15%, CaO20-40% preferably
30-35%, MgO1-5% preferably 2-5%,
P 2 O 5 in the range of 1 to 10%, preferably 2 to 10%, and the ratio of (CaO + MgO) / SiO 2 to 0.8 to 1.2, preferably
It is important that the composition is within the range of 0.9 to 1.1, and for this reason, the waste incineration ash obtained from the incinerator is analyzed and if the composition range is not within the specific composition range, it is determined that it is within the composition range. Adjust so that it fits.
In addition, when adjusting the composition, inexpensive clay, whitebait,
It is preferable to use red iron, coal, dolomite, bone ash, etc. The waste incineration ash whose composition has been adjusted in this way is melted at a temperature of about 1350 to 1500°C in a melting furnace, and the molten material is adjusted to the required viscosity, for example.
10 While maintaining the viscosity at 1 poise or less, preferably 10 1/2 poise or less, the melt is poured down from the sprue of the melting furnace to form a rod-like or string-like melt with a diameter corresponding to the final aggregate particle size, for example, about 3 to 10 mm. The flowing melt is cooled by being sprayed with a spray or by being sprayed with a cooling gas, and then the crushed material is used, for example, as part of the heat source, such as the melting furnace exhaust gas. 1000-1200 in crystallization furnace
The crushed material is heated and held at a predetermined temperature, preferably within a temperature range of 1050 to 11500°C, for 30 minutes or more, preferably 50 minutes or more, to cause formation of crystal nuclei in the crushed material and crystal growth centered on the crystal nuclei. The granular crystallized material obtained in this way has already been crushed by thermal shock crushing in the previous step, so it can be made into a product as it is or after being classified. This method simplifies the series of manufacturing processes by classifying the materials in a heated state and subjecting only those with larger diameters than the standard to thermal shock crushing again to produce products that meet the specifications. In addition, in the present invention, SiO 2 is set at 25 to 45°C because if it is less than 25%, there will be insufficient SiO 2 as a glass-forming skeleton and a high-strength crystallized product cannot be obtained.If it exceeds 45%, the melting temperature will increase. This is because the viscosity increases at the melting temperature due to the increase in the melting temperature, making it difficult for the melt to flow down naturally from the bottom of the furnace, and also having a negative effect on crystallization . What is meant by
If Al 2 O 3 is less than 5%, a high-strength crystallized product cannot be obtained, and if it exceeds 15%, the melting temperature becomes too high. Furthermore, setting Fe 2 O 3 to 5 to 25% is
Fe 2 O 3 is an important component not only as a fluxing agent but also as a nucleating agent; if its amount is less than 5%, its effect as a fluxing agent is weak, the melting temperature does not decrease, and crystal nuclei are not formed. This is because if it exceeds 25%, the strength will be significantly reduced. Also,
The reason why CaO is set at 20 to 40% is because if CaO is less than 20%, the viscosity of the melt will increase, it will have a negative effect on crystallization, and the strength will decrease, and if it exceeds 40%, it will significantly reduce the chemical stability. And furthermore,
The reason for setting MgO to 1 to 5% is that although MgO is used as a composition adjusting agent in place of CaO and has the effect of increasing chemical stability, it has no effect if the content is less than 1%. This is because the effect does not change even if you add more than 1% of P 2 O 5 .
To achieve this, P 2 O 5 is the most important component as a nucleating agent, and if its amount is less than 1%, the temperature
Crystal nuclei are not formed in the temperature range of , and if it exceeds 10%, the strength decreases, which is not preferable. Furthermore,
Setting the (CaO + MgO)/SiO 2 ratio to 0.8 to 1.2 is important not only for lowering the melting temperature but also for crystallizing the melt.
If it is less than 0.8 or more than 1.2, the melting temperature will rise, causing corrosion of the melting furnace material and an increase in melting cost, which is not preferable. Next, we limited the melting temperature of waste incineration ash to 1350 to 1500℃ because the molten waste incineration ash adjusted to the above composition range rapidly decreases in viscosity as the melting temperature increases. Because it has the properties of "short glass", if it is below 1350℃, it is not possible to obtain a viscosity of 10 1 poise or less, preferably 10 1/2 poise or less, which is the viscosity required for the melt to flow down from the melting furnace sprue. As the diameter of the melt becomes larger, thermal shock crushing cannot be carried out sufficiently.
This is because it will be necessary to crush it again in the post-process.
In addition, maintaining a melting temperature over 1500℃ in an actual plant results in a large loss in terms of equipment and energy costs, so the upper limit is set at 1500℃.
Furthermore, in the crystallization process after crushing,
The melting temperature due to heat treatment at a temperature of 1350 ~
This is because it is best to maintain the temperature within the 1500°C range in terms of effective use of thermal energy. Also,
The crystallization temperature was limited to 1,000 to 1,200°C because the waste incineration ash adjusted to the above composition does not sufficiently grow crystals at temperatures below 1,000°C, and becomes stable due to remelting of crystallized materials when it exceeds 1,200°C. This is because the growth of crystals is hindered. During crystallization, it is preferable to hold each temperature at a constant temperature within a specific temperature range for a predetermined period of time in order to form uniform crystal nuclei and grow crystals. Almost the same results were obtained even if the temperature was lowered or raised, and the reason why the crystallization time was set to 30 minutes or more was because crystallization cannot be completed completely with a holding time of less than 30 minutes. This is because strong crystallized aggregate cannot be obtained. The crystallized aggregate obtained in this way not only has high strength, but also has a predetermined particle size distribution adjusted from the beginning as the final aggregate used, so it can be easily crushed, cut, and processed. No effort is required for post-processing. (Effects of the Invention) As is clear from the above description, the present invention melts waste incineration ash with a specific composition range under specific melting conditions, rapidly cools it, and thermally crushes it to form an aggregate shape. Crystallized aggregate with excellent mechanical strength and chemical stability can be easily obtained by processing under oxidizing conditions. It has a wide range of uses, including ordinary aggregate used when mixed with cement, crushed stone used for road backfilling, etc., and melting furnace exhaust gas can be effectively used for crystallization, as well as crushed stone. Since the process is carried out by thermal shock crushing by rapid cooling of the molten material, the cost is reduced by 20~20% compared to mechanical crushing after molding.
In addition to being able to reduce energy consumption by 30%, it also has excellent energy savings.
In addition, waste incineration has various advantages such as eliminating the need for landfill sites for waste incineration ash that was previously disposed of in landfills and the need for secondary pollution. This is an extremely significant contribution to the development of the industry as a method for producing crystallized aggregate using ash as a raw material. (Example) Waste incineration ash from various sewage treatment plants was adjusted to the chemical composition and composition ratio listed in the table below, and a melting furnace was maintained at a temperature between 1380 and 1480 degrees Celsius according to the respective melting characteristics. The molten material is melted within 5 hours, and while maintaining the viscosity of the molten material below 10 1/2 poise, it is allowed to flow down from the sprue of the melting furnace in the form of a rod with a diameter of 5 to 8 mm. Thermal shock crushing is carried out by rapid cooling by spraying for 50 minutes at
Crystallized aggregates No. 1 to No. 11 obtained by holding and crystallizing the aggregate to a predetermined particle size are shown in Table 1 as examples of the present invention. Next, aggregates No. 12 to No. 16 obtained under compositions and heat treatment conditions outside the numerically limited range of the present invention are described as reference examples. In addition, the results of a concrete strength test conducted in accordance with JIS standards using the crystallized aggregate produced as described above are listed in Table 1 in comparison with aggregates outside the numerical limits of the present invention and river sand. As is clear from this result, it was confirmed that the crystallized aggregate obtained by the present invention has superior mechanical strength and chemical stability compared to the aggregate obtained by the reference example. Ta.

【表】【table】

【表】【table】

【表】【table】

【表】 なお、表−において圧壊強度破砕率は、 オートグラフ試験機による500Kg/cm2圧縮後の1.2mm以
下のスラグ重量/圧縮試験前のスラグ重量(1.2mm〜2.5
mm)×100 の式をもつて算出し、また、硫酸ナトリウム安定
性試験は、JISA−1132骨材の安定性試験による
5回繰返しの減量率(%)により示す。さらに、
表−において圧縮強度はJISA−1108、A−
1132に準拠してテストピースサイズ150mm〓×
300mmHn=3の平均値である。
[Table] In addition, in the table, the crushing strength crushing rate is calculated as follows: Weight of slag of 1.2 mm or less after compression by an autograph tester at 500 kg/cm 2 / Weight of slag before compression test (1.2 mm to 2.5 mm)
mm) x 100, and the sodium sulfate stability test is shown as the weight loss rate (%) of 5 repetitions of the JISA-1132 aggregate stability test. moreover,
In the table, the compressive strength is JISA-1108, A-
Test piece size 150 mm 〓× according to 1132
300 mmH This is the average value of n=3.

Claims (1)

【特許請求の範囲】[Claims] 1 主たる組成がSiO225〜45%(重量%、以下
同じ)、Al2O35〜15%、Fe2O35〜25%、CaO20〜
40%、MgO1〜5%、P2O51〜10%の範囲内でか
つ(CaO+MgO)/SiO2の比を0.8〜1.2に組成調
整した廃棄物焼却灰を1350〜1500℃で溶融し、こ
の溶融物を急冷して熱衝撃破砕したのち1000〜
1200℃で30分以上保持して結晶化することを特徴
とする結晶化骨材の製造法。
1 Main composition is SiO 2 25-45% (weight%, same below), Al 2 O 3 5-15%, Fe 2 O 3 5-25%, CaO20-
40%, MgO 1-5%, P 2 O 5 1-10% and the composition of (CaO + MgO) / SiO 2 ratio adjusted to 0.8-1.2 is melted at 1350-1500°C, After rapidly cooling this molten material and subjecting it to thermal shock crushing,
A method for producing crystallized aggregate characterized by crystallizing it by holding it at 1200℃ for 30 minutes or more.
JP58039832A 1983-03-10 1983-03-10 Manufacture of crystallized aggregate Granted JPS59164667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039832A JPS59164667A (en) 1983-03-10 1983-03-10 Manufacture of crystallized aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039832A JPS59164667A (en) 1983-03-10 1983-03-10 Manufacture of crystallized aggregate

Publications (2)

Publication Number Publication Date
JPS59164667A JPS59164667A (en) 1984-09-17
JPH0124739B2 true JPH0124739B2 (en) 1989-05-12

Family

ID=12563939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039832A Granted JPS59164667A (en) 1983-03-10 1983-03-10 Manufacture of crystallized aggregate

Country Status (1)

Country Link
JP (1) JPS59164667A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152025A (en) * 1978-05-22 1979-11-29 Nichireki Chem Ind Co Production of artificial aggregate by pressure graining sewage sludg burnt ash
JPS57140366A (en) * 1981-02-17 1982-08-30 Gifushi Manufacture of aggregate from incineration ash

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152025A (en) * 1978-05-22 1979-11-29 Nichireki Chem Ind Co Production of artificial aggregate by pressure graining sewage sludg burnt ash
JPS57140366A (en) * 1981-02-17 1982-08-30 Gifushi Manufacture of aggregate from incineration ash

Also Published As

Publication number Publication date
JPS59164667A (en) 1984-09-17

Similar Documents

Publication Publication Date Title
JP2775525B2 (en) Method for producing crystallized glass
Endo et al. Production of glass ceramics from sewage sludge
CN102826758A (en) Industrial microcrystalline glass plate resistant to wear and corrosion and preparation method thereof
US3441396A (en) Process for making cellular materials
CN113651538A (en) Method for preparing microcrystalline glass by melting waste incineration fly ash
JPH0122212B2 (en)
JPS6150895B2 (en)
JPH0118027B2 (en)
WO2020104727A1 (en) Process for producing foam glass
JPH0124739B2 (en)
JPS6124074B2 (en)
CN105731849A (en) Environment-friendly regenerated glass sand preparation method and environment-friendly regenerated glass sand
JPS6121794A (en) Utilization of steel making slag
JPS5933547B2 (en) Manufacturing method of crystallized aggregate
JP3624033B2 (en) Artificial lightweight aggregate
CN1063853A (en) A kind of tungsten slag sitall and preparation method thereof
JPS5933546B2 (en) Method for manufacturing crystallized aggregate using sewage sludge residue as raw material
JP3633957B2 (en) Method for producing crystallized product
JPH11106223A (en) Production of glassy foamed product
KR100302235B1 (en) Glass Ceramic Manufacturing Method
JPH04349180A (en) Production of inorganic foamed granule
RU1815248C (en) Opaque glass
JP5515870B2 (en) Blast furnace slag fine aggregate
JP2000159578A (en) Artificial stone using pulverized stone and crushed stone of granite and its production
JP3368166B2 (en) Method for producing hollow particles