JPH01179711A - Aluminium nitride powder - Google Patents

Aluminium nitride powder

Info

Publication number
JPH01179711A
JPH01179711A JP156788A JP156788A JPH01179711A JP H01179711 A JPH01179711 A JP H01179711A JP 156788 A JP156788 A JP 156788A JP 156788 A JP156788 A JP 156788A JP H01179711 A JPH01179711 A JP H01179711A
Authority
JP
Japan
Prior art keywords
powder
polymn
aluminum nitride
nitride powder
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP156788A
Other languages
Japanese (ja)
Inventor
Yoshiki Hashizume
良樹 橋詰
Eikichi Uchimura
内村 栄吉
Hiroaki Ueshimo
上霜 浩昭
Yoshiteru Miyazawa
宮沢 吉輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP156788A priority Critical patent/JPH01179711A/en
Publication of JPH01179711A publication Critical patent/JPH01179711A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain aluminium nitride powder having improved water resistance and moisture resistance, and having high preservation stability by coating the surface of AlN powder with a resin produced by the in-situ polymn. of a polymerizable monomer in an org. solvent in the presence of a polymn. initiator. CONSTITUTION:The title aluminium nitride powder is produced by coating the surface of AlN powder with a resin produced by polymerizing a polymerizable monomer in-situ in an org. solvent in the presence of a polymn. initiator. Said in-situ polymn. is carried out by allowing a polymerizable monomer supplied externally to react with the surface of powder, pref. in the presence of a polymn. initiator, and covering the surface of the powder with the formed polymer uniformly. Preferred polymn. temp. is 60-200 deg.C, and the reaction atmosphere is pref. inert gas atmosphere such as N2, He, Ar, etc., for the purpose of increasing the polymn. efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高熱伝導性充填材若しくは焼結用原料として
使用される安定性の優れた窒化アルミニ1クム粉末に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a highly stable aluminum nitride 1 cum powder used as a highly thermally conductive filler or a raw material for sintering.

従来の技術 窒化アルミニウムは優れた熱伝導性と高い電気絶縁性を
兼ね備えたセラミック材料で、IC基板をはじめとする
種々の分野への応用が期待されている。
BACKGROUND OF THE INVENTION Aluminum nitride is a ceramic material that has both excellent thermal conductivity and high electrical insulation, and is expected to be applied to various fields including IC substrates.

たとえば、半導体封止材料には従来エポキシ樹脂が使用
されてきたが、半導体素子の高集積化に伴い放熱性の優
れた封止材料が必要となってきている。このlCめ、樹
脂に溶融シリカ、結晶シリカ等の充填材を加えて高熱伝
導化する方策がとられているが、現状では1.5Δ/m
−に程度の熱伝導性が得られているにずぎない。より高
い熱伝導性を得るためにはより高熱伝導性の充填材を配
合する必要があり、窒化アルミニウムはその有力な候補
材料と考えられる。しかし、窒化アルミニラl\には次
式のように水と容易に反応する性質があるため A I N −ト 3 [」    0 →  Aj!
(01−1)  3 −ト N ト13モールドICの
耐湿性を低下させ高信頼性が得られないという問題が生
ずる。
For example, epoxy resins have conventionally been used as semiconductor encapsulating materials, but as semiconductor devices become more highly integrated, encapsulating materials with excellent heat dissipation properties are becoming necessary. Measures have been taken to increase thermal conductivity by adding fillers such as fused silica and crystalline silica to the resin, but currently the temperature is 1.5Δ/m.
It must be possible to obtain a thermal conductivity of -. In order to obtain higher thermal conductivity, it is necessary to incorporate a filler with higher thermal conductivity, and aluminum nitride is considered to be a promising candidate material. However, since aluminum nitride l\ has the property of easily reacting with water as shown in the following formula, A I N -t 3 ['' 0 → Aj!
(01-1) 3 - TO N TO 13 A problem arises in that the moisture resistance of the molded IC is reduced and high reliability cannot be obtained.

半導体封止材料に限らず、高熱伝導性と電気絶縁性を有
する樹脂成形体の要望はまずます高まつてきているが、
充填材として窒化アルミニウムを使用する場合には上記
のような耐湿性あるいは耐水性の問題があり、実用化に
至っていないのが現状である。
In addition to semiconductor encapsulation materials, the demand for resin moldings with high thermal conductivity and electrical insulation is increasing.
When aluminum nitride is used as a filler, there are problems with moisture resistance or water resistance as described above, and at present it has not been put to practical use.

一方、窒化アルミニウム焼結体はその優れた熱伝導性を
利用してIC基板やヒートシンク材として使用されてい
る。窒化アルミニウム焼結体は、通常窒化アルミニウム
粉末に焼結助剤、有機バインダー等を添加混合後成形し
、脱バインダーを行った後不活性ガス中で常圧焼結して
製造される。
On the other hand, aluminum nitride sintered bodies are used as IC substrates and heat sink materials due to their excellent thermal conductivity. Aluminum nitride sintered bodies are usually manufactured by adding and mixing sintering aids, organic binders, etc. to aluminum nitride powder, shaping the mixture, removing the binder, and then sintering the mixture under normal pressure in an inert gas.

この際原料窒化アルミニウム粉末に含まれる不純物酸素
量が焼結体の熱伝導率に重大な影響を及ぼすことは周知
である。しかしながら、窒化アルミニウムは先に述べた
ように水と容易に反応して水酸化アルミニウムとなる性
質があるため、そのハンドリング工程において空気中の
水分等により酸化を受りて純度が低下するという問題が
ある。従つて、そのハンドリング工程において水分の混
入に細心の注意を払う必要があった。特に、その低公害
性、安全性の点から従来一般的に用いられてきた水系バ
インダーを窒化アルミニウムに適用することが不可能で
あった。
At this time, it is well known that the amount of impurity oxygen contained in the raw material aluminum nitride powder has a significant effect on the thermal conductivity of the sintered body. However, as mentioned above, aluminum nitride has the property of easily reacting with water to form aluminum hydroxide, so there is a problem that during the handling process, it is oxidized by moisture in the air and its purity decreases. be. Therefore, it was necessary to pay close attention to moisture contamination during the handling process. In particular, it has been impossible to apply water-based binders, which have been commonly used in the past, to aluminum nitride due to their low pollution properties and safety.

発明の解決しようとする問題点 本発明の目的は、水あるいは湿気に対して安定な窒化ア
ルミニウム粉末を提供することにある。
Problems to be Solved by the Invention An object of the present invention is to provide an aluminum nitride powder that is stable against water or moisture.

さらに具体的には、半導体封止材料等に使用可能な高熱
伝導性充填材としての窒化アルミニウム粉末もしくは水
系バインダーが適用可能な窒化アルミニウム粉末を提供
しようとするものである。
More specifically, the present invention aims to provide aluminum nitride powder as a highly thermally conductive filler that can be used in semiconductor encapsulation materials or the like, or aluminum nitride powder to which an aqueous binder can be applied.

問題点を解決するための手段 本発明の特徴は、重合性モノマーをin 5itu 重
合させることにより窒化アルミニウム粉末表面に均一で
かつ強固な樹脂層を形成することにある。
Means for Solving the Problems The feature of the present invention is that a uniform and strong resin layer is formed on the surface of aluminum nitride powder by in 5 in situ polymerization of a polymerizable monomer.

本発明において使用され得る重合性モノマーとしては、
アクリル酸、アクリル酸エステル、メタクリル酸、メタ
クリル酸エステル、クロトン酸。
Polymerizable monomers that can be used in the present invention include:
Acrylic acid, acrylic esters, methacrylic acid, methacrylic esters, crotonic acid.

イタコン酸、シトラコン酸、オレイン酸、マレイン酸、
無水マレイン酸、スチレン、α−メチルスチレン、ビニ
ルトルエン、アクリロニトリル、メタクリロニ1〜リル
、酢酸ビニル、プロピオン酸ビニル、グリシジルアクリ
レート、グリシジルメタクリレート、シクロヘキセンビ
ニルモノオギシド。
itaconic acid, citraconic acid, oleic acid, maleic acid,
Maleic anhydride, styrene, α-methylstyrene, vinyltoluene, acrylonitrile, 1-lyl methacrylonitrile, vinyl acetate, vinyl propionate, glycidyl acrylate, glycidyl methacrylate, cyclohexene vinyl monooxide.

ジビニルベンゼンモノオキシド、エボニ1シ化1,2−
ポリブタジェンが例示され得、また架橋剤として機能し
得る重合性モノマーとしては、ジビニルベンゼン、1,
6−ヘキサンジオールジアクリレート。
Divinylbenzene monoxide, ebony 1,2-
Examples of polybutadiene include divinylbenzene, 1,
6-Hexanediol diacrylate.

トリメチロールプロパントリアクリレート、トリメチロ
ールプロパントリメタクリレート、ペンタエリスリトー
ルトリアクリレート、テトラメチロールプロパンテトラ
アクリレートが例示され得る。
Examples include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, and tetramethylolpropane tetraacrylate.

本発明において原料として使用され得る窒化ア−I”、
− ルミニウム粉末は特に限定されないが、粒径0.5〜5
0μs、比表面積0.1〜20わ勺、純度90%以上の
粉末が適当である。真空下200〜500℃において1
0分へ・2時間l加熱することにより表面の吸着水分を
予め除去することが好ましい。
Nitride A-I” which can be used as a raw material in the present invention,
- Luminium powder is not particularly limited, but has a particle size of 0.5 to 5
Powders with a specific surface area of 0.1 to 20 μs and a purity of 90% or more are suitable. 1 at 200-500℃ under vacuum
It is preferable to remove the adsorbed moisture on the surface in advance by heating for 0 minutes/2 hours.

本発明においてin 5rtu重合とは、粉末の表面上
において外部より供給された重合性モノマーを好ましく
は重合開始剤の存在下で反応させ、該粉末表面に重合体
を均質な状態で被覆させる重合方法であり、具体的には
窒化アルミニウム粉末を有機溶媒に分散させたスラリー
に重合性千ツマ−と重合開始剤を添加し、粉末表面に重
合体を被覆するに充分な時間撹拌混合する。
In the present invention, in 5 rtu polymerization refers to a polymerization method in which a polymerizable monomer supplied from the outside is reacted on the surface of a powder, preferably in the presence of a polymerization initiator, and the surface of the powder is coated with a polymer in a homogeneous state. Specifically, a polymerizable powder and a polymerization initiator are added to a slurry in which aluminum nitride powder is dispersed in an organic solvent, and the mixture is stirred for a sufficient time to coat the powder surface with the polymer.

有機溶媒および重合開始剤は上記した重合性七ツマ−を
重合する際に通常使用されるものでよく、有機溶媒とし
ては脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化
水素、アルコール系、ケトン系、エステル系、ニーデル
系、必要に応じこれらを十分に脱水乾燥したものが例示
され得、重合開始剤とし′Cはジーt−プチルパーオキ
リイド、アセヂルパーオキザイド、ペンゾイルパーオギ
サイド。
The organic solvent and polymerization initiator may be those commonly used when polymerizing the above-mentioned polymerizable hexamers. Examples of the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, alcohols, and ketones. Examples include ester-based, ester-based, needle-based, and those obtained by sufficiently dehydrating and drying these if necessary. As a polymerization initiator, 'C' is di-t-butyl peroxide, acetyl peroxide, or penzoyl peroxide.

ラウロイルパーオキリイド、クミルヒドロパーオキサイ
ド、t−ブヂルパーオキザイド等の過酸化物およびα、
α′−アゾビスイソブチロニ1〜リル等のアゾ化合物が
例示され得る。
Peroxides such as lauroyl peroxide, cumyl hydroperoxide, t-butyl peroxide and α,
Examples include azo compounds such as α'-azobisisobutyroni-1-lyl.

重合時の反応温度は60〜200℃が好適であり、また
重合効率を高めるLで反応雰囲気は窒素、ヘリウム、ア
ルゴン等の不活性ガス雰囲気にすることが望ましい。
The reaction temperature during polymerization is preferably 60 to 200°C, and the reaction atmosphere is preferably an inert gas atmosphere such as nitrogen, helium, or argon, with L increasing the polymerization efficiency.

窒化アルミニウム粉末を、該粉末100重量部に対しで
0.1〜20重尾部の樹脂で被覆することが望ましい。
It is desirable to coat the aluminum nitride powder with a resin in an amount of 0.1 to 20 parts by weight per 100 parts by weight of the powder.

前記樹脂の量が0.1重量部未満では所望の効果が充分
に達成されず、20重量部を超えるときには焼結の際の
脱脂不良や樹脂成形体の熱伝導率低下等の問題が生ずる
If the amount of the resin is less than 0.1 part by weight, the desired effect will not be fully achieved, and if it exceeds 20 parts by weight, problems such as poor degreasing during sintering and a decrease in thermal conductivity of the resin molding will occur.

以下、本発明の非限定的実施例および比較例を示す。Below, non-limiting examples and comparative examples of the present invention are shown.

実施例1 21の四つロフラスコにエポキシ化1.2−ポリブタジ
ェン0.38jj、 1.6−ヘキサンジオールジアク
リレート0.58SF、アクリル酸0.14g、ミネラ
ルスピリット1000!7および/vN粉末(平均粒径
5.5声。
Example 1 In a 21-inch four-loaf flask were mixed 0.38jj of epoxidized 1,2-polybutadiene, 0.58SF of 1,6-hexanediol diacrylate, 0.14g of acrylic acid, Mineral Spirit 1000!7 and /vN powder (average grain Diameter 5.5 voices.

比表面積0.8Td/ g 、純度972%)  20
0gを入れ、窒素ガスを導入しながら撹拌混合した。系
内の温度は80℃に昇温した。昇温後、α、α′−アゾ
ビスイソブヂロニトリル1Ljを添加し、80℃にて6
時間撹拌混合しながら反応させた。反応終了後、スラリ
ーを濾過し、これをn−ヘキサンで洗浄し、乾燥して樹
脂被覆AeN粉末を得た。被覆樹脂量は0.48重量部
であった。
Specific surface area 0.8Td/g, purity 972%) 20
0 g was added, and the mixture was stirred and mixed while introducing nitrogen gas. The temperature inside the system was raised to 80°C. After raising the temperature, 1 Lj of α, α′-azobisisobutyronitrile was added, and the mixture was heated at 80°C for 6 hours.
The reaction was carried out with stirring and mixing for a period of time. After the reaction was completed, the slurry was filtered, washed with n-hexane, and dried to obtain resin-coated AeN powder. The amount of coating resin was 0.48 parts by weight.

得られた被覆At!N粉末および上記した処理を施して
いない#2N粉末に対して、温度50℃、湿度80%の
雰囲気中で耐湿性アストを行なった。
The resulting coating At! N powder and #2N powder that had not been subjected to the above-described treatment were subjected to moisture-resistant ast in an atmosphere at a temperature of 50° C. and a humidity of 80%.

結果を数表に示す。表中の数値は粉末中の酸素量く重量
%)である。
The results are shown in the numerical table. The values in the table are the amount of oxygen in the powder (% by weight).

上記した結果から、本発明の窒化アルミニウム粉末が耐
湿性に非常に優れていることが判明した。
From the above results, it was found that the aluminum nitride powder of the present invention has extremely excellent moisture resistance.

実施例2 グリシジルメタクリレ−1〜 1.9g、テトラメチロ
ールプロパンテトラアクリレート2.9g、メタクリル
酸0.79.キシレン1000gおよびAt!N粉末(
実施例1と同一)  2009を使用した以外は実施例
1と同様にして、樹脂被覆#!N粉末を得た。被覆樹脂
量は2.29重量部であった。
Example 2 Glycidyl methacrylate-1 to 1.9 g, tetramethylolpropane tetraacrylate 2.9 g, methacrylic acid 0.79 g. 1000g of xylene and At! N powder (
Same as Example 1) Resin coating #!2009 was used in the same manner as in Example 1. N powder was obtained. The amount of coating resin was 2.29 parts by weight.

得られた被覆MN粉末または上記した処理を施していな
い未被覆#!N粉末を70重量%エポキシ樹脂(エポキ
シ当M 220.軟化点77℃のタレゾールノボラック
型樹脂)に配合して作成した半導体封止材の熱伝導率を
測定したところ、未被覆MN粉末を配合した封止材の熱
伝導率が2.3 W/ m−kであったのに対して、被
覆At!N粉末を配合した封止材の熱伝導率は2.5 
W/ m−kであった。
The obtained coated MN powder or uncoated #! which has not been subjected to the above-mentioned treatment. When we measured the thermal conductivity of a semiconductor encapsulant made by blending 70% by weight of N powder with epoxy resin (epoxy M220, Talesol novolac type resin with a softening point of 77°C), we found that uncoated MN powder was blended. The thermal conductivity of the encapsulant used was 2.3 W/m-k, while the thermal conductivity of the encapsulant At! The thermal conductivity of the sealing material containing N powder is 2.5
It was W/m-k.

また、封止材の耐湿性をプレッシャークツカー法を用い
て125℃、  2.3atmで測定したところ、未被
覆7vN粉末の場合50時間後のリーク不良率が80%
にも達し−C耐湿性が非常に悪化したのに対して、被覆
#N粉末の場合には50時間後もリーク不良は発生せず
耐湿性に優れていることが判明した。
In addition, when the moisture resistance of the sealant was measured using the pressure Kutzker method at 125°C and 2.3 atm, the leak failure rate after 50 hours was 80% in the case of uncoated 7vN powder.
It was found that the coated #N powder did not cause leakage defects even after 50 hours and had excellent moisture resistance.

実施例3 エポキシ化1.2−ポリブタジェン1.9j7. トリ
メチロールプ[]パントリメタクリレート2.2g、ス
チレン0.フ9.アクリル酸0.79.ミネラルスピリ
ット10009およびAIN粉末(平均粒径1.3柳。
Example 3 Epoxidized 1.2-polybutadiene 1.9j7. Trimethylolp[]pantrimethacrylate 2.2g, styrene 0. F9. Acrylic acid 0.79. Mineral Spirit 10009 and AIN powder (average particle size 1.3 willow.

比表面積5.0Td、7g、純度97.2%)  20
0gを使用した以外は実施例1ど同様にして、樹脂被覆
At!N粉末を得た。被覆樹脂量は2.47重重吊であ
った。
Specific surface area 5.0Td, 7g, purity 97.2%) 20
Resin coating At! was carried out in the same manner as in Example 1 except that 0 g was used. N powder was obtained. The amount of coating resin was 2.47 lbs.

得られた被覆NN粉末または上記した処理を施していな
い未被覆At!N粉末9粉末9部学工業帽)製しラデッ
ク#744)2重量部,ポリアクリル酸アンモニウム0
.3重量部および水100ffi量部を混合ボールミル
中で24時間混合して作成したスラリーをスプレードラ
イヤーを用いて造粒した。造粒粉を直径1.1cmの金
型に入れて7.5 t/ciの圧力でプレス成形し、脱
バインダーを行った後窒素雰囲気中1900℃、常圧で
3時間加熱して焼結させた。
The obtained coated NN powder or uncoated At! without the above-mentioned treatment. N powder 9 powder 9 parts manufactured by Radek #744) 2 parts by weight, ammonium polyacrylate 0
.. A slurry prepared by mixing 3 parts by weight and 100 ffi parts of water in a mixing ball mill for 24 hours was granulated using a spray dryer. The granulated powder was put into a mold with a diameter of 1.1 cm and press-molded at a pressure of 7.5 t/ci, and after removing the binder, it was heated in a nitrogen atmosphere at 1900°C and normal pressure for 3 hours to sinter. Ta.

こうして製造した焼結体の熱伝導率を測定したところ、
未被覆#!N粉末の場合には18 W/ m・kであっ
たのに対して、被覆/VN粉末の場合には110 W/
 m− kであった。
When we measured the thermal conductivity of the sintered body produced in this way, we found that
Uncovered #! In the case of N powder it was 18 W/m·k, while in the case of coated/VN powder it was 110 W/m.
It was m-k.

なJ3前記焼結体をX線回折したところ、未被覆At!
N粉末から製造された焼結体の生成相はAt!N−At
!  O  −At!0N−Ae5Y3012を示した
のに対して、被覆At!N粉末から製造された焼結体の
生成相は Ai!N−Al!5Y3012−#!Y○3を示した。
When the sintered body J3 was subjected to X-ray diffraction, it was found that it was not covered with At!
The generated phase of the sintered body manufactured from N powder is At! N-At
! O-At! 0N-Ae5Y3012, whereas the coating At! The generated phase of the sintered body manufactured from N powder is Ai! N-Al! 5Y3012-#! Y○3 was shown.

梃】 本発明により窒化アルミニウム粉末の耐水性、耐湿性を
飛躍的に改善させることができるため、得られた窒化ア
ルミニウム粉末は貯蔵安定性に非常に優れている。
Leverage: Since the present invention can dramatically improve the water resistance and moisture resistance of aluminum nitride powder, the obtained aluminum nitride powder has excellent storage stability.

本発明の窒化アルミニウム粉末は水性媒体中でも使用可
能であるため、スラリー化してドクターブレード法等に
よりシート成形することが可能と= 12 − なる。
Since the aluminum nitride powder of the present invention can be used even in an aqueous medium, it can be made into a slurry and formed into a sheet by a doctor blade method or the like.

本発明の窒化アルミニウム粉末から焼結体を製造する場
合、粉末の被覆樹脂が脱バインダー工程で熱分解して飛
散してしまうため本発明の窒化アルミニウム粉末が焼結
体の性質に悪影響を及ばずことはない。
When producing a sintered body from the aluminum nitride powder of the present invention, the aluminum nitride powder of the present invention does not have an adverse effect on the properties of the sintered body because the resin coating the powder is thermally decomposed and scattered during the binder removal process. Never.

本発明の窒化アルミニウム粉末を配合した半導体封止材
料を用いて封止する場合、粉末の被覆樹脂は封止樹脂と
相容性が良好なため硬化終了後の材料中に気孔,クラッ
ク等が発生し難く、従って水の混入が極めて抑制される
と同時に被覆樹脂が封止樹脂の硬化温度で熱分解するこ
とがないためNH3等の有害ガスの発生が抑制されるこ
とから、半導体素子のリード線や基板とのはんだの腐食
を防止することができる。
When encapsulating using a semiconductor encapsulating material containing the aluminum nitride powder of the present invention, the powder coating resin has good compatibility with the encapsulating resin, so pores, cracks, etc. occur in the material after curing. The lead wires of semiconductor devices It is possible to prevent corrosion of solder between the substrate and the substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)重合性モノマーを有機溶媒中、重合開始剤の存在
下でinsitu重合させた樹脂を表面に被覆してなる
窒化アルミニウム粉末。
(1) Aluminum nitride powder whose surface is coated with a resin obtained by polymerizing a polymerizable monomer in situ in an organic solvent in the presence of a polymerization initiator.
JP156788A 1988-01-07 1988-01-07 Aluminium nitride powder Pending JPH01179711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP156788A JPH01179711A (en) 1988-01-07 1988-01-07 Aluminium nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP156788A JPH01179711A (en) 1988-01-07 1988-01-07 Aluminium nitride powder

Publications (1)

Publication Number Publication Date
JPH01179711A true JPH01179711A (en) 1989-07-17

Family

ID=11505097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP156788A Pending JPH01179711A (en) 1988-01-07 1988-01-07 Aluminium nitride powder

Country Status (1)

Country Link
JP (1) JPH01179711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013640A (en) * 2008-06-06 2010-01-21 Yamaguchi Prefecture Water resistant material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207770A (en) * 1986-03-06 1987-09-12 古河電気工業株式会社 Aluminum nitride powder for manufacturing sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207770A (en) * 1986-03-06 1987-09-12 古河電気工業株式会社 Aluminum nitride powder for manufacturing sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013640A (en) * 2008-06-06 2010-01-21 Yamaguchi Prefecture Water resistant material

Similar Documents

Publication Publication Date Title
EP2201079B1 (en) Thermally conductive composition
KR101136665B1 (en) Composite dielectric material
EP0644863B1 (en) Method of making moisture resistant aluminum nitride powder and powder produced thereby
JP2004027177A (en) Resin composition containing magnesium oxide powder
JPH01179711A (en) Aluminium nitride powder
CN107935576B (en) Silicon nitride combined mullite-silicon carbide ceramic composite material and preparation method thereof
JPS62288156A (en) Manufacture of magnesia sintered body
US5601874A (en) Method of making moisture resistant aluminum nitride powder and powder produced thereby
TW201619057A (en) Silane-treated forsterite fine particles and production method therefor, and organic solvent dispersion of silane-treated forsterite fine particles and production method therefor
KR100394080B1 (en) Surface modified silica by plasma polymerization, preparation method of thereof and apparatus of thereof
JPH03295863A (en) Production of spherical aluminum nitride powder
JPH0798659B2 (en) Spherical silica, production method thereof, epoxy resin composition and cured product thereof
JP3483920B2 (en) Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment
JP6071128B2 (en) Composite particle and method for producing the same
JP2001031887A (en) Highly conductive powder and its production
JPH0250982A (en) Mixed powder for ceramic coating and its production
JP2004148274A (en) Desiccating agent composition and desiccating agent
JP2006283190A (en) Method for electrically insulating powder particle of magnetic conductor
JP2789088B2 (en) Method for producing particulate inorganic composite
CN118530457B (en) Carrier material with slow release function and preparation method and application thereof
JP7555524B1 (en) Hexagonal boron nitride powder, resin composition and resin sheet
CN114456738A (en) Heat conduction material and preparation method and application thereof
CN118909394A (en) Aluminum-silicon composite material for electronic packaging and preparation method thereof
JPS60188418A (en) Epoxy resin composition and semiconductor device sealed therewith
JP2649054B2 (en) Particulate inorganic composite and method for producing the same