JPH01179688A - Novel production of modified enzyme and novel modified enzyme - Google Patents

Novel production of modified enzyme and novel modified enzyme

Info

Publication number
JPH01179688A
JPH01179688A JP170688A JP170688A JPH01179688A JP H01179688 A JPH01179688 A JP H01179688A JP 170688 A JP170688 A JP 170688A JP 170688 A JP170688 A JP 170688A JP H01179688 A JPH01179688 A JP H01179688A
Authority
JP
Japan
Prior art keywords
enzyme
modified
modified enzyme
lpl
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP170688A
Other languages
Japanese (ja)
Other versions
JP2665593B2 (en
Inventor
Yukio Imanishi
今西 幸男
Masahiko Shishido
昌彦 宍戸
Yoshihiro Ito
嘉浩 伊藤
So Fujii
創 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP63001706A priority Critical patent/JP2665593B2/en
Publication of JPH01179688A publication Critical patent/JPH01179688A/en
Application granted granted Critical
Publication of JP2665593B2 publication Critical patent/JP2665593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To synthesize a modified enzyme and an immobilized enzyme, by linking an azo compound having polymerization initiating ability to the amino group on the surface of an enzyme by covalent bond using a condensation agent and subjecting a vinyl monomer to graft polymerization onto the compound. CONSTITUTION:A azo compound having polymerization initiating ability to the amino group on the surface of an enzyme is linked to the surface of an enzyme by covalent bond and any of various vinyl monomers is subjected to graft polymerization onto the compound to give a modified enzyme, namely, an enzyme.vinyl polymer hybrid or an immobilized enzyme of new type. An esterase such as choline esterase or cholesterol esterase may be cited as the enzyme. Specific examples of the azo compound having polymerization initiating ability to the amino group on the surface of an enzyme are 4,4'-azobis(4- cyanovaleric acid), 2,2'-azobis(4-carboxy-2-methylbutyronitrile), etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は修飾酵素の新規な製造法、及びそれによって得
られる新規な修飾酵素(酵素・ビニルポリマーハイブリ
ッド或は固定化酵素)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel method for producing a modified enzyme, and a novel modified enzyme (enzyme/vinyl polymer hybrid or immobilized enzyme) obtained thereby.

〔発明の背景〕[Background of the invention]

修飾酵素には、化学的に修飾された水溶性の修飾酵素と
、不溶性の担体に固定化された所謂固定化酵素とがある
Modified enzymes include chemically modified water-soluble modified enzymes and so-called immobilized enzymes immobilized on insoluble carriers.

近年、酵素などの蛋白質に合成高分子を結合させた所謂
蛋白質ハイブリッドに関する研究が数多くなされてきて
おり、例えば有機溶媒中で働く酵素ハイブリッドの開発
などは、水に難溶な親油性物質の酵素処理が効率よく行
なえるだけでなく、加水分解の逆反応である縮合反応も
行うことができるようになる点で大いに注目を集めてい
る。しかしながら現在、一般に行なわれているこの種の
修飾酵素の製造法は、予め修飾剤となる高分子物質を合
成し、これを酵素と結合させてハイブリッドを合成する
方法のみであり、また、修飾剤として用いられる高分子
物質もこれまでのところポリエチレングリコールに限ら
れていると言うのか現状である。
In recent years, a lot of research has been carried out on so-called protein hybrids, in which synthetic polymers are bonded to proteins such as enzymes. It is attracting a lot of attention because it not only allows for efficient reaction, but also allows for condensation reactions, which are the reverse reactions to hydrolysis. However, the only method currently generally used to produce this type of modified enzyme is to synthesize a polymer substance as a modifier in advance and combine it with the enzyme to synthesize a hybrid. At present, the polymeric substances used as such have so far been limited to polyethylene glycol.

また、一方、従来より所謂固定化酵素と呼ばれるものも
広い分野に於て種々のタイプのものが工業的に利用され
ているが、従来より知られている酵素の固定化及びその
手法は大別して次の3タイプに限られていた。
On the other hand, various types of so-called immobilized enzymes have been used industrially in a wide range of fields, but the conventionally known enzyme immobilization and its methods can be roughly divided into It was limited to the following three types.

l)包括法:酵素水溶液に水溶性モノマー及び水溶性架
橋剤を加え重合ゲル化し、酵素をケルマトリックス空間
に封じ込めるもの。
l) Inclusion method: A water-soluble monomer and a water-soluble cross-linking agent are added to an enzyme aqueous solution to polymerize and gel, thereby sealing the enzyme in the Kel matrix space.

2) 架橋法:酵素溶液に架橋剤(一般に低分子化合物
)を反応させて酵素分子間結合を形成せしめ、酵素架橋
体とするもの。
2) Cross-linking method: A method in which an enzyme solution is reacted with a cross-linking agent (generally a low-molecular compound) to form bonds between enzyme molecules, resulting in an enzyme cross-linked product.

3)t4体結合法;酵素と、酵素を担持すべき高分子材
料(担体)とを高分子反応の手法に準じて共有結合或は
イオン結合等により結合させるもの。
3) t4-body bonding method: A method in which an enzyme and a polymeric material (carrier) on which the enzyme is to be supported are bonded by covalent bonding, ionic bonding, etc. in accordance with the method of polymeric reaction.

この為、自ずと実現し得る形状、加工性その他の物理的
特性等が制限され、折角の魅力ある酵素機能の産業的利
用への可能性もまた限定されざるを得なかった。
For this reason, the shape, processability, and other physical properties that can be realized are naturally limited, and the possibility of industrial utilization of the attractive enzyme function has also been limited.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した如き現状に鑑みなされたもので修飾
酵素、固定化酵素の分野に於て、従来とは全く異なるタ
イプの製造手法と全く新しいタイプの修飾酵素、固定化
酵素を提供することを目的とする。
The present invention was made in view of the above-mentioned current situation, and it is an object of the present invention to provide a completely different type of production method and a completely new type of modified enzyme and immobilized enzyme in the field of modified enzymes and immobilized enzymes. With the goal.

〔発明の概要〕[Summary of the invention]

本発明は、酵素の表面アミノ基に縮合試薬を用いて重合
開始能を有するアゾ化合物を共有結合させ、次いでこれ
にビニルモノマーをグラフト重合させることを特徴とす
る修飾酵素の製造方法の発明である。
The present invention is an invention of a method for producing a modified enzyme, which comprises covalently bonding an azo compound capable of initiating polymerization to the amino group on the surface of the enzyme using a condensation reagent, and then graft-polymerizing a vinyl monomer thereto. .

また、本発明は、酵素の表面アミノ基に導入された重合
開始能を有するアゾ化合物を介して該酵素にビニルモノ
マーをグラフト重合させて成る修飾酵素の発明である。
Further, the present invention is an invention of a modified enzyme obtained by graft polymerizing a vinyl monomer to the enzyme via an azo compound having polymerization initiation ability introduced into the surface amino group of the enzyme.

更にまた、本発明はチオール基を導入したポリスチレン
を担体として用い、これをSH基活性化剤で活性化した
後、これに還元型の酵素、・ビニルポリマーハイブリッ
ドを加えて反応、固定化させ、然る後これを還元、分離
することにより精製することを特徴とする修飾酵素の特
製方法の発明である。
Furthermore, the present invention uses polystyrene into which a thiol group has been introduced as a carrier, and after activating this with an SH group activator, a reduced enzyme and a vinyl polymer hybrid are added thereto and reacted and immobilized, This is an invention of a special method for producing a modified enzyme, which is characterized in that the modified enzyme is then purified by reduction and separation.

更に、本発明は、チオール基を導入したポリスチレンを
担体として用い、これをSH基活性化剤で活性化した後
、これに還元型のチオール基含有タンパク質を加えて反
応、固定化させ、然る後これを還元、分離することによ
り精製することを特徴とするチオール基含有タンパク質
の特製方法の発明である。
Furthermore, the present invention uses polystyrene into which a thiol group has been introduced as a carrier, and after activating this with an SH group activator, a reduced thiol group-containing protein is added thereto and reacted and immobilized. This is an invention of a special method for producing a thiol group-containing protein, which is characterized in that the protein is then purified by reduction and separation.

即ち、本発明者らは上記目的を達成すべく鋭意研究を重
ねた結果、酵素の表面アミノ基に重合開始能を持つアゾ
化合物を共有結合させ、これに各種ビニルモノマーをグ
ラフト重合させることによりこれまでにない全く新しい
タイプのis酵素即ち酵素・ビニルポリマーハイブリッ
ド或は全く新しいタイプの固定化酵素か得られることを
見出し、本発明を完成させるに到った。
That is, as a result of extensive research in order to achieve the above object, the present inventors succeeded in achieving this by covalently bonding an azo compound with polymerization initiating ability to the amino group on the surface of an enzyme, and graft polymerizing various vinyl monomers onto this. We have discovered that a completely new type of IS enzyme, that is, an enzyme/vinyl polymer hybrid, or a completely new type of immobilized enzyme can be obtained, and have completed the present invention.

本発明に係る酵素としては、遊慣のアミノ基を有する酵
素であれば全て挙げられ特に制約はないが、例えば、各
種リパーゼ類、例えばコリンエステラーゼ、コレステロ
ールエステラーゼ等のエステラーゼ類、例えばウリカー
ゼ、グリセロールオキシダーゼ、グルコースオキシダー
ゼ、コレステロールオキシダーゼ、コリンオキシダーゼ
等のオキシダーゼ類、例えばグルコースデヒドロゲナー
ゼ。乳酸デヒドロゲナーゼ、α−ヒドロキシ酪酸デヒド
ロゲナーゼ等のデヒドロゲナーゼ類、例えばパパイン、
ペプシン、トリプシン、キモトリプシン、エラスターゼ
等のプロテアーゼ類、アミラーゼ類、グルコシダーゼ類
、ホスファターゼ類、ペルオキシダーゼ、ガラクトシダ
ーゼ等々が挙げられる。
Enzymes according to the present invention include any enzyme having a free amino group and are not particularly limited, but examples include various lipases, esterases such as cholinesterase and cholesterol esterase, e.g. uricase, glycerol oxidase, Oxidases such as glucose oxidase, cholesterol oxidase, choline oxidase, for example glucose dehydrogenase. Dehydrogenases such as lactate dehydrogenase and α-hydroxybutyrate dehydrogenase, such as papain,
Examples include proteases such as pepsin, trypsin, chymotrypsin, and elastase, amylases, glucosidases, phosphatases, peroxidases, and galactosidases.

酵素の表面アミノ基(遊離のアミノ基)に導入する重合
開始能を有するアゾ化合物としては、アミノ基と共有結
合し得る基、例えばカルホキシル基等を持フたアゾ化合
物が挙げられる。このようなアゾ化合物の代表的なもの
としては4.4゛−アゾどス(4−シアノ吉草酸)(以
下、ACVと略称する。)、2.2−アゾビス(4−カ
ルボキシ−2−メチルブチロニトリル)等が挙げられる
が、これらに限定されるものではなく、重合開始能を有
するアゾカルボン酸或は重合開始能を有し、且つアミン
基と共有結合し得る基をもつアゾ化合物であればいずれ
のものでもよい。重合開始能を有するアゾ化合物を酵素
の表面アミノ基に共有結合させる縮合試薬としてはジシ
クロへキシルカルボジイミド、1−エチル−3−(3−
ジメチルアミノプロピル)カルボジイミド塩酸塩(以1
;’、wscと略称する。)等のカルボジイミド類やウ
ッドワード試薬K(N−エチル−5−フェニルイソオキ
サゾリウム−3′−スルホネート)等が挙げられるか勿
論これらに限定されるものではない。
Examples of azo compounds having the ability to initiate polymerization that are introduced into surface amino groups (free amino groups) of enzymes include azo compounds having a group capable of covalently bonding to an amino group, such as a carboxyl group. Representative examples of such azo compounds include 4.4'-azodos(4-cyanovaleric acid) (hereinafter abbreviated as ACV), 2,2-azobis(4-carboxy-2-methyl butyronitrile), etc., but are not limited to these, and any azo carboxylic acid that has the ability to initiate polymerization or an azo compound that has the ability to initiate polymerization and has a group that can covalently bond with an amine group. Either one is fine. Dicyclohexylcarbodiimide, 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide hydrochloride (hereinafter referred to as 1)
;', abbreviated as wsc. ), Woodward's reagent K (N-ethyl-5-phenylisoxazolium-3'-sulfonate), etc., but the present invention is not limited thereto.

酵素の表面アミノ基に導入した重合開始能を有するアゾ
化合物にグラフト重合させるビニルモノマーとしてはビ
ニル基を有する千ツマ−であればいずれにてもよく、特
に制約はないが、本発明の方法により得られるハイブリ
ッドや固定化酵素の物理的特性は必然的に結合されるべ
きビニルポリマー材料の物理特性に大きく左右されるも
のであるから、利用する目的に応じて適当などニルモノ
マーを適宜選択すべきであることは言うまでもない。即
ち、例えば得られる修飾酵素の溶媒に対する溶解性、親
和性を考慮してビニルモノマーを選択する場合には以下
のような選び方ができる。
The vinyl monomer to be graft-polymerized to the azo compound having polymerization initiating ability introduced into the surface amino group of the enzyme may be any monomer having a vinyl group, and there is no particular restriction. The physical properties of the resulting hybrid or immobilized enzyme are inevitably greatly influenced by the physical properties of the vinyl polymer material to which it is bound, so the appropriate vinyl monomer should be selected depending on the purpose of use. It goes without saying that there is. That is, when selecting a vinyl monomer in consideration of the solubility and affinity of the resulting modified enzyme in a solvent, the following selection methods can be used.

l)水溶性、親水性を期待する場合 アクリル酸及びその塩、メタアクリル酸及びその塩、ア
クリルアミド、N−メチルアクリルアミド、N−エチル
アクリルアミド、2−アクリルアミド−2−メチルプロ
パンスルホン酸及びその塩、ビニルスルホン酸及びその
塩、スチレンスルホン酸及びその塩、アリルスルホン酸
及びその塩、メタアリルスルホン酸及びその塩、ヒドロ
キシアルキル(メタ)アクリレート類等 2)油溶性、親油性を期待する場合 塩化ビニル、酢酸ビニル、スチレン、アクリロニトリル
、アクリル酸エステル類、メタアクリル酸エステル類等
l) When water solubility and hydrophilicity are expected: acrylic acid and its salts, methacrylic acid and its salts, acrylamide, N-methylacrylamide, N-ethylacrylamide, 2-acrylamido-2-methylpropanesulfonic acid and its salts, Vinyl sulfonic acid and its salts, styrene sulfonic acid and its salts, allyl sulfonic acid and its salts, methalylsulfonic acid and its salts, hydroxyalkyl (meth)acrylates, etc. 2) When oil-solubility and lipophilicity are expected Vinyl chloride , vinyl acetate, styrene, acrylonitrile, acrylic esters, methacrylic esters, etc.

3)両親媒性を期待する場合 N−ビニルピロリドン、比較的長鎖のN−アルキルアク
リルアミド類(プロピル、ブチル、ヘキシル等)。
3) When amphipathic properties are expected: N-vinylpyrrolidone, relatively long-chain N-alkylacrylamides (propyl, butyl, hexyl, etc.).

4)ゲル状のものを期待する場合 上記各種千ツマー類に多官能性の架橋性ビニルモノマー
類、例えばメチレンビスアクリルアミド、ジエチレング
リコールジアクリレート、プロピレングリコールドリア
クリレート、ジビニルベンゼン、トリアリルトリメリテ
ート、トリアリルイソシアヌレート等を併用するか、又
はヒドロキシアルキル(メタフアクリレート等の自己ゲ
ル化を起し易いモノマー類を用いる。
4) When a gel-like product is expected, polyfunctional crosslinkable vinyl monomers such as methylene bisacrylamide, diethylene glycol diacrylate, propylene glycol triacrylate, divinylbenzene, triallyl trimellitate, and Allyl isocyanurate or the like is used in combination, or monomers that tend to self-gel, such as hydroxyalkyl (methacrylate) are used.

更に、グラフト修飾物を膜、ビーズ、繊維状等々、二次
加工による成形を期待する場合には、既に広く知られて
いる夫々の加工特性に合せて千ツマ−を自由に選択すれ
ばよい。
Furthermore, if the graft-modified product is expected to be formed into a film, bead, fiber, etc. by secondary processing, the shape of the graft may be freely selected according to the processing characteristics of the respective material which are already widely known.

本発明の修飾酵素、即ち酵素・ビニルポリマーハイブリ
ット或は固定化酵素は、例えば下記の如くして容易に合
成し得る。即ち、先ず、適当なpHの緩衝液(pHが低
いほどアゾ化合物の導入率が高くなるので目的に応じて
適宜pHを選択すればよい。)に重合開始能を有するア
ゾ化合物(例えばACV)と結合剤(例えばWSC)と
を溶解し、通常0℃〜10℃で数時間静置しその後酵素
を加えて更に数時間乃至数十時間静置し、反応させてア
ゾ化合物導入酵素を得る。次いで、所望のビニルモノマ
ー中或はその適当な溶媒溶液中に得られたアゾ化合物導
入酵素を加え、窒素置換後、光照射しく例えば200W
の高圧水銀灯で1乃至数時間)、重合反応させる。反応
後は生成物を適当な溶媒(例えばアセトン、メタノール
、エタノール等)中に沈殿させるとか、濃縮するとか、
凍結乾燥する等常法により単離し、更に要すれば精製工
程に付す。
The modified enzyme of the present invention, ie, the enzyme/vinyl polymer hybrid or immobilized enzyme, can be easily synthesized, for example, as described below. That is, first, an azo compound having polymerization initiation ability (for example, ACV) is added to a buffer solution of an appropriate pH (the lower the pH, the higher the introduction rate of the azo compound, so the pH should be selected appropriately depending on the purpose). A binding agent (for example, WSC) is dissolved, and the mixture is left to stand for several hours, usually at 0°C to 10°C, and then an enzyme is added and left to stand for several hours to several tens of hours to react, thereby obtaining an azo compound-introducing enzyme. Next, the obtained azo compound-introducing enzyme was added to the desired vinyl monomer or its appropriate solvent solution, and after nitrogen substitution, light irradiation was carried out, for example, at 200 W.
Polymerization reaction is carried out using a high-pressure mercury lamp (1 to several hours). After the reaction, the product may be precipitated in a suitable solvent (e.g. acetone, methanol, ethanol, etc.) or concentrated.
It is isolated by a conventional method such as freeze-drying, and subjected to further purification steps if necessary.

精製工程としては、先ず、ゲルが過、限外濾過等により
未反応酵素を除き、次いで用いたビニルモノマーのホモ
ポリマーを適当な方法により除く。ホモポリマーを除く
方法は種々あるが、例えば、用いた酵素がリパーゼ等の
如く遊離のSH基を有する酵素であり、得られた修飾酵
素が可溶性の修飾酵素である場合には本発明者らが見出
した、チオール(SH)基導入ポリスチレンを担体とし
て用いる下記方法によれば極めて効率的且つ効果的にこ
れを行うことができるのでこの方法により分離精製を行
えばよい。
In the purification step, first, unreacted enzyme is removed by gel filtration, ultrafiltration, etc., and then the homopolymer of the vinyl monomer used is removed by an appropriate method. There are various methods for removing homopolymers, but for example, when the enzyme used is an enzyme having a free SH group, such as lipase, and the obtained modified enzyme is a soluble modified enzyme, the present inventors According to the method discovered below, which uses thiol (SH) group-introduced polystyrene as a carrier, this can be carried out extremely efficiently and effectively, so separation and purification can be carried out by this method.

本発明者らが見出した、S11基含有酵素を用いた場合
の修飾酵素とホモポリマーとの分離精製方法は大略以下
の通りである。即ち、(1)先ずポリスチレンを少量の
有機溶剤(例えば四塩化炭素、クロロホルム、二硫化炭
素等)に溶解し、これをクロルスルホン酸中に少量ずつ
滴下し、反応させる。反応は通常室温で行なわれ、反応
時間は通常5〜10時間程度で充分である。反応後は反
応液を大量の水又は希酸中に加えて沈殿を生じさせ、こ
の沈殿な枦取、水洗、乾燥して一5O□α基か導入され
たポリスチレンを得る。次に、この生成物を、要すれば
細砕した後、亜鉛−塩酸(若しくは錫−塩酸、鉄−塩酸
等)と5〜12時間加熱反応させる。反応後は未反応Z
nを分別除去し、水洗、乾燥してSH基導入ポリスチレ
ン(固定化担体)を得る。(2)得られた固定化担体は
常法に従い適当な還元剤例えばジチオスレイトール(以
下、DTTと略称する。)、2−メルカプトエタノール
、チオグリコール酸、チオグリセロール等で処理するこ
とにより完全に還元し、然る後メタノール、エタノール
等の溶媒中SH基活性化剤例えば2,2°−ジピリジル
ジスルフィド等と加熱反応させることにより活性化を行
なう。(3)一方、修飾酵素とホモポリマーとの混合物
はこれを例えば2−メルカプトエタノール、 DTT 
、チオグリコール酸、チオグリセロール等で処理するこ
とにより酵素中のジスルフィド結合を還元して、該修飾
酵素を還元型とする。
The method discovered by the present inventors for separating and purifying a modified enzyme and a homopolymer using an S11 group-containing enzyme is roughly as follows. That is, (1) first, polystyrene is dissolved in a small amount of an organic solvent (for example, carbon tetrachloride, chloroform, carbon disulfide, etc.), and this is dropped little by little into chlorosulfonic acid to cause a reaction. The reaction is usually carried out at room temperature, and a reaction time of about 5 to 10 hours is usually sufficient. After the reaction, the reaction solution is added to a large amount of water or dilute acid to form a precipitate, and the precipitate is removed, washed with water, and dried to obtain polystyrene into which 15O□α groups have been introduced. Next, this product, after being pulverized if necessary, is heated and reacted with zinc-hydrochloric acid (or tin-hydrochloric acid, iron-hydrochloric acid, etc.) for 5 to 12 hours. After reaction, unreacted Z
n is separated and removed, washed with water, and dried to obtain SH group-introduced polystyrene (immobilization carrier). (2) The obtained immobilized carrier is completely treated with a suitable reducing agent such as dithiothreitol (hereinafter abbreviated as DTT), 2-mercaptoethanol, thioglycolic acid, thioglycerol, etc. according to a conventional method. Activation is carried out by reducing and then heating reaction with an SH group activator such as 2,2°-dipyridyl disulfide in a solvent such as methanol or ethanol. (3) On the other hand, mixtures of modified enzymes and homopolymers can be prepared using, for example, 2-mercaptoethanol, DTT
, thioglycolic acid, thioglycerol, etc., to reduce the disulfide bonds in the enzyme and convert the modified enzyme into a reduced form.

(4)(3)で得た還元型修飾酵素とホモポリマーの混
合物を適当な溶剤、例えば該修飾酵素とホモポリマーの
混合物が水溶性若しくは両親媒性の場合には酵素が失活
しないpH例えばpH6,0〜8.0の緩衝液に溶解し
、これを(2)で得た活性化固定化担体に加えて室温で
5〜12時間撹拌若しくは振盪し、修飾酵素をジスルフ
ィド結合を介して担体に固定化する。
(4) The mixture of the reduced modified enzyme and the homopolymer obtained in (3) is mixed with a suitable solvent, for example, if the mixture of the modified enzyme and the homopolymer is water-soluble or amphipathic, the pH is such that the enzyme will not be inactivated. The modified enzyme is dissolved in a buffer solution with a pH of 6.0 to 8.0, added to the activated immobilized carrier obtained in step (2), and stirred or shaken at room temperature for 5 to 12 hours to bind the modified enzyme to the carrier via disulfide bonds. to be fixed.

(5)修飾酵素を固定化した担体を酵素が失活しないp
H例えばpH6,0〜8.0の緩衝液で充分洗浄し担体
に結合されない不純物、即ちホモポリマーを除いた後、
これに例えばDTT、2−メルカプトエタノール、チオ
グリコール酸、チオグリセロール等の還元剤を含む溶出
用緩衝液を加えて室温で数十分間撹拌若しくは振盪する
ことによりジスルフィド結合を還元切断して修飾酵素を
担体より遊離させ、次いでゲル濾過等により脱塩して目
的とする精製修飾酵素(酵素・ビニルポリマーハイブリ
ッド或は固定化酵素)を得る。尚、本!青製法は、SH
基を有するタンパク質一般の精製法(チオール基をもた
ないタンパク質やその他の不純物を除去する。)として
も極めて有効である。
(5) The enzyme does not deactivate the carrier on which the modified enzyme is immobilized.
After thoroughly washing with a buffer solution of pH 6.0 to 8.0 to remove impurities that are not bound to the carrier, that is, homopolymers,
An elution buffer containing a reducing agent such as DTT, 2-mercaptoethanol, thioglycolic acid, or thioglycerol is added to this, and the mixture is stirred or shaken at room temperature for several tens of minutes to reductively cleave disulfide bonds and modify the enzyme. is released from the carrier, and then desalted by gel filtration or the like to obtain the desired purified modified enzyme (enzyme/vinyl polymer hybrid or immobilized enzyme). Also, a book! The blue manufacturing method is SH
It is also extremely effective as a method for purifying proteins in general that have thiol groups (removing proteins that do not have thiol groups and other impurities).

尚、利用の目的によフてはグラフト反応生成物〔酵素・
ビニルポリマーハイブリッド(或は固定化酵素)と用い
たビニルモノマーのホモポリマーとの混合物〕は精製せ
ずにそのまま使用しても一向に差し支えないことは言う
までもない。
Depending on the purpose of use, the graft reaction product [enzyme/
It goes without saying that the mixture of the vinyl polymer hybrid (or immobilized enzyme) and the vinyl monomer homopolymer used may be used as is without any purification.

かくして得られた本発明の修飾酵素の内、例えば油溶性
、親油性又は両親媒性のハイブリッド体の場合には既存
のポリエチレングリコール修飾酵素(以下、PEG修飾
酵素と略称する。)と同様に有機溶媒可溶型の酵素とな
り得、ハイブリッド化したことにより熱安定性が向上す
る他、下記の如き特徴を有する。
Among the modified enzymes of the present invention thus obtained, for example, in the case of oil-soluble, lipophilic or amphiphilic hybrids, organic polyethylene glycol modifying enzymes (hereinafter abbreviated as PEG-modifying enzymes) are used. It can be a solvent-soluble enzyme, has improved thermal stability by hybridization, and has the following characteristics.

1)有機溶媒系で酵素反応を行なうことができるので親
油性物質の酵素処理が効率よくてきる。
1) Since enzymatic reactions can be carried out in an organic solvent system, lipophilic substances can be efficiently treated with enzymes.

2) 反応の平衡をずらすことができる。2) The equilibrium of the reaction can be shifted.

(例えば、加水分解酵素を縮合反応の触媒に用いること
かでさる。) 3)水系ては不可能な反応か可能となる。
(For example, by using a hydrolase as a catalyst for a condensation reaction.) 3) Reactions that are impossible in aqueous systems become possible.

(例えば立体選択性を変えること、或は、D−アミノ酸
の縮合を行なうこと等) 更にまた、本発明の修飾法はPEG修飾法と比べて下記
の如き長所を有する。
(For example, changing stereoselectivity or condensing D-amino acids, etc.) Furthermore, the modification method of the present invention has the following advantages over the PEG modification method.

1) ビニル千ツマ−の選択が自由であり、千ツマ−の
種類を変えて抹々なハイブリッド体を合成できるので応
用が広がる。
1) There is a wide range of applications because the choice of vinyl mercury is free and a wide variety of hybrids can be synthesized by changing the type of mercury.

2)低分子のアゾ化合物を先ず初めに導入するので5高
分子修飾剤を直接導入する場合よりも導入率か高く、効
率的である 3)酵素分子の特定部位への導入修飾が可能である。
2) Since a low-molecular azo compound is introduced first, the introduction rate is higher and more efficient than when directly introducing a 5-polymer modifier. 3) It is possible to introduce and modify a specific site of an enzyme molecule. .

本発明に係る修飾酵素は、ハイブリッド酵素としての一
般的な用途の外、バイオセンサー、バイオリアクター、
変性蛋白材料一般等種々の用途が期待できる。
In addition to its general use as a hybrid enzyme, the modified enzyme according to the present invention can be used in biosensors, bioreactors,
Various uses such as denatured protein materials in general can be expected.

以下に、実施例を挙げて本発明を更に詳細に説明するか
、本発明はこれらにより何ら制約を受けるものではない
EXAMPLES Below, the present invention will be explained in more detail with reference to examples, but the present invention is not limited in any way by these examples.

(実施例〕 実施例1 、 ACV導入リボプロティンリパーゼの製
造 ACV 12mg或は24Bと wscsrng或は1
6mgを種々のp++の緩衝液に溶解し、夫々5℃で2
時間静置後、リポプロテインリパーセ(以下、LPLと
略称する。) lomgを加え更に5℃で24時間静置
反応させた。(尚、ACV 12+ngは LPLに含
まわる7ケのアミン基に対して20倍当量に相当し、A
GV 24tagの場合は40倍当量に相当する。) 表1にACV量及びpHを夫々変化させた場合のLPL
へのACVの導入率(アミン基の定量 により求めた)
を示す。
(Example) Example 1 Production of ACV-introduced riboprotein lipase ACV 12mg or 24B and wscsrng or 1
6 mg were dissolved in various p++ buffers and incubated at 5°C for 2
After standing for an hour, lipoprotein lipase (hereinafter abbreviated as LPL) lomg was added and the mixture was allowed to stand still for reaction at 5°C for 24 hours. (12+ng of ACV corresponds to 20 times the equivalent of the 7 amine groups contained in LPL,
In the case of GV 24tag, this corresponds to 40 times the equivalent. ) Table 1 shows the LPL when the ACV amount and pH are changed respectively.
ACV introduction rate (determined by quantitative determination of amine groups)
shows.

表     1 *アミノ基の定量は、アミノ基か2.4.6−ドリニト
ロベンゼンスルホン酸と反応して 350口m付近に極
大吸収をもつ物質を形成することを利用して定量した。
Table 1 *The amino group was quantified by utilizing the fact that the amino group reacts with 2,4,6-dolinitrobenzenesulfonic acid to form a substance having maximum absorption around 350 mm.

表1から明らかな如く、pH5,4〜9.4の範囲での
AGVの導入率は40〜80%と広い範囲にゎたフてお
り、また、pl+が低いほど導入率が高くなっている。
As is clear from Table 1, the introduction rate of AGV in the pH range of 5.4 to 9.4 is over a wide range of 40 to 80%, and the lower the pl+, the higher the introduction rate. .

実施例2.ポリN−ビニルピロリドンクラフト化LPL
の製造 N−ビニルピロリドン(以下、NVPと略称する。)の
0.493mol/I1.水溶液に実施例1で得た導入
率39.7%のAC’h4人LPLを開始剤濃度か4、
z8μmol/、(lになるように加え、窒素置換後、
200Wの高圧水銀灯で室温下1時間光照射した。
Example 2. Poly N-vinylpyrrolidone kraft LPL
Production of 0.493 mol/I1. of N-vinylpyrrolidone (hereinafter abbreviated as NVP). AC'h 4-person LPL with an introduction rate of 39.7% obtained in Example 1 was added to the aqueous solution at an initiator concentration of 4,
z 8 μmol/, (l), after nitrogen substitution,
Light was irradiated for 1 hour at room temperature using a 200W high-pressure mercury lamp.

反応後、生成物をアセトン中に沈殿させることにより回
収し、Am1con PM−30(アミコン社商品名)
膜を用いて限外濾過することにより未反応のLPLを除
き、ポリN−ビニルピロリドン(以下、PNVPと略称
する。)グラフト化LPL (N V Pホモポリマー
を含む)を得た。畳量312n+g実施例3 、 pN
vpり−y 7ト化LPLノ鯖製(NVPホモポリマー
どの分#) (1)チオール基導入ポリスチレン(固定化担体)の合
成 重合度2,000のポリスチレンlogを少量の四塩化
炭素に溶解し、撹拌下クロロスルホン酸10〇−中に徐
々に滴下し、滴下後室温で6時間撹拌反応させた。反応
後、反応液を1%11C1中に徐々に注入して沈澱を生
じさせ、これを枦取、水洗、乾燥して−502α基が導
入されたポリスチレン17.8gを得た。この内15g
を細かく砕き、亜鉛10gと共に濃塩酸100d中に投
入し、70〜80℃で8時間撹拌反応させた。反応後、
デカンテーションにより未反応亜鉛と分別し、浮遊物を
枦取、水洗、乾燥してチオール基導入ポリスチレン13
.6gを得た。元素分析の結果、SH基導入率(ベンセ
ン環に対し)は約30%であった。
After the reaction, the product was recovered by precipitating it in acetone and was purified using Am1con PM-30 (trade name of Amicon Co., Ltd.).
Unreacted LPL was removed by ultrafiltration using a membrane to obtain poly-N-vinylpyrrolidone (hereinafter abbreviated as PNVP) grafted LPL (including NVP homopolymer). Tatami amount 312n+g Example 3, pN
vpri-y Heptadated LPL Manufactured by Saba (NVP homopolymer #) (1) Synthesis of thiol group-introduced polystyrene (immobilization carrier) Polystyrene log with a degree of polymerization of 2,000 was dissolved in a small amount of carbon tetrachloride. The mixture was gradually added dropwise to 100% of chlorosulfonic acid with stirring, and after the dropwise addition, the mixture was stirred and reacted at room temperature for 6 hours. After the reaction, the reaction solution was gradually poured into 1% 11C1 to form a precipitate, which was collected, washed with water, and dried to obtain 17.8 g of polystyrene into which -502α groups were introduced. 15g of this
was crushed finely, and put into 100 d of concentrated hydrochloric acid together with 10 g of zinc, and reacted with stirring at 70 to 80° C. for 8 hours. After the reaction,
Separate from unreacted zinc by decantation, remove suspended matter, wash with water, and dry to make thiol group-introduced polystyrene 13.
.. 6g was obtained. As a result of elemental analysis, the SH group introduction rate (with respect to the benzene ring) was about 30%.

(2)固定化担体の活性化 (1)で得たチオール基導入ポリスチレン粉末5gにD
TT 50mM、 O,IMホウ酸緩衝液(pH7,8
> 20m1!を加え、15分間振盪して還元反応を完
結させた。生成物を枦取し、充分水洗してDTTを除い
た後、これに2.2−ジピリジルジスルフィドの 10
0mMエタノール溶液40m1を加え、80℃で3時間
浸漬接水浴中で一晩冷却放置した。生成物を枦取し、エ
タノールで洗浄後、0.1Mホウl?2緩衝液(pH7
,8)中に懸(蜀させた。
(2) Activation of the immobilization carrier 5 g of the thiol group-introduced polystyrene powder obtained in (1) was
TT 50mM, O, IM borate buffer (pH 7,8
>20m1! was added and shaken for 15 minutes to complete the reduction reaction. The product was collected and thoroughly washed with water to remove DTT, and then 10% of 2,2-dipyridyl disulfide was added to the product.
40ml of 0mM ethanol solution was added, and the mixture was immersed at 80°C for 3 hours and left to cool overnight in a water bath. The product was collected, washed with ethanol, and then washed with 0.1M hologram. 2 buffer (pH 7
, 8) suspended in the middle.

(3)タンパク質のジスルフィド結合の還元PNVPグ
ラフト化LPLとNVPホモポリマーの混合物72.3
gを250mM 2−メルカプトエタノール5mlに溶
解し、室温で12時間撹拌反応させた後、凍結乾燥によ
り2−メルカプトエタノールを除去jノ、逼元型PNV
Pグラフト化LPLと NVPホモポリマーの混合物7
1.0gを得た。
(3) Reduction of protein disulfide bonds PNVP-grafted mixture of LPL and NVP homopolymer 72.3
2-mercaptoethanol was dissolved in 5 ml of 250 mM 2-mercaptoethanol, stirred and reacted at room temperature for 12 hours, and the 2-mercaptoethanol was removed by freeze-drying.
Blend of P-grafted LPL and NVP homopolymer 7
1.0 g was obtained.

(41PNVPグラフト化1.PL<7)精製(3)で
得た逼元型PNVPグラフト化LPLと NVPホモポ
リマーとの混合物71.0gをpH7,8のホウ酸緩衝
液に溶解し、(2)セ得た活性化固定化担体の懸濁液中
に加えて室温で8時間振盪し、タンパク質成分のみをジ
スルフィド結合を介して担体に固定化した。タンパク質
成分を固定化した担体を単離し、これにpH7,8のホ
ウ酸緩衝液15m1!を加えて室温で10分間振盪する
操作を3回繰り返し、ホモポリマーを洗浄除去した。
(41PNVP grafted 1. PL < 7) 71.0 g of the mixture of the close-type PNVP grafted LPL obtained in purification (3) and the NVP homopolymer was dissolved in a boric acid buffer solution of pH 7.8, and (2) It was added to the suspension of the obtained activated immobilization carrier and shaken at room temperature for 8 hours to immobilize only the protein component on the carrier via disulfide bonds. Isolate the carrier on which the protein component is immobilized, and add 15 ml of boric acid buffer at pH 7.8 to it! The homopolymer was washed and removed by repeating the operation of adding and shaking for 10 minutes at room temperature three times.

次いで、これにDTTの20mMホウ酸緩衝液(pH7
,8)15mlを加え、室温で30分間振盪することに
よりタンパク質成分を担体より還元分離した。担体を遠
心分離により除去し、5ephadex G−10(フ
ァルマシア社商品名)を用いたゲル濾過により脱塩し、
PNVPグラフト化LPL 14.4IIgを得た。得
られたPNVPグラフト化LPI、の重合度は700、
タンパク質含量は6.61%であった。IRスペクトル
の一部(1400〜1900cm−’ )を第1図に示
す。
This was then added with DTT in 20mM borate buffer (pH 7).
, 8) was added and shaken at room temperature for 30 minutes to reduce and separate the protein component from the carrier. The carrier was removed by centrifugation, and desalted by gel filtration using 5ephadex G-10 (trade name of Pharmacia).
PNVP-grafted LPL 14.4IIg was obtained. The degree of polymerization of the obtained PNVP-grafted LPI was 700,
Protein content was 6.61%. A part of the IR spectrum (1400-1900 cm-') is shown in FIG.

尚、ACv導入率39.7%(7) ACV導入LPL
(1)代りに導入率41.4%のACV導入LPLを用
いて実施例2と同様にしてPNVPグラフト化LPLを
製造し、実施例3と同様にして精製を行ったところ、重
合度560、タンパク實含量7.80%のPNVPグラ
フト化LPLが得られた。
In addition, ACv introduction rate 39.7% (7) ACV introduction LPL
(1) Instead, PNVP-grafted LPL was produced in the same manner as in Example 2 using ACV-introduced LPL with an introduction rate of 41.4%, and purified in the same manner as in Example 3. PNVP-grafted LPL with an actual protein content of 7.80% was obtained.

参考例1 、 PEG修飾酵素の製造 補出らの方法[Y、Inada、 et: al、、 
Biochem。
Reference Example 1, Production of PEG-modified Enzyme [Y, Inada, et: al.
Biochem.

Bjophys、 Res、 Commun、、 12
2.845−850(1984)]に従ってPEG修飾
酵素を合成した。
Bjophys, Res, Commun,, 12
2.845-850 (1984)].

2.4−ビス(0−メトキシポリエチレングリコール)
−6−クロロ−s−トリアジン(以下、活性化PEG2
と略称する。)[和光純薬工業■製] 0.8gと1、
PL 20mgを0.4Mホウ酸緩衝液(pH1O,0
33,2rnl中に加え、37℃で1時間撹拌反応させ
た後、0.1Mホウ酸緩衝液(pH8,0) 100m
1を加えて反応を停止させた。尚、活性化PEG2の使
用量はLPLの20倍当量に相当する。反応後、Am1
con PM−30(アミコン社商品名)nqを用い、
限外濾過により未反応の活性化PE02と LPLを除
き、凍結乾燥してPEG修飾LPL11.4mgを得た
。 PEG導入率は LPLの全アミノ基の50%であ
った。
2.4-bis(0-methoxypolyethylene glycol)
-6-chloro-s-triazine (hereinafter, activated PEG2
It is abbreviated as. ) [Made by Wako Pure Chemical Industries ■] 0.8g and 1,
PL 20mg was added to 0.4M borate buffer (pH 1O, 0
After stirring and reacting at 37°C for 1 hour, add 100ml of 0.1M borate buffer (pH 8,0).
1 was added to stop the reaction. Note that the amount of activated PEG2 used is equivalent to 20 times the amount of LPL. After reaction, Am1
Using con PM-30 (trade name of Amicon Inc.) nq,
Unreacted activated PE02 and LPL were removed by ultrafiltration and lyophilized to obtain 11.4 mg of PEG-modified LPL. The PEG introduction rate was 50% of the total amino groups in LPL.

参考例2゜ 実施例3で得たPNVP修飾LPL (導入率39.7
%のもの及び導入率41.4%のもの)及び参考例1で
得たPEG修飾LPLのクロロホルムに対する溶解度を
求めた。結果を未修飾LPLのそれと共に表2に示す。
Reference Example 2゜PNVP-modified LPL obtained in Example 3 (introduction rate 39.7
% and that with an introduction rate of 41.4%) and the solubility of the PEG-modified LPL obtained in Reference Example 1 in chloroform were determined. The results are shown in Table 2 along with those of unmodified LPL.

表     2 *修飾LPL又は未修飾LPL I釦gをクロロホルム
1]、fiiに加え、振盪後遠心分離により沈澱を分離
し、乾燥後秤量して減少分を溶解度(mg/に)とした
Table 2 *Modified LPL or unmodified LPL I button g was added to chloroform 1], fii, the precipitate was separated by centrifugation after shaking, and weighed after drying, and the decrease was taken as the solubility (mg/).

また、LPLか有機溶媒中では加水分解反応の逆反応で
ある縮合反応を触媒することができるようになる事を利
用して、基質としてn−アミルアルコールとn−カプリ
ル酸を用い、クロロホルム中でのPNVP修飾LPL及
びPEG修飾LPLの活性を測定して未修飾LPLのそ
れと比較した結果を表3に示す。
In addition, taking advantage of the fact that LPL can catalyze the condensation reaction, which is the reverse reaction of the hydrolysis reaction, in an organic solvent, we used n-amyl alcohol and n-caprylic acid as substrates, and in chloroform. Table 3 shows the results of measuring the activities of PNVP-modified LPL and PEG-modified LPL and comparing them with that of unmodified LPL.

表    3 **クロロホルム中0.92Mのn−アミルアルコール
と 0.92Mのn−カプリル酸を37℃で反応させ、
アルコールの減少量をガスクロマトグラフィーで追跡す
ることにより測定した。
Table 3 **0.92M n-amyl alcohol and 0.92M n-caprylic acid in chloroform were reacted at 37°C.
The amount of alcohol reduction was measured by tracking with gas chromatography.

表3より明らかな如く、クロロホルム中に於ける未修飾
リパーゼの活性は極めて低く、実用に耐えないほどであ
ったが、PEG修飾により活性が100倍以上に増大し
、更に本発明のPNVP修飾の1、P]、の場合にはそ
れ以上の大きな活性が認められた。
As is clear from Table 3, the activity of unmodified lipase in chloroform was extremely low and unsuitable for practical use, but PEG modification increased the activity more than 100 times, and the activity of PNVP modified according to the present invention was 1, P], an even greater activity was observed.

実施例4.ポリスチレングラフト化LPLの製造スチレ
ン5 ml(4,545g)に、実施例1と同様にして
得りA CV導入率約40 % <7) A CV d
人LPLを開始剤濃度が37.3nmol/ILになる
ように加え、200Wの高圧水銀灯を用いて30℃で2
時間光照射してポリマーを得た。ACV導入LPLの反
応率13.6%。スチレンの反応率0.23%。得られ
たポリマーのIRスペクトルを第2図に示す。
Example 4. Production of polystyrene-grafted LPL 5 ml (4,545 g) of styrene was prepared in the same manner as in Example 1. A CV introduction rate of about 40% <7) A CV d
Add human LPL to an initiator concentration of 37.3 nmol/IL, and use a 200W high-pressure mercury lamp at 30℃ for 2 hours.
A polymer was obtained by irradiation with light for a period of time. The reaction rate of ACV-introduced LPL was 13.6%. Styrene reaction rate 0.23%. The IR spectrum of the obtained polymer is shown in FIG.

参考例3゜ 実施例4で得たポリスチレン修飾LPLをM製せずにそ
のまま用いて、参考例2と同様にしてクロロホルム中で
の酵素活性を求めた。結果を未修飾LPLのそれと共に
表4に示す。
Reference Example 3 Enzyme activity in chloroform was determined in the same manner as in Reference Example 2, using the polystyrene-modified LPL obtained in Example 4 without making M. The results are shown in Table 4 along with those of unmodified LPL.

表    4 表4より明らかな如く、ポリスチレンをグラフト化した
場合でも未修飾LPLに比べると約60倍の活性の上昇
が見られ、疎水性ポリマーで修飾した場合でも有機溶媒
中での活性が一ト昇することが判った。
Table 4 As is clear from Table 4, even when polystyrene was grafted, the activity increased approximately 60 times compared to unmodified LPL, and even when modified with a hydrophobic polymer, the activity in organic solvents was significantly increased. I knew it was going to rise.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明は修飾酵素、固定化酵素の分野
に於て、従来とは全く異なるタイプの製造手法と、それ
によって得られる全く新しいタイプの修飾酵素、固定化
酵素を提供するものであり、例えば下記の如き点等に顕
著な効果を奏するものである。
As described above, the present invention provides a completely different type of production method from conventional methods in the field of modified enzymes and immobilized enzymes, and a completely new type of modified enzyme and immobilized enzyme obtained thereby. For example, it has remarkable effects in the following points.

1)本発明に係る修飾酵素を用いれば、親油性物質の酵
素処理を効率よく行うことができ、また、水系では不可
能な反応が可能となる点 2)本発明に係る修飾酵素を用いれば、反応の平衡をず
らすことができ、例えば加水分解酵素は縮合反応の触媒
として用いることかできる点 3) 本発明の製造法によりば、導入するビニルモノマ
ーの選択が自由なので、千ツマ−の種類を変えて様々な
ハイブリッド体を合成することが可能であり、しかも高
分子修飾剤を直接導入する従来の方法と比べて修飾剤の
導入率が良く効率的である点
1) By using the modified enzyme of the present invention, lipophilic substances can be efficiently treated with enzymes, and reactions that are impossible in aqueous systems can be performed. 2) By using the modified enzyme of the present invention, , the equilibrium of the reaction can be shifted, and for example, a hydrolase can be used as a catalyst for the condensation reaction. 3) According to the production method of the present invention, the vinyl monomer to be introduced can be freely selected, so thousands of types can be used. It is possible to synthesize various hybrids by changing the polymer modifier, and the introduction rate of the modifier is higher and more efficient than the conventional method of directly introducing a polymer modifier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例3で得られた本発明に係る修飾酵素のI
Rスペクトルの一部(1400〜1900cm−’)を
示す。また、第2図は実施例4で得られた本発明に係る
修飾酵素のIRスペクトル(全図)を示す。 特許出願人 相光純薬工業株式会社 第1図 手続補正書 平成 1年4月 6日
Figure 1 shows I of the modified enzyme according to the present invention obtained in Example 3.
A part of the R spectrum (1400 to 1900 cm-') is shown. Moreover, FIG. 2 shows the IR spectrum (full spectrum) of the modified enzyme according to the present invention obtained in Example 4. Patent applicant: Aiko Pure Chemical Industries, Ltd. Figure 1 Procedural Amendment April 6, 1999

Claims (4)

【特許請求の範囲】[Claims] (1)酵素の表面アミノ基に縮合試薬を用いて重合開始
能を有するアゾ化合物を共有結合させ、次いでこれにビ
ニルモノマーをグラフト重合させることを特徴とする修
飾酵素の製造方法。
(1) A method for producing a modified enzyme, which comprises covalently bonding an azo compound capable of initiating polymerization to an amino group on the surface of the enzyme using a condensation reagent, and then graft-polymerizing a vinyl monomer thereto.
(2)酵素の表面アミノ基に導入された重合開始能を有
するアゾ化合物を介して該酵素にビニルモノマーをグラ
フト重合させて成る修飾酵素。
(2) A modified enzyme obtained by graft-polymerizing a vinyl monomer onto the enzyme via an azo compound having polymerization initiation ability introduced into the surface amino group of the enzyme.
(3)チオール基を導入したポリスチレンを担体として
用い、これをSH基活性化剤で活性化した後、これに還
元型の酵素・ビニルポリマーハイブリッドを加えて反応
、固定化させ、然る後これを還元、分離することにより
精製することを特徴とする修飾酵素の精製方法。
(3) Polystyrene into which a thiol group has been introduced is used as a carrier, and after activating this with an SH group activator, a reduced enzyme/vinyl polymer hybrid is added to this, reacted and immobilized, and then this A method for purifying a modified enzyme, the method comprising purifying a modified enzyme by reducing and separating the enzyme.
(4)チオール基を導入したポリスチレンを担体として
用い、これをSH基活性化剤で活性化した後、これに還
元型のチオール基含有タンパク質を加えて反応、固定化
させ、然る後 これを還元、分離することにより精製することを特徴と
するチオール基含有タンパク質の精製方法。
(4) Use polystyrene into which thiol groups have been introduced as a carrier, activate it with an SH group activator, add a reduced thiol group-containing protein to it, react and immobilize it, and then A method for purifying a thiol group-containing protein, the method comprising purifying it by reduction and separation.
JP63001706A 1988-01-07 1988-01-07 New method for producing modified enzyme and new modified enzyme Expired - Lifetime JP2665593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63001706A JP2665593B2 (en) 1988-01-07 1988-01-07 New method for producing modified enzyme and new modified enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63001706A JP2665593B2 (en) 1988-01-07 1988-01-07 New method for producing modified enzyme and new modified enzyme

Publications (2)

Publication Number Publication Date
JPH01179688A true JPH01179688A (en) 1989-07-17
JP2665593B2 JP2665593B2 (en) 1997-10-22

Family

ID=11508997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63001706A Expired - Lifetime JP2665593B2 (en) 1988-01-07 1988-01-07 New method for producing modified enzyme and new modified enzyme

Country Status (1)

Country Link
JP (1) JP2665593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662859A (en) * 1992-08-20 1994-03-08 Amano Pharmaceut Co Ltd Immobilized modified enzyme and synthesis of ester by using the immobilized modified enzyme
WO1995024647A1 (en) * 1994-03-08 1995-09-14 Kyowa Medex Co., Ltd. Method of determining cholesterol in high-density lipoprotein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571492A (en) * 1978-11-25 1980-05-29 Toyobo Co Ltd Carrier for immobilized enzyme and its preparation
JPS6211093A (en) * 1985-07-05 1987-01-20 Arakawa Chem Ind Co Ltd Production of immobilized enzyme agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571492A (en) * 1978-11-25 1980-05-29 Toyobo Co Ltd Carrier for immobilized enzyme and its preparation
JPS6211093A (en) * 1985-07-05 1987-01-20 Arakawa Chem Ind Co Ltd Production of immobilized enzyme agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662859A (en) * 1992-08-20 1994-03-08 Amano Pharmaceut Co Ltd Immobilized modified enzyme and synthesis of ester by using the immobilized modified enzyme
WO1995024647A1 (en) * 1994-03-08 1995-09-14 Kyowa Medex Co., Ltd. Method of determining cholesterol in high-density lipoprotein
JPH07301636A (en) * 1994-03-08 1995-11-14 Kyowa Medex Co Ltd Determination method for cholesterol in high density lipoprotein
US5736406A (en) * 1994-03-08 1998-04-07 Kyowa Medex Co., Ltd. Method of determining the amount of cholesterol in a high-density lipoprotein

Also Published As

Publication number Publication date
JP2665593B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
US5482996A (en) Protein-containing polymers and a method of synthesis of protein-containing polymers in organic solvents
Yang et al. Activity and stability of enzymes incorporated into acrylic polymers
Monier et al. Immobilization of horseradish peroxidase on modified chitosan beads
US8507606B2 (en) Biocomposite materials and methods for making the same
US3711574A (en) Copolymers of acrylamide gas
Gombotz et al. Immobilization of biomolecules and cells on and within synthetic polymeric hydrogels
US4004979A (en) Preparation of active proteins cross-linked to inactive proteins
US6291582B1 (en) Polymer-protein composites and methods for their preparation and use
AU4667997A (en) Polymer-protein composites and methods for their preparation and use
Hsiao et al. Immobilization of glycoenzymes through carbohydrate side chains
Lahari et al. Adsorption induced enzyme denaturation: the role of polymer hydrophobicity in adsorption and denaturation of α-chymotrypsin on allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymers
NL8100728A (en) PROCESS FOR PREPARING COPOLYMERS OF POLYSACCHARIDES WITH ENZYMATIC ACTIVITY
Abbate et al. Photocrosslinked bovine serum albumin hydrogels with partial retention of esterase activity
JPH08116975A (en) Method for immobilization of biological substance, immobilized substance obtained by said method and biosensor using said immobilized substance
Monier et al. Immobilization of Candida rugosa lipase on modified natural wool fibers
Kazybayeva et al. Thiol-ene “click reactions” as a promising approach to polymer materials
US7723084B2 (en) Fibrous protein-immobilization systems
Hamerska-Dudra et al. Immobilization of glucoamylase and trypsin on crosslinked thermosensitive carriers
Beddows et al. The immobilization of enzymes onto hydrolyzed polyethylene‐g‐co‐2‐HEMA
Ito et al. Modification of lipase with various synthetic polymers and their catalytic activities in organic solvent
Akgöl et al. New generation polymeric nanospheres for catalase immobilization
JPS6368618A (en) Crosslinked polymer and its production
JP2665593B2 (en) New method for producing modified enzyme and new modified enzyme
Bı́lková et al. Oriented immobilization of chymotrypsin by use of suitable antibodies coupled to a nonporous solid support
JPS5815119B2 (en) Kosonofuyoukahou