JPH01178870A - Detecting device of rotation - Google Patents

Detecting device of rotation

Info

Publication number
JPH01178870A
JPH01178870A JP63002916A JP291688A JPH01178870A JP H01178870 A JPH01178870 A JP H01178870A JP 63002916 A JP63002916 A JP 63002916A JP 291688 A JP291688 A JP 291688A JP H01178870 A JPH01178870 A JP H01178870A
Authority
JP
Japan
Prior art keywords
measured
base
magnetoresistive element
substance
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63002916A
Other languages
Japanese (ja)
Inventor
Masayoshi Aonuma
雅義 青沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63002916A priority Critical patent/JPH01178870A/en
Publication of JPH01178870A publication Critical patent/JPH01178870A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain a prescribed distance between a magnetoresistance element and a substance to be measured, by providing a base which is maintained at a prescribed distance to this substance by its contact with the substance, and the magnetoresistance element which is formed on this base. CONSTITUTION:A recessed part 11a is formed in a base 11 made of Si, and a magnetoresistance element 12 is formed on the bottom surface of the recessed part 11a. A substance 13 to be measured, which is a rotary body on the outer peripheral surface of which N-poles and S-poles are formed sequentially, is in contact with the base 11 at the opposite ends of the recessed part 11a. Accordingly, the part of the substance 13 facing the recessed part 11a intrudes into the recessed part 11a. In a first embodiment thus constituted, a spacing distance (d) is maintained to be prescribed, since the base 11 and the substance 13 to be measured are in contact with each other at the opposite ends of the recessed part 11a and since Si constituting the base 11 has a high abrasion resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被測定物の回転を磁気抵抗素子を用いて検出
する回転検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotation detection device that detects the rotation of an object to be measured using a magnetoresistive element.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な回転検出装置において、基体と被
測定物とを接触させることによって両者間の距離を一定
に保持し、且つ磁気抵抗素子を基体に形成することによ
って、磁気抵抗素子の摩耗を少なくしたものである。
In the rotation detecting device as described above, the present invention maintains a constant distance between the base and the object to be measured by bringing them into contact with each other, and forms the magnetoresistive element on the base so that the magnetoresistive element can be fixed. This reduces wear.

〔従来の技術〕[Conventional technology]

VTRの記録再生ヘッドの回転検出等には、磁気抵抗素
子を用いた回転検出装置が用いられている。この様な回
転検出装置では、回転検出装置と被測定物との間の距離
を一定に保持して検出感度を一定に保持するために、磁
気抵抗素子と被測定物とを接触させて使用する場合があ
る。なお、磁気抵抗素子に関して、実願昭60−433
79号がある。
A rotation detection device using a magnetoresistive element is used to detect the rotation of a recording/reproducing head of a VTR. In such a rotation detection device, the magnetic resistance element and the object to be measured are used in contact in order to maintain a constant distance between the rotation detection device and the object to be measured and to maintain constant detection sensitivity. There are cases. Regarding magnetoresistive elements, Utility Application No. 60-433
There is No. 79.

ところが、磁気抵抗素子と被測定物とを接触させると、
磁気抵抗素子が激しく摩耗する。そこでこの対策として
、磁気抵抗素子を保護膜で被うことが考えられている。
However, when the magnetoresistive element and the object to be measured are brought into contact,
The magnetoresistive element is severely worn out. As a countermeasure against this problem, it has been considered to cover the magnetoresistive element with a protective film.

この様な保護膜としては、塗布型熱硬化樹脂やシリカガ
ラス、更には蒸着したSiO□やAha3等が考えられ
ている。
As such a protective film, coating type thermosetting resin, silica glass, and further vapor-deposited SiO□, Aha3, etc. are considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、塗布型熱硬化樹脂やシリカガラスでは、十分な
高硬度を得ることができない。これに対して、蒸着した
SiO□やA1□03では、硬度自体は高いが、長時間
に亘って蒸着するとクラックが発生するので厚膜化しに
くい。
However, it is not possible to obtain sufficiently high hardness with coated thermosetting resins or silica glass. On the other hand, vapor-deposited SiO□ and A1□03 have high hardness, but cracks occur when vapor-deposited for a long time, making it difficult to increase the thickness.

従って、従来から考えられている回転検出装置では、磁
気抵抗素子が摩耗し易い。
Therefore, in conventional rotation detection devices, the magnetoresistive elements tend to wear out.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による回転検出装置は、被測定物13と接触する
ことによってこの被測定物13との距離を一定に保持さ
れている基体11と、この基体11に形成されている磁
気抵抗素子12とを夫々具備している。
The rotation detection device according to the present invention includes a base body 11 that is kept at a constant distance from the object to be measured 13 by contact with the object to be measured 13, and a magnetoresistive element 12 formed on the base body 11. They are equipped with each.

(作用〕 本発明による回転検出装置では、基体11と、被測定物
13とが接触することによって両者間の距離が一定に保
持されており、磁気抵抗素子12はこの基体11に形成
されているので、磁気抵抗素子12と被測定物13との
間の距離も一定に保持されている。
(Function) In the rotation detection device according to the present invention, the distance between the base 11 and the object to be measured 13 is kept constant by contacting them, and the magnetoresistive element 12 is formed on the base 11. Therefore, the distance between the magnetoresistive element 12 and the object to be measured 13 is also kept constant.

〔実施例〕 以下、本発明の第1〜第4実施例を、第1図及び第2図
を参照しながら説明する。
[Embodiments] Hereinafter, first to fourth embodiments of the present invention will be described with reference to FIGS. 1 and 2.

第1A図が、第1実施例を示している。この第1実施例
では、Siから成る基体11に凹部11aが形成されて
おり、第2図に示す様な磁気抵抗素子12が凹部tta
の底面に形成されている。
FIG. 1A shows a first embodiment. In this first embodiment, a recess 11a is formed in a base 11 made of Si, and a magnetoresistive element 12 as shown in FIG. 2 is inserted into the recess tta.
is formed on the bottom of the

なお凹部11aは、半導体装置の製造に一般的に用いら
れているリソグラフィ工程とエツチング工程とによって
、容易に形成され得る。
Note that the recessed portion 11a can be easily formed by a lithography process and an etching process that are commonly used in manufacturing semiconductor devices.

一方、N極とS極とが外周面に順次に形成されている回
転体である被測定物13は、第1A図からも明らかな様
に、凹部11aの両端において基体11と接触している
。従って、被測定物13のうちで凹部11aと対向して
いる部分は、凹部11a内に入り込んでいる。
On the other hand, the object to be measured 13, which is a rotating body in which a north pole and a south pole are sequentially formed on the outer peripheral surface, is in contact with the base body 11 at both ends of the recess 11a, as is clear from FIG. 1A. . Therefore, the portion of the object to be measured 13 facing the recess 11a is inserted into the recess 11a.

しかし、第1A図からも明らかな様に、磁気抵抗素子1
2と被測定物13とは接触しておらず、両者間の距離d
は最大で50μm程ある。
However, as is clear from FIG. 1A, the magnetoresistive element 1
2 and the object to be measured 13 are not in contact, and the distance d between them is
is about 50 μm at maximum.

この様な第1実施例では、基体11と被測定物13とが
凹部11aの両端において接触しており、しかも基体1
1を構成しているSiは耐摩耗性が高いので、離間距離
dは一定に保持される。
In the first embodiment, the base 11 and the object to be measured 13 are in contact with each other at both ends of the recess 11a, and the base 1
Since Si constituting 1 has high wear resistance, the separation distance d is kept constant.

従って、検出感度が一定に保持されているにも拘らず、
磁気抵抗素子12が保護膜で被われていなくてもこの磁
気抵抗素子12が摩耗することはない。
Therefore, even though the detection sensitivity is held constant,
Even if the magnetoresistive element 12 is not covered with a protective film, the magnetoresistive element 12 will not wear out.

なお、既述の従来例に比べて基体11に凹部11aを形
成する工程は増加するが、逆に磁気抵抗素子12用の保
護膜を形成する工程が不要である。
Although the step of forming the recess 11a in the base body 11 is increased compared to the conventional example described above, on the contrary, the step of forming a protective film for the magnetoresistive element 12 is not necessary.

この結果、回転検出装置の製造コストは、全体としては
大きくは変化しない。
As a result, the overall manufacturing cost of the rotation detection device does not change significantly.

第1B図は、第2実施例を示している。この第2実施例
は、凹部11aの代りに凸部11bが基体11に形成さ
れており、この凸部11bに被測定物13が接触するこ
とによって離間距離dが一定に保持されていることを除
いて、上述の第1実施例と実質的に同様の構成を有して
いる。
FIG. 1B shows a second embodiment. In this second embodiment, a convex portion 11b is formed on the base body 11 instead of the concave portion 11a, and the separation distance d is maintained constant by the object to be measured 13 coming into contact with the convex portion 11b. Except for this, the second embodiment has substantially the same configuration as the first embodiment described above.

従って、この様な第2実施例でも、第1実施例と同様の
効果を奏することができる。
Therefore, even in such a second embodiment, the same effects as in the first embodiment can be achieved.

第1C図は、第3実施例を示している。この第3実施例
は、葛折状の磁気抵抗素子12に沿う様に凹部11aも
葛折状に形成されていることを除いて、上述の第1実施
例と実質的に同様の構成を有している。
FIG. 1C shows a third embodiment. This third embodiment has substantially the same configuration as the first embodiment described above, except that the recess 11a is also formed in a meander shape along the meander-shaped magnetoresistive element 12. are doing.

従って、この様な第3実施例では、凹部11aの巾が狭
く、被測定物13の半径が小さくても、一定の距離dに
磁気抵抗素子12と被測定物13とを離間させることが
できる。このため、この第3実施例も第1実施例と同様
の効果を奏することができる。
Therefore, in the third embodiment, even if the width of the recess 11a is narrow and the radius of the object to be measured 13 is small, the magnetoresistive element 12 and the object to be measured 13 can be separated by a constant distance d. . Therefore, this third embodiment can also achieve the same effects as the first embodiment.

第1D図は、第4実施例を示している。この第4実施例
では、第1実施例よりも深い位置まで被測定物13が凹
部11a内へ入り込んでおり、凹部11aの中央部近傍
では磁気抵抗素子12と被測定物13とが接触している
FIG. 1D shows a fourth embodiment. In this fourth embodiment, the object to be measured 13 enters the recess 11a to a deeper position than in the first example, and the magnetoresistive element 12 and the object to be measured 13 are in contact near the center of the recess 11a. There is.

しかし、この第4実施例でも、基体11と被測定物13
とが凹部11aの両端において接触している。従って、
第1D図に示した状態よりも更に磁気抵抗素子12が摩
耗するということはない。
However, also in this fourth embodiment, the base body 11 and the object to be measured 13
are in contact with each other at both ends of the recess 11a. Therefore,
The magnetoresistive element 12 is not worn further than the state shown in FIG. 1D.

このため、この第4実施例が第1実施例と略同様の効果
を奏することができる。
Therefore, this fourth embodiment can achieve substantially the same effects as the first embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明による回転検出装置では、磁気抵抗素子と被測定
物との間の距離が一定に保持されているので、磁気抵抗
素子の摩耗が少ない。
In the rotation detection device according to the present invention, since the distance between the magnetoresistive element and the object to be measured is kept constant, the wear of the magnetoresistive element is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図〜第1D図は本発明の夫々第1〜第4実施例を
示しており第2図のI−1線における断面図、第2図は
第1〜第4実施例で用いられている磁気抵抗素子の平面
図である。 なお図面に用いた符号において、 1t−−−−−−−−−−−−一・−基体12−・−−
−−−一一一−−−・−磁気抵抗素子13−−−−−−
−−−−−−−−被測定物である。
1A to 1D show the first to fourth embodiments of the present invention, respectively, and the cross-sectional view taken along the line I-1 in FIG. FIG. 3 is a plan view of a magnetoresistive element. In addition, in the symbols used in the drawings, 1t----------1.
---111----- Magnetoresistive element 13----
-----------It is the object to be measured.

Claims (1)

【特許請求の範囲】  被測定物の回転を磁気抵抗素子を用いて検出する回転
検出装置において、 前記被測定物と接触することによってこの被測定物との
距離を一定に保持されている基体と、この基体に形成さ
れている前記磁気抵抗素子とを夫々具備する回転検出装
置。
[Scope of Claim] A rotation detection device that detects the rotation of an object to be measured using a magnetoresistive element, comprising: a base that maintains a constant distance from the object by coming into contact with the object; , and the magnetoresistive element formed on the base.
JP63002916A 1988-01-09 1988-01-09 Detecting device of rotation Pending JPH01178870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63002916A JPH01178870A (en) 1988-01-09 1988-01-09 Detecting device of rotation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63002916A JPH01178870A (en) 1988-01-09 1988-01-09 Detecting device of rotation

Publications (1)

Publication Number Publication Date
JPH01178870A true JPH01178870A (en) 1989-07-17

Family

ID=11542673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63002916A Pending JPH01178870A (en) 1988-01-09 1988-01-09 Detecting device of rotation

Country Status (1)

Country Link
JP (1) JPH01178870A (en)

Similar Documents

Publication Publication Date Title
US4983916A (en) Compact magnetic encoder
JP2000028312A (en) Low profile non-contacting position sensor
WO2007007585A1 (en) Magnetic encoder
JPS6224110A (en) Non-contact full circumference type potentiometer
JPH01178870A (en) Detecting device of rotation
EP1725884B1 (en) Improved permalloy sensor
JPH07107486B2 (en) Rotary positioner
JPH0290017A (en) Multi-rotation-type absolute value encoder
JPS6311672Y2 (en)
JPS625284B2 (en)
JP3056674B2 (en) Rotation detection device
TW202007940A (en) Magnetic encoder that measures deviation of rotating axle and device thereof that comprises a ring-shaped base and a magnetic encoding unit disposed on one of first and second surfaces of the ring-shaped base
JPS63313880A (en) Ferromagnetic substance magnetic sensor
JPS60263309A (en) Magnetic head
JPS63208715A (en) Magnetic encoder
JPH04319620A (en) Magnetic type rotary encoder
JPH02108987A (en) Magnetic sensor
JPS6373114A (en) Magnetic sensor
JP3049803B2 (en) Magnetic rotation angle detector
JPH0221152B2 (en)
JP2586915B2 (en) Magnetic detector
JPH04255276A (en) Magnetoresistive element
JPS63314413A (en) Magnetic sensor and manufacture thereof
JPS60244812A (en) Magneto-resistance element for encoder
JPH09159485A (en) Magnetic encoder