JPH01178844A - Testing apparatus of vibration relief element - Google Patents

Testing apparatus of vibration relief element

Info

Publication number
JPH01178844A
JPH01178844A JP63002601A JP260188A JPH01178844A JP H01178844 A JPH01178844 A JP H01178844A JP 63002601 A JP63002601 A JP 63002601A JP 260188 A JP260188 A JP 260188A JP H01178844 A JPH01178844 A JP H01178844A
Authority
JP
Japan
Prior art keywords
force
hydrostatic
joint
axis
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63002601A
Other languages
Japanese (ja)
Other versions
JP2619453B2 (en
Inventor
Koji Fujiwara
藤原 剛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63002601A priority Critical patent/JP2619453B2/en
Publication of JPH01178844A publication Critical patent/JPH01178844A/en
Application granted granted Critical
Publication of JP2619453B2 publication Critical patent/JP2619453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To eliminate play and not to give a rotating motion to a testing body, by a construction wherein an apparatus is constructed of a hydrostatic bearing, a slide bearing and a table, the hydrostatic bearing being formed to be rectangular, and the rotating motion being joined through the intermediary of an oil film of 20-50mu in a gap between the hydrostatic bearing and a shaft. CONSTITUTION:A fitting jig 1 accepting a counter force of a vibration relief element 2, a table 3 giving a vibration force in the axes Y-X to the vibration relief element 2, and a hydrostatic joint 4 fixing the table 3, are provided. When an X-axis vibrator 10 transmits a pull strength to the hydrostatic joint 4 through a load cell 9 and a swivel joint 8, the vibration relief element 3 is extended in the direction of the axis X. When the vibration relief element 2 is moved in the directions of the axes X and Y, a counter force of rotation acts on the hydrostatic joint 4 since one end of the vibration relief element 2 is fixed to the base 11 by the fitting jig 1. This force is transmitted to hydrostatic bearings 4a-4d fitted in the hydrostatic joint 4 and further to a slide bar 5 through an oil film and to a slide bearing 7 and a shaft 7c, so as to cramp and support shaft supporting devices 6 and 6'.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉格納容器や建築構造物を地震から守る
ための免震要素の信頼性(破断特性)を試験評価するた
めの免震要素試験装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a seismic isolation system for testing and evaluating the reliability (rupture characteristics) of seismic isolation elements for protecting nuclear reactor containment vessels and building structures from earthquakes. Regarding element test equipment.

〔従来の技術〕[Conventional technology]

従来、第4図に示すようなリンク機構式の免震要素試験
装置が知られている。中央部の試験体をはさんで、リン
ク装置が上下のスライドベアリングで支持され、上下荷
重(圧縮のみ)を受けながら水平動の出来る免震要素試
験装置がある。この装置は上下は圧縮のみであり、破断
させるものではない、この種の装置として関連するもの
に、例えば特公昭54−44461号が挙げられる。
Conventionally, a link mechanism type seismic isolation element testing device as shown in FIG. 4 has been known. There is a seismic isolation element test device in which a link device is supported by upper and lower slide bearings across a test specimen in the center, and is capable of horizontal movement while receiving vertical loads (compression only). This device only compresses the upper and lower parts, but does not cause breakage. A related device of this type is, for example, Japanese Patent Publication No. 44461/1983.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図に紹介したリンク機構方式には、リンクのジヨイ
ント部にガタがあること、リンクの剛性が低いこと、試
験体への縦方向の力は圧縮しか加力できない事等で、水
平−上下の達成加力時に回転成分を発生し、精度が低下
する。又、破断時に試験体からの反動で、リンクのジヨ
イント部が破損したり、リンクが変形する等の問題があ
った。
The link mechanism method introduced in Figure 4 has some problems, such as the play in the joint of the link, the low rigidity of the link, and the fact that only compressive force can be applied to the test specimen in the vertical direction. A rotational component is generated when applying force to achieve this, reducing accuracy. In addition, there were problems such as the joint part of the link being damaged or the link being deformed due to the reaction from the test specimen at the time of breakage.

本発明の目的は、ガタがなくて高い剛性を有し、試験体
に回転動(ヨーイング、ピッチング、ローリング)を与
えない免震要素試験装置を提供することにある。
An object of the present invention is to provide a seismic isolation element testing device that is free from backlash, has high rigidity, and does not impart rotational motion (yawing, pitching, rolling) to a test specimen.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ガタを解決する手段として、静圧軸受とス
ライドベアリングおよびテーブルから構成し、静圧軸受
は矩形とし、回転動は軸受と軸とのギャップ20〜50
ミクロンの油膜を介して接合し、機械的ガタを皆無とす
ることにより、達成される。
The above purpose is to solve the looseness by constructing a structure consisting of a hydrostatic bearing, a slide bearing, and a table.
This is achieved by bonding via a micron oil film and eliminating mechanical play.

又剛性を上げる手段としては、上記のように軸受部の油
膜を50ミクロンとし、その場合の力を600.000
kgとすれば、剛性は 0.005■ となり、非常に高い剛性が得られるため、その目的が達
成される。
In addition, as a means to increase the rigidity, the oil film on the bearing part is set to 50 microns as described above, and the force in that case is set to 600.000.
kg, the stiffness is 0.005 .mu.kg, which is a very high stiffness, so the purpose is achieved.

〔作用〕[Effect]

免震要素(被試験体)は一方が治具によって固定されて
おり、片方はテーブルに固定されている。
One side of the seismic isolation element (test object) is fixed by a jig, and the other side is fixed to a table.

テーブルがX−X方向に相互に直角に動き、テーブルか
らのX−Y連成動の力を受けて、免震要素は伸縮する。
The tables move at right angles to each other in the X-X direction, and the seismic isolation element expands and contracts under the X-Y coupled force from the table.

テーブルは、微小な摩擦力で、X方向に動く静圧継手に
固定されている。X軸、Y軸の加振機は両端にスイーベ
ルジョイントを付け、一方は静圧継手に他方は基礎に固
定され、X方向およびX方向の力を静圧継手に伝達する
。テーブルは静圧継手に固定されているので、加振機の
力は静圧継手。
The table is fixed to a static pressure joint that moves in the X direction with a small frictional force. The X- and Y-axis exciters have swivel joints at both ends, one of which is fixed to a static pressure joint and the other fixed to the foundation, transmitting forces in the X and X directions to the static pressure joint. The table is fixed to a static pressure joint, so the force of the shaker is applied to the static pressure joint.

テーブルを介して免震要素に伝達される。transmitted to the seismic isolation element via the table.

基礎に固定されている取付治具は免震要素の反力を受け
とめる。
The mounting jig fixed to the foundation receives the reaction force of the seismic isolation element.

静圧継手はX軸動を許容し、X軸動をテーブルへ伝達す
る。
The static pressure joint allows X-axis motion and transmits the X-axis motion to the table.

スライドベアリングをX軸動を許容し、X軸動によって
生じる回転動を拘束しながらX軸動を許容する。
The slide bearing allows X-axis movement, and allows X-axis movement while restraining rotational movement caused by the X-axis movement.

〔実施例〕〔Example〕

第1図に実施例を示す。免震要素2の反力を受けとめる
取付治具1.免震要素2にY軸−X軸の加振力を与える
テーブル3と、テーブル3を固定している静圧継手4.
静圧継手4はY軸方向の力を許容しX軸方向の力を伝達
し免震要素2からの回転力を拘束するスライドパー5と
静圧軸受4a。
An example is shown in FIG. Mounting jig that receives the reaction force of the seismic isolation element 2 1. A table 3 that applies an excitation force along the Y-axis and the X-axis to the seismic isolation element 2, and a static pressure joint 4 that fixes the table 3.
The static pressure joint 4 allows the force in the Y-axis direction, transmits the force in the X-axis direction, and restrains the rotational force from the seismic isolation element 2. The slider 5 and the static pressure bearing 4a.

4b、4c、4dを嵌合し、スライドパー5はX方向の
力を許用し、X方向の力によって生ずる回転力を拘束す
るスライドベアリング7に固定されている。
4b, 4c, and 4d, and the slide par 5 is fixed to a slide bearing 7 that allows a force in the X direction and restrains rotational force generated by the force in the X direction.

静圧継手4にはY軸方向にはスイーベルジョイント8に
よってY加振機が接続され、X軸方向にはスイーベルジ
ョイント8によってX軸加振機が接続されており、X軸
とY軸のそれぞれの加振機は加振力を計測するロードセ
ル9を介し、もう−端はスイーベルジョイント8′によ
って基礎と接続されている。
A Y vibration exciter is connected to the static pressure joint 4 by a swivel joint 8 in the Y-axis direction, and an X-axis vibration exciter is connected to the static pressure joint 4 by a swivel joint 8 in the X-axis direction. The exciter is connected to the foundation via a load cell 9 that measures the excitation force, and the other end is connected to the foundation by a swivel joint 8'.

スライドベアリング7は軸7c、軸受7a。The slide bearing 7 includes a shaft 7c and a bearing 7a.

7bを嵌合し、軸7Cは軸支持装置i¥6に固定され、
軸支持装置6は基礎に固定されている。
7b is fitted, and the shaft 7C is fixed to the shaft support device i\6,
The shaft support device 6 is fixed to the foundation.

第2図は静圧継手4とスライドベアリング7の部分の詳
細を示した平面の断面図である。第3図は静圧継続4と
スライドパー5.5′の立断面を示した詳細である。
FIG. 2 is a plan sectional view showing details of the hydrostatic joint 4 and slide bearing 7. As shown in FIG. FIG. 3 shows a detail in vertical section of the static pressure continuation 4 and the slide par 5.5'.

スライドパー5,5′は静圧軸受4ax、4az。Slide pars 5 and 5' have hydrostatic bearings 4ax and 4az.

4b1,4bz、4cs、402.4dt、4dz。4b1, 4bz, 4cs, 402.4dt, 4dz.

4ez、4ez+ 4f工、4fzによって微小な油膜
によって浮上支持されている。それぞれの静圧軸受は圧
油Psが供給される構造になっている。
4ez, 4ez+ 4f engineering, 4fz are supported floating by a minute oil film. Each hydrostatic bearing has a structure in which pressure oil Ps is supplied.

第3図に示すように、静圧継手4は微小な油膜によって
浮上されているスライドパー5,5′を嵌合し、スライ
ドパー5,5′はそれぞれ上下左右に静圧軸受4 a 
s〜4fzによって浮上支持されている。
As shown in FIG. 3, the hydrostatic joint 4 fits the slide pars 5, 5' which are floated by a minute oil film, and the slide pars 5, 5' are fitted with hydrostatic bearings 4a on the top, bottom, left and right, respectively.
It is floatingly supported by s~4fz.

動作原理を以下に説明する。The operating principle will be explained below.

(1)第1図にもとづく動作説明 X軸加振+!&1oが引張力を、ロードセル9゜スイー
ベンジョイント8を介して静圧継手4に伝達されると免
振要J 3はX軸方向に伸びる。
(1) Operation explanation based on Figure 1 X-axis vibration +! When the tensile force of &1o is transmitted to the static pressure joint 4 via the load cell 9° sweep joint 8, the vibration isolation element J3 extends in the X-axis direction.

この時、スライドベアリング7とスライドパー5および
静圧継手4のX方向に接続されているY軸加振機10′
は軸7Cとスライドベアリング7に案内されてX方向に
移動する。次にY軸加振機10′が押し出す方向に加振
力を静圧継手4に加えると静圧継手4はスライドパー5
に案内され、静圧継手4に固定されているテーブル3と
免震要素2はY軸上方向へ移動する。このとき静圧継手
にスイーベルジョイント8で接続されているX軸加振機
10も同様にY軸上方向へ移動する。
At this time, the Y-axis vibrator 10' is connected to the slide bearing 7, the slide par 5, and the static pressure joint 4 in the X direction.
is guided by the shaft 7C and the slide bearing 7 and moves in the X direction. Next, when the Y-axis vibrator 10' applies an excitation force in the pushing direction to the static pressure joint 4, the static pressure joint 4 moves to the slide par 5.
The table 3 and the seismic isolation element 2 fixed to the static pressure joint 4 move upward along the Y axis. At this time, the X-axis vibrator 10 connected to the static pressure joint by the swivel joint 8 also moves upward in the Y-axis direction.

以上のように、X軸方向とY軸方向に免震要素2を移動
させると免震要素2の一端は取付治具1によって基礎1
1に固定されているために回転反力が静圧継手4に作用
する。
As described above, when the seismic isolation element 2 is moved in the X-axis direction and the Y-axis direction, one end of the seismic isolation element 2 is attached to the foundation 1 by the mounting jig 1.
1, a rotational reaction force acts on the static pressure joint 4.

(2)第2図にもとづく回転拘束の動作説明上記(1)
でX軸−Y軸連成加振によって発生した回転力は静圧継
手4に作用し、静圧継手4に嵌合されている静圧軸受4
a、4b、4c。
(2) Operation explanation of rotational restraint based on Figure 2 (1) above
The rotational force generated by the X-axis and Y-axis coupled vibration acts on the static pressure joint 4, and the static pressure bearing 4 fitted to the static pressure joint 4
a, 4b, 4c.

4dに伝達され、油膜を介してスライドパー5に伝達さ
れ、スライドベアリング7、軸7c、に伝達されて軸支
持装置6,6′で拘束支持される。
4d, is transmitted to the slide par 5 via an oil film, and is transmitted to the slide bearing 7 and shaft 7c, and is restrained and supported by shaft support devices 6 and 6'.

(3)X軸とY軸のクロストーク補正 上記のようにX−Y連成加振を行うとX軸とY軸間に、
スイベルジヨイント8′を中心とする回転によって、X
軸はY軸の変位によるクロストークを、Y軸はX軸の変
位によるクロストークが発生する。
(3) Crosstalk correction between the X and Y axes When the X-Y coupled excitation is performed as described above, between the X and Y axes,
By rotating around swivel joint 8',
Crosstalk occurs on the Y-axis due to displacement on the Y-axis, and crosstalk occurs on the Y-axis due to displacement on the X-axis.

このクロストークを補正するために、X軸はY軸の変位
による三角関数補正を、Y軸はX軸の変位による三角関
数補正を行うことによって、相互に補正することができ
る。
In order to correct this crosstalk, the X-axis can be mutually corrected by performing trigonometric function correction by Y-axis displacement, and the Y-axis by performing trigonometric function correction by X-axis displacement.

(4)実施例の回転拘束力 実施例の回転モーメントはX軸加振力600ton、 
Y軸変位60個とすれば、回転モーメントは 600tonX 60aa= 36,000ton−a
mとなり、これを静圧軸受4a、4b、4c。
(4) Rotational restraint force in the example The rotational moment in the example is an X-axis excitation force of 600 tons,
If the Y-axis displacement is 60, the rotational moment is 600 tonsX 60aa = 36,000ton-a
m, and these are the static pressure bearings 4a, 4b, and 4c.

4dおよびスライドベアリング7と軸受7a。4d, and the slide bearing 7 and bearing 7a.

7bで受ける。Receive it at 7b.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ガタが全くなくなり、精度のよい2次
元加力ができる。又、2次元加力で変位が±600+a
に対する制御精度は0.1%以上となる。更に、回転動
は油膜剛性が1.2X10δ−/dと高いので1回転抑
止制御が不要のため1回転モーメントが600 、00
0 kg −m のような大きなモーメントに対しても
、制御精度を0.1%以上保つことができる。
According to the present invention, there is no backlash at all, and highly accurate two-dimensional force can be applied. Also, the displacement due to two-dimensional force is ±600+a
The control accuracy for this is 0.1% or more. Furthermore, since the oil film stiffness is as high as 1.2X10δ-/d for rotational motion, one-rotation inhibition control is not required, so the one-rotation moment is 600,000.
Control accuracy of 0.1% or more can be maintained even for large moments such as 0 kg-m.

そして、試験体が破断した時に発生する衝撃反力を静圧
軸受とスライドベアリングで受は止めることができる。
The impact reaction force generated when the test specimen breaks can be stopped by the hydrostatic bearing and the slide bearing.

この?#撃撃力力加振機の加力を越えた時は力は加振機
に伝わり、加振機内に内蔵されたショックアブソーブ機
構によって吸収される。
this? #When the impact force exceeds the applied force of the exciter, the force is transmitted to the exciter and is absorbed by the shock absorbing mechanism built into the exciter.

試験体の破断に至るまでの試験において1回転動が混在
することは特性解析上好ましくないため、回転動を抑止
することは大変重要であり、本発明によりこの目的を達
成する事ができる。
Since it is undesirable for characteristic analysis to include one-rotation motion in the test leading to the test specimen's failure, it is very important to suppress rotational motion, and this objective can be achieved by the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は免震要素試験装置の平面図、第2図は回転運動
を抑制し、2次元加力のできる静圧継手部の横断面図、
第3図は、静圧継手部の縦断面図、第4図は従来のリン
ク式免震要素試験装置の立面および側面図である。 1・・・試験体取付治具、2・・・試験体(免震要素)
、3・・・テーブル、4・・・静圧継手、5・・・スラ
イドパー、6・・・軸支持装置、7・・・スライドベア
リング、7c・・・軸、8・・・スイーベルジョイント
、9・・・ロードセル、10−・・加振機、4 al、
 4 ax、 −−4fte4fz・・・静圧軸受、7
a、7b・・・軸受(静圧軸受、第1I21 第2凹 5 大つA)+に− 第3凹 第4(2)
Figure 1 is a plan view of the seismic isolation element testing device, Figure 2 is a cross-sectional view of the static pressure joint that suppresses rotational movement and can apply two-dimensional force.
FIG. 3 is a longitudinal sectional view of a static pressure joint, and FIG. 4 is an elevational and side view of a conventional link type seismic isolation element testing device. 1... Test specimen mounting jig, 2... Test specimen (seismic isolation element)
, 3... Table, 4... Static pressure joint, 5... Slide par, 6... Shaft support device, 7... Slide bearing, 7c... Shaft, 8... Swivel joint, 9... Load cell, 10-... Vibrator, 4 al,
4 ax, --4fte4fz...static pressure bearing, 7
a, 7b...Bearing (static pressure bearing, 1st I21 2nd recess 5 large A) + - 3rd recess 4th (2)

Claims (1)

【特許請求の範囲】[Claims] 1、たて、よこ動が相互に直角をなし、単独、もしくは
連動加力を行う免震要素試験装置において、たて用のス
イーベルジョイント付加振機とよこ用のスイーベルジョ
イント付加振機と加振力を伝達し、微小な摩擦でテーブ
ルをたてに案内し回転動作を拘束する静圧継手、微小な
摩擦力でテーブルをよこに案内し回転動を拘束するスラ
イドベアリング、およびスライドベアリング軸支持装置
とからなり、被試験体にたて動単独、よこ動単独、もし
くはたて−よこ同時連成加振力を与えることを特徴とす
る免震要素試験装置。
1. In a seismic isolation element testing device where the vertical and lateral motions are at right angles to each other and apply force independently or in conjunction, the vertical swivel joint vibration machine, the horizontal swivel joint vibration machine and the vibration force are used. static pressure joints that transmit vibrations, guide the table vertically using minute friction and restrain rotational motion, slide bearings that use minute frictional force to guide the table laterally and restrain rotational motion, and slide bearing shaft support devices. A seismic isolation element testing device characterized in that it applies vertical motion alone, lateral motion alone, or simultaneous vertical-horizontal coupled excitation force to a test object.
JP63002601A 1988-01-11 1988-01-11 Seismic isolation element test equipment Expired - Lifetime JP2619453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63002601A JP2619453B2 (en) 1988-01-11 1988-01-11 Seismic isolation element test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63002601A JP2619453B2 (en) 1988-01-11 1988-01-11 Seismic isolation element test equipment

Publications (2)

Publication Number Publication Date
JPH01178844A true JPH01178844A (en) 1989-07-17
JP2619453B2 JP2619453B2 (en) 1997-06-11

Family

ID=11533906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63002601A Expired - Lifetime JP2619453B2 (en) 1988-01-11 1988-01-11 Seismic isolation element test equipment

Country Status (1)

Country Link
JP (1) JP2619453B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427528B1 (en) 1997-02-05 2002-08-06 Hitachi, Ltd. Apparatus for the method of testing vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427528B1 (en) 1997-02-05 2002-08-06 Hitachi, Ltd. Apparatus for the method of testing vehicle

Also Published As

Publication number Publication date
JP2619453B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
CN101922995B (en) Three-shaft six-motion freedom vibration test device of electric hammer type
US9732516B2 (en) Object, such as a building, provided with a system for preventing damage from earthquakes to the object
JPWO2018052132A1 (en) 3-axis dynamic testing machine
JP7199375B2 (en) Bearing component
JP3123784B2 (en) 3D shaking table
US5063683A (en) Support assemblies
JP2860745B2 (en) Vibration test equipment
JPH01178844A (en) Testing apparatus of vibration relief element
JP2810146B2 (en) Loading test equipment
JPS61223527A (en) Method and device for supporting body to be tested of balance testing machine
CN216791908U (en) Multidirectional dynamic soil-rock mixture mechanical testing device
JPS5871430A (en) Oscillation simulator
JP3002480B2 (en) Vibration isolation test equipment
US4385524A (en) Compact shake mechanism
JPH1163091A (en) Vibration release base having base isolation performance
JP2753970B2 (en) Simulation test equipment for seismic roll and pitch of structural members or structures supporting heavy bodies
JPH0626982A (en) Test device for base isolation element
JPH05107146A (en) Two-dimensional vibration testing machine
JPS5989848A (en) Vibration control device
JPH052837Y2 (en)
CN2052086U (en) Shock-absorbing platform for precision instrument
CN214583022U (en) Displacement real-time monitoring unit and rubber vibration-proof pad
Sinapius Tuning of normal modes by multi-axial base excitation
WO2023244205A1 (en) Developed impermeable transparent laminate soil container
JP2024070740A (en) Loading Test Equipment