JPH0117867B2 - - Google Patents

Info

Publication number
JPH0117867B2
JPH0117867B2 JP9340380A JP9340380A JPH0117867B2 JP H0117867 B2 JPH0117867 B2 JP H0117867B2 JP 9340380 A JP9340380 A JP 9340380A JP 9340380 A JP9340380 A JP 9340380A JP H0117867 B2 JPH0117867 B2 JP H0117867B2
Authority
JP
Japan
Prior art keywords
discharge
layer
electrostatic
sheet member
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9340380A
Other languages
Japanese (ja)
Other versions
JPS5717963A (en
Inventor
Takashi Ichikawa
Sadatsugu Miura
Kenji Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9340380A priority Critical patent/JPS5717963A/en
Publication of JPS5717963A publication Critical patent/JPS5717963A/en
Publication of JPH0117867B2 publication Critical patent/JPH0117867B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/41Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing

Description

【発明の詳細な説明】 本発明は、静電印刷装置、いわゆる静電プリン
タ、ブロツクに関する。(今後、静電印刷装置を
静電プリンタと呼ぶ。) 従来の静電プリンタは、ドツト構成によるもの
では第1図、第2図に示す如く、低速のフアクシ
ミリ等に使用される1〜数本の静電ピン1を直接
静電記録体2に接触させ、パルス信号で静電潜像
を作り、後にトナー現像器3で現像後、定着器4
で定着する方式か、高速のラインプリンタ等に使
用されている、マルチスタイラス5と呼ばれる前
記静電ピン1を数100〜数1000本、樹脂に1〜数
列にして埋め込んだものを使用し、スタテイツ
ク、又は数ブロツクに分けてダイナツクに電圧を
印加して前記静電記録体2に静電潜像を作る方式
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrostatic printing devices, so-called electrostatic printers, blocks. (Hereinafter, electrostatic printing devices will be referred to as electrostatic printers.) Conventional electrostatic printers have a dot configuration, as shown in Figures 1 and 2, and are used for low-speed facsimiles, etc. The electrostatic pin 1 is brought into direct contact with the electrostatic recording medium 2 to create an electrostatic latent image using a pulse signal.
Alternatively, a static fixing method is used, in which several hundred to several thousand electrostatic pins 1, called a multi-stylus 5, which are used in high-speed line printers, are embedded in resin in one to several rows. Alternatively, an electrostatic latent image is created on the electrostatic recording medium 2 by applying voltage to a dynamic circuit in several blocks.

ちなみに、第1図に示した方式は、針電極の機
械的走査速度の故に、書込速度がA4の1枚の用
紙に対して1〜5分程度と低速であり、高速化を
意図すれば、第2図に示す如く針電極数を分解能
まで高めることにより走査を楽にするしか方法が
なかつた。
By the way, the method shown in Figure 1 has a slow writing speed of about 1 to 5 minutes for one sheet of A4 paper due to the mechanical scanning speed of the needle electrode, and is not intended to be faster. For example, the only way to make scanning easier was to increase the number of needle electrodes to the level of resolution, as shown in FIG.

これは、前記マルチスタイラス5を必要とする
ということであつて、A4サイズ横方向を10ドツ
ト/mmでカバーするためには2000本以上の針電極
を整然とならべる必要がある他、駆動系は第3図
に示す如く当然各ブロツクに分けて制御電極6を
設けたダイナミツク駆動方式か、第4図に示す如
くマトリツクス33によるダイナミツク駆動方式
を採らざるを得なかつた。31はブロツク信号発
生部、32は印字信号発生部である。しかし乍ら
前記針電極1相互の関係が非常に近接(例えば
50μ程度)しているため、浮誘容量によつて生ず
る容量結合によるクロストークが発生するため、
印加電圧の幅や、となり合う前記針電極、の電位
のコントロール等が必須であつた。
This means that the multi-stylus 5 is required, and in order to cover the A4 size horizontally at 10 dots/mm, it is necessary to arrange more than 2000 needle electrodes in an orderly manner. Naturally, a dynamic drive system in which control electrodes 6 are provided for each block as shown in FIG. 3, or a dynamic drive system using a matrix 33 as shown in FIG. 4 had to be adopted. 31 is a block signal generating section, and 32 is a print signal generating section. However, the relationship between the needle electrodes 1 is very close (for example,
(approximately 50μ), crosstalk occurs due to capacitive coupling caused by floating capacitance.
It is essential to control the width of the applied voltage and the potential of the needle electrodes adjacent to each other.

更に従来の画像形成方法として、静電記録体の
上下にマトリクス電極を用い両方の電極に印加さ
れたときだけ印字されるように制御駆動したもの
があるが、かかる構成においては、電極と記録体
間に隙間があると電荷による像の乱れが発生する
ので、記録体と電極を接触させる必要があり、又
その際に、確実な接触を得るためにはかなり大き
な押力が必要となり、迅速な印字に欠けるといつ
た問題、更には静電記録体に電極を接触させて電
圧を印加したとき、電流がかなり広い範囲に亘つ
て流れるので、解像力が悪く、印字品質を高める
ことが困難であつた。詳しくは、「電子写真・第
7巻・第3号・第102頁、103頁」を参照された
い。
Furthermore, as a conventional image forming method, there is a method in which matrix electrodes are used above and below an electrostatic recording medium, and controlled driving is performed so that printing is performed only when voltage is applied to both electrodes. If there is a gap between them, the image will be distorted due to the charge, so it is necessary to bring the recording medium into contact with the electrode, and at that time, a fairly large pushing force is required to achieve reliable contact, so it is difficult to quickly In addition to problems such as missing prints, when an electrode is brought into contact with an electrostatic recording medium and a voltage is applied, the current flows over a fairly wide range, resulting in poor resolution and difficulty in improving print quality. Ta. For details, please refer to "Electronic Photography, Volume 7, No. 3, Pages 102 and 103."

以上から、従来の静電プリンターは、機構、コ
ストの簡略化、低価格化を主眼とすると、低速の
ものしか作れず、高速化のためにマルチスタイラ
ス化した書込電極を採用すれば、マルチスタイラ
ス及びドライバー共に非常に構成が複雑、大型、、
高価となつて、ごく限られた用途、例えば大型コ
ンピユータの出力端末(ラインプリンタ)等にし
か適用出来なかつた。
From the above, conventional electrostatic printers can only be made at low speed if the main focus is on simplifying the mechanism, cost, and lowering the price.If a writing electrode with a multi-stylus is adopted to increase speed, it is possible to make a multi-stylus printer. Both the stylus and driver are very complex and large.
It was expensive and could only be applied to very limited applications, such as output terminals (line printers) for large computers.

さて、近来、CPU、メモリ等の低価格化が半
導体技術の進行によつて進み、マイコン、オフイ
スコンピユータ等が低価格化したため、コンピユ
ータを使用する層、及びコンピユータのプリント
アウトに接する層が従来の特殊なEDPSの専門家
のみから、一般大衆にまで拡大してきたため、ロ
ーマ字や、片仮名による出力に対する抵抗が大き
く、漢字、かな交り文による出力を待望する気運
が非常に強まつて来た。
Now, in recent years, the prices of CPUs, memory, etc. have been lowered due to the advancement of semiconductor technology, and the prices of microcomputers, office computers, etc. have also become lower. As EDPS has expanded from only special experts to the general public, there has been a strong resistance to output in Roman characters and katakana, and there has been a strong desire for output in kanji and kana letters.

さらには、従来存在しなかつた日本語ワードプ
ロセツサ等も、コスト的に大きく普及し得る線に
近くなつて来ている。
Furthermore, Japanese word processors and the like, which did not previously exist, are approaching the point where they can be widely used in terms of cost.

ところがこのようなシステムは、前述したよう
に、回路、メモリはどんどん低価格化して来た
し、今後もその方向が進むと予測されるのに対し
て、その出力端末の一つであるプリンターについ
ては、漢字等を使用するため従来のアルフアーニ
ユーメリカル文字では充分であつた5×7ドツ
ト、あるいは9×11ドツト位の分解能ではとうし
い漢字らしさを表現し得ず、ある程度の活字らし
さを望めば32×32ドツト位の分解能が必要とさ
れ、当然、高分解能、かつ高分解能によつて生ず
る印字スピードの低下に対処するため高速化が必
要となつて、プリンター部が非常に高価なものと
なつてしまつている。現在この要求を満足し得る
ものは、レーザ、OFT(オプチカル・フアイバ
ー・チユーブ)を使用した光プリンタ、マルチス
タイラス化静電プリンタしか存在せず、双方共非
常に高価であつて、システム全体のコストを非常
に押し上げ、よつてシステムの市場への普及を
(市場のニーズがあるにもかかわらず)妨げてい
る大きな要因となつている。上記の事情は、高速
フアクシミリ、CRTハード複写装置でも基本的
には全く同じことが云える。
However, as mentioned above, the prices of circuits and memory for such systems have been steadily decreasing, and this is expected to continue in the future, but when it comes to printers, which are one of the output terminals, Because we use kanji, etc., the resolution of 5 x 7 dots or 9 x 11 dots, which was sufficient for conventional alphanumeric characters, is not sufficient to express the kanji-like character, and if you want a certain degree of print-like character. A resolution of about 32 x 32 dots was required, and of course high resolution and high speed needed to cope with the drop in printing speed caused by high resolution, making the printer extremely expensive. It is closed. Currently, there are only optical printers that use lasers, OFT (optical fiber tubes), and multi-stylus electrostatic printers that can satisfy this requirement, and both are extremely expensive, resulting in the cost of the entire system. This is a major factor that is hindering the system's penetration into the market (despite the market need for it). The above situation is basically the same for high-speed facsimile machines and CRT hard copying machines.

本発明の先行例はかかる状況をふまえ、静電記
録の原理を用いて画期的なプリンタを提供せんと
したもので、その目的は、高分解能、高品位、、
高速の静電プリンターを、簡単な構成で、信頼性
が高く、小型・安価に作り得る印字原理とその構
成を提供することにある。
In view of this situation, the prior art of the present invention attempted to provide an epoch-making printer using the principle of electrostatic recording, and its purpose was to provide high resolution, high quality,
The purpose of the present invention is to provide a printing principle and configuration that allows a high-speed electrostatic printer to be manufactured with a simple configuration, high reliability, small size, and low cost.

次に、本発明の先行例について原理的な構成及
び印字原理について述べる。
Next, the basic structure and printing principle of a prior example of the present invention will be described.

第5図、書込信号発生部の構成例を示したもの
で、サブストレートである円筒ドラム8上に線状
電極9を1本か複数本まきつけてある。
FIG. 5 shows an example of the structure of the write signal generating section, in which one or more linear electrodes 9 are wound around a cylindrical drum 8, which is a substrate.

サブストレート8は、導体でも良いがその場
合、線状電極9は第6図に示す如くサブストレー
ト8より盛りあがつていなくてはならない。サブ
ストレート8が絶縁物の場合は第7図、第8図に
示す如く、線状電極9の表面がサブストレート8
の表面の高さが一致しているか、逆に引き込んで
いても良い。
The substrate 8 may be a conductor, but in that case, the linear electrode 9 must be raised above the substrate 8 as shown in FIG. When the substrate 8 is an insulator, the surface of the linear electrode 9 is on the substrate 8, as shown in FIGS. 7 and 8.
The heights of the surfaces of the two surfaces may be the same, or they may be drawn in on the contrary.

前記線状電極9の構成は一例であつて、これに
は限定されない。
The configuration of the linear electrode 9 is one example, and the configuration is not limited thereto.

次に、信号形成部であるが、形状は第9図のよ
うな端面10を有する薄膜層11より構成されて
いる。端面の形状は、第9図の如く直線でもよい
し、使用法によつては、第10図の如く非直線で
あつてもよい。またその端面部の断面は、第1
1、第12図、第13図等、多様なものが考えら
れる。よつて、端面は帯状の面もしくは先端が尖
つた線状のものが考えられる。
Next, the signal forming section is composed of a thin film layer 11 having an end surface 10 as shown in FIG. The shape of the end face may be a straight line as shown in FIG. 9, or may be non-straight as shown in FIG. 10 depending on the usage. Moreover, the cross section of the end face part is the first
1, Fig. 12, Fig. 13, etc. are various. Therefore, the end surface may be a band-shaped surface or a linear surface with a pointed tip.

次に、第14図a,b、第15図に本発明によ
る構成の一例を示し、その印字原理を説明する。
Next, an example of the structure according to the present invention is shown in FIGS. 14a and 14b and FIG. 15, and the printing principle thereof will be explained.

回転する円筒ドラム8上に線電極9がスパイラ
ル状にまかれており、それに近接して円筒ドラム
8の軸と平行な平面内に、信号形成部である端面
10を有する薄膜層11におかれている。線状電
極9と薄膜層11との距離は、接触から50〜
150μm位が適当であるが、発生するドツトサイ
ズを小さくするには、この間の距離は短い程良
い。しかし、接触させてしまうと摩耗が問題とな
る。
A wire electrode 9 is spirally wound on a rotating cylindrical drum 8, and adjacent thereto in a plane parallel to the axis of the cylindrical drum 8, a thin film layer 11 having an end surface 10, which is a signal forming part, is placed. ing. The distance between the linear electrode 9 and the thin film layer 11 is 50~
Approximately 150 μm is appropriate, but in order to reduce the size of generated dots, the shorter the distance, the better. However, if they come into contact, wear becomes a problem.

さらに、このように構成された静電印刷信号発
生部に、近接または接触させて静電記録体2を前
置させ、該静電印刷信号発生部と反対側に背面電
極12を設け、前記線状電極9と前記背面電極1
2間に電圧を印加する構成となつている。さらに
は現像部30、定着部31が接続している。
Furthermore, an electrostatic recording medium 2 is placed in front of the electrostatic printing signal generating section configured in this manner in proximity to or in contact with the electrostatic printing signal generating section, and a back electrode 12 is provided on the opposite side from the electrostatic printing signal generating section, and the shaped electrode 9 and the back electrode 1
The structure is such that a voltage is applied between the two. Furthermore, a developing section 30 and a fixing section 31 are connected.

第16図に従つて信号形成部の原理的機能を説
明する。背面電極12の上を送られる静電記録体
2の上に強磁性体薄層13とその上面及び端面を
覆う抵抗体層14の二層構造からなる信号形成部
の薄板を置き背面電極12側から磁石15で吸着
する。線電極9に電圧パルスを印加すると線電極
9に最近接する抵抗体層14上の点近傍との間で
放電が起き発生した空間電荷16が前記信号形成
部の端面10に沿つて静電記録体2まで達し静電
潜像を作る。本来線電極9による放電像は線にな
るところであるが信号形成部の位置を調整するこ
とによりドツトを形成させることができる。しか
し、空間電荷16は信号形成部端面10に沿つて
下降中拡散するので、信号形成部は薄くなければ
ならず、また静電記録体に磁気力で密着させてい
る。強磁性体薄層13は導体であるから、この端
面が露出していると、放電で発生した電荷が静電
記録体2に到達する前に強磁性体薄層13に吸収
されてしまう。放電で生じた電荷のうち抵抗体上
到来したものは、この部分の電位を押し上げ放電
ギヤツプ17の電位差を減少させるので放電は停
止する。もし抵抗体層14が導体であるとすると
放電で生じた電荷は14上に保持されず放電ギヤ
ツプ17の電位差が減少しないので放電が停止し
ない。本印刷装置においてページを印刷するには
信号形成部の同一場所において、印刷速度に応じ
たある時間間隔で放電が繰返せなければならな
い。このためには、抵抗体層14上に保持された
電荷が、この時間間隔中にグラウンドに逃げなけ
ればならない。この時間は逃げ道の時定数によつ
て定まる。以上のように抵抗体層14の抵抗値は
放電を止めるのに充分な時間(100ms程度)中、
電荷を保持するのに充分大きくなければならず、
高速で放電を繰り返すのに充分な時間(1ms)
内に電荷を逃がすのに充分小さくなければならな
い。これを満足する抵抗体の比抵抗は10μmの抵
抗体層については103〜108Ωcmであるが、この様
な比抵抗を持ち、かつ電気的耐圧の高い物質はあ
まりない。前記二層構造の信号形成部では抵抗層
14が破壊してしまうと抵抗値が低下し放電量が
増大し、その結果、形成されるドツトが大きくな
る。
The principle function of the signal forming section will be explained with reference to FIG. A thin plate of a signal forming section consisting of a two-layer structure of a thin ferromagnetic layer 13 and a resistor layer 14 covering its upper surface and end surface is placed on the electrostatic recording material 2 that is sent over the back electrode 12 on the back electrode 12 side. It is attracted by the magnet 15. When a voltage pulse is applied to the line electrode 9, a discharge occurs between the line electrode 9 and the nearest point on the resistor layer 14, and the generated space charge 16 is transferred to the electrostatic recording material along the end surface 10 of the signal forming section. 2 and creates an electrostatic latent image. Originally, the discharge image formed by the line electrode 9 would be a line, but by adjusting the position of the signal forming section, it can be formed into dots. However, since the space charge 16 diffuses while descending along the end face 10 of the signal forming part, the signal forming part must be thin and is brought into close contact with the electrostatic recording medium by magnetic force. Since the ferromagnetic thin layer 13 is a conductor, if this end face is exposed, the charges generated by the discharge will be absorbed by the ferromagnetic thin layer 13 before reaching the electrostatic recording body 2. Among the charges generated by the discharge, those that arrive on the resistor push up the potential of this portion and reduce the potential difference in the discharge gap 17, so that the discharge is stopped. If the resistor layer 14 is a conductor, the charge generated by the discharge will not be retained on the resistor layer 14, and the potential difference in the discharge gap 17 will not decrease, so the discharge will not stop. In order to print a page with this printing device, discharge must be repeated at the same location in the signal forming section at certain time intervals depending on the printing speed. For this, the charge held on the resistor layer 14 must escape to ground during this time interval. This time is determined by the time constant of the escape route. As described above, the resistance value of the resistor layer 14 is determined during the sufficient time (about 100 ms) to stop the discharge.
must be large enough to hold a charge,
Sufficient time (1ms) to repeat discharge at high speed
It must be small enough to allow the charge to escape. The specific resistance of a resistor that satisfies this requirement is 10 3 to 10 8 Ωcm for a 10 μm resistor layer, but there are not many materials that have such a specific resistance and a high electrical breakdown voltage. In the two-layered signal forming section, if the resistance layer 14 is destroyed, the resistance value decreases and the amount of discharge increases, resulting in an increase in the size of the dots formed.

本発明はかかる欠点を克服し、電気的耐圧の低
い材料を用いても小さい放電量を安定にするため
に三層構造形成部を用いたものであり以下に説明
する。
The present invention uses a three-layer structure forming part in order to overcome such drawbacks and stabilize a small amount of discharge even when using a material with a low electrical breakdown voltage, and will be described below.

三層構造の信号形成部は第17図に示す如く、
強磁性体薄層13とその上面及び端面を覆う抵抗
層14の間に絶縁体層18をはさんだ構成になつ
ている。三層構造の信号形成部を用いた場合の放
電系の等価回路を第18図に示す。高圧パルス発
生器19で線電極と抵抗体層の間の放電ギヤツプ
17に高圧を印加すると、発生した放電電荷は放
電ギヤツプ17を移動した抵抗体層の厚み方向の
容量20と、それに直列に配置された絶縁体層に
よる容量21を充電して放電ギヤツプ17の電位
差を減じ、放電を終わる。前記二重構造には、こ
の容量21が欠けているが、三重構造ではこの容
量21の存在により系全体の合成容量が小さくな
るので、小量の電荷が移動しただけで、放電ギヤ
ツプ17の電位差が大きく減少するから、小さな
放電量で放電が停止する。また、電圧は抵抗体層
と絶縁層に分圧されるため抵抗層は破壊しにく
く、もし破壊しても放電電荷は直接グラウンド2
4へ抜けないので放電量が過大にならない。2
2,23はそれぞれ抵抗体層の厚み方向の抵抗、
面方向の抵抗である。抵抗体層上に保持され放電
を停止させた電荷は、抵抗23を通してグラウン
ド24に逃れ次の放電を可能にする。以下本発明
の実施例により詳しく説明する。
The signal forming section with the three-layer structure is as shown in Fig. 17.
It has a structure in which an insulating layer 18 is sandwiched between a ferromagnetic thin layer 13 and a resistive layer 14 covering its upper surface and end surfaces. FIG. 18 shows an equivalent circuit of a discharge system when a three-layered signal forming section is used. When a high voltage is applied to the discharge gap 17 between the wire electrode and the resistor layer by the high-voltage pulse generator 19, the generated discharge charge is transferred to the capacitance 20 in the thickness direction of the resistor layer that has moved through the discharge gap 17, and is placed in series therewith. The capacitor 21 formed by the insulating layer is charged to reduce the potential difference in the discharge gap 17, and the discharge ends. The double structure lacks this capacitor 21, but in the triple structure, the presence of this capacitor 21 reduces the combined capacitance of the entire system. Since the amount decreases greatly, the discharge stops with a small amount of discharge. In addition, since the voltage is divided between the resistor layer and the insulating layer, the resistor layer is difficult to break down, and even if it breaks down, the discharge charge will be directly connected to the ground 2.
4, so the amount of discharge does not become excessive. 2
2 and 23 are the resistances in the thickness direction of the resistor layer, respectively;
This is the resistance in the plane direction. The charge held on the resistor layer and stopping the discharge escapes to the ground 24 through the resistor 23 and enables the next discharge. The present invention will be explained in detail below using examples.

実施例 パーマロイを30μmに圧延した板を基板にし
て、絶縁体層として25μm厚のポリイミド層、抵
抗体としてポリイミドにカーボン粒子を均一に拡
散させて15μmの厚さに塗布し、全体の厚さを
70μmとし、−1000V、幅10msのパルスを印加、
直径100μmのドツト形成に成功した。このパル
スを1ms周期で印加し、信号形成部端面の同一
場所で放電させた際、電荷が逃げ遅れて放電が失
敗することはなかつた。抵抗層のシート抵抗は
109Ω/□である。
Example Using a board made of permalloy rolled to a thickness of 30 μm as a substrate, a 25 μm thick polyimide layer was used as an insulator layer, and a polyimide layer was coated with carbon particles uniformly diffused onto the polyimide layer as a resistor to a thickness of 15 μm to reduce the overall thickness.
70μm, -1000V, 10ms width pulse applied,
We succeeded in forming dots with a diameter of 100 μm. When this pulse was applied at a period of 1 ms and discharge was caused at the same location on the end face of the signal forming part, the discharge did not fail due to delayed escape of the charge. The sheet resistance of the resistance layer is
10 9 Ω/□.

抵抗体の材料としては、ポリイミド、ポリエチ
レン、ポリエテステル等の有機物中にカーボン粒
子等の導体、酸化鉄等の半導性粒子を拡散したも
の、あるいは、厚膜抵抗ペースト等が利用でき
る。絶縁体層については、ポリイミドの他、絶縁
耐圧の高い薄層を形成できるものなら何でもよ
い。
As a material for the resistor, a material obtained by diffusing a conductor such as carbon particles or semiconducting particles such as iron oxide in an organic material such as polyimide, polyethylene, or polyester, or a thick film resistor paste can be used. The insulator layer may be made of polyimide or any material that can form a thin layer with high dielectric strength.

以上のように本発明は、高解像度の像(10ドツ
ト/mm)を安定に高速で形成する印刷装置を安価
に提供するものである。
As described above, the present invention provides an inexpensive printing device that can stably form high-resolution images (10 dots/mm) at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図……従来の低速形静電プリンタの概容。
第2図……従来の高速形静電プリンタの概容。第
3図……従来の高速形の静電プリンタのダイナミ
ツク駆動方式の一例、第4図……従来の高速形の
静電プリンタのダイナミツク駆動方式の他の一
例、第5図……本発明の先行例による書込信号発
生部の構成の他の一例、第6図……本発明の先行
例による書込信号発生部の断面の一例、第7図…
…本発明の先行例による書込信号発生部の断面の
他の一例、第8図……本発明の先行例による書込
信号発生部の断面の他の一例、第9図……本発明
の先行例による信号形成部の一例、第10図……
本発明の先行例による信号形成部の他の一例、第
11図……本発明の先行例による信号形成部の断
面の一例、第12図……本発明の先行例による信
号形成部の他の断面の一例、第13図……本発明
の先行例による信号形成部の他の断面の一例、第
14図……本発明の先行例による静電印刷装置の
構成の一例(静電印刷信号発生部のみ)、第15
図……本発明の先行例による静電印刷装置の構成
の一例(全体)、第16図……本発明の先行例に
よる静電印刷装置の信号形成部に強磁性体層と抵
抗体層より成る二層構造を用いた構成の一例、第
17図……本発明による静電印刷装置の信号形成
部に強磁性体層と抵抗体層と、抵抗体層より成る
三層構造を用いた構成の一例、第18図……本発
明による静電印刷装置の信号形成部に強磁性体層
と絶縁体層と、抵抗体層より成る三層構造を用い
た構成の等価回路、2……静電記録体、8……サ
ブストレート、9……線状電極、10……端面、
11……薄膜層、12……背面電極、13……強
磁性体薄層、14……抵抗体層、15……磁石、
16……空間電荷、17……放電ギヤツプ、18
……絶縁体層、19……高圧パルス発生部、20
……抵抗体層による容量、21……絶縁体層によ
る容量、22……抵抗層の厚み方向の抵抗、23
……抵抗層の面方向の抵抗、24……グラウン
ド。
Figure 1: Outline of a conventional low-speed electrostatic printer.
Figure 2: Outline of a conventional high-speed electrostatic printer. Fig. 3: An example of the dynamic drive system of a conventional high-speed electrostatic printer; Fig. 4: Another example of the dynamic drive system of a conventional high-speed electrostatic printer; Fig. 5: an example of the dynamic drive system of a conventional high-speed electrostatic printer; Another example of the configuration of the write signal generating section according to the prior example, FIG. 6...An example of a cross section of the write signal generating section according to the prior example of the present invention, FIG. 7...
...Another example of the cross section of the write signal generating section according to the prior example of the present invention, FIG. 8...Another example of the cross section of the write signal generating section according to the prior example of the present invention, FIG. An example of a signal forming section according to a prior example, FIG. 10...
Another example of the signal forming section according to the preceding example of the present invention, FIG. 11...An example of a cross section of the signal forming section according to the preceding example of the present invention, FIG. 12...Other example of the signal forming section according to the preceding example of the present invention An example of a cross section, FIG. 13: An example of another cross section of a signal forming section according to a prior example of the present invention, FIG. 14: An example of the configuration of an electrostatic printing apparatus according to a prior example of the present invention (electrostatic printing signal generation section only), No. 15
Figure: An example (overall) of the configuration of an electrostatic printing device according to a prior example of the present invention, Figure 16: A ferromagnetic layer and a resistor layer are used in the signal forming section of an electrostatic printing device according to a prior example of the present invention. FIG. 17 is an example of a configuration using a two-layer structure consisting of a ferromagnetic layer, a resistor layer, and a three-layer structure consisting of a resistor layer in the signal forming section of the electrostatic printing device according to the present invention. An example, FIG. 18: Equivalent circuit of a three-layer structure consisting of a ferromagnetic layer, an insulating layer, and a resistor layer in the signal forming part of the electrostatic printing device according to the present invention, 2... Electrorecording body, 8... Substrate, 9... Linear electrode, 10... End surface,
11... thin film layer, 12... back electrode, 13... ferromagnetic thin layer, 14... resistor layer, 15... magnet,
16...Space charge, 17...Discharge gap, 18
...Insulator layer, 19...High voltage pulse generation section, 20
...Capacitance due to the resistor layer, 21...Capacitance due to the insulator layer, 22...Resistance in the thickness direction of the resistance layer, 23
...Resistance in the plane direction of the resistance layer, 24... Ground.

Claims (1)

【特許請求の範囲】 1 回転される円筒状ドラム8の表面に回転軸に
対して傾けて配置した線状電極9と、 前記円筒状ドラム8に隙間をもつて対向して配
置され表面に静電記録体2が載置される背面電極
12と、 前記背面電極の裏面に配置される磁石15と、 前記静電記録体に接する面に配置される強磁性
体薄層13の表面及び端面に絶縁体層18及び高
抵抗体層14を順次積層して一体に形成されると
ともに、前記円筒状ドラムと隙間をもつて配置さ
れ端面が前記円筒状ドラムの回転軸と平行に配置
されるシート部材とからなり、 前記シート部材は、前記シート部材に蓄えられ
る放電電荷により前記線状電極と前記シート部材
の間の実効印加電圧を低下させ放電を停止させる
とともに、放電停止後は前記シート部材に蓄えら
れた放電電荷を前記高抵抗層を介して逃がしうる
比抵抗の高抵抗層により形成してなることを特徴
とする静電印刷装置。
[Scope of Claims] 1. A linear electrode 9 disposed on the surface of the cylindrical drum 8 to be rotated at an angle with respect to the rotation axis; A back electrode 12 on which the electrostatic recording body 2 is placed, a magnet 15 disposed on the back surface of the back electrode, and a surface and end surface of the ferromagnetic thin layer 13 disposed on the surface in contact with the electrostatic recording body. A sheet member that is integrally formed by sequentially laminating an insulating layer 18 and a high-resistance layer 14, is arranged with a gap from the cylindrical drum, and has an end surface parallel to the rotation axis of the cylindrical drum. The sheet member is configured to reduce the effective applied voltage between the linear electrode and the sheet member to stop the discharge due to the discharge charge stored in the sheet member, and to reduce the effective voltage applied between the linear electrode and the sheet member to stop the discharge, and to reduce the discharge charge stored in the sheet member after the discharge is stopped. An electrostatic printing device characterized in that the electrostatic printing device is formed of a high-resistance layer having a specific resistance that allows discharged charges to escape through the high-resistance layer.
JP9340380A 1980-07-09 1980-07-09 Electrostatic line printer Granted JPS5717963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9340380A JPS5717963A (en) 1980-07-09 1980-07-09 Electrostatic line printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9340380A JPS5717963A (en) 1980-07-09 1980-07-09 Electrostatic line printer

Publications (2)

Publication Number Publication Date
JPS5717963A JPS5717963A (en) 1982-01-29
JPH0117867B2 true JPH0117867B2 (en) 1989-04-03

Family

ID=14081326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9340380A Granted JPS5717963A (en) 1980-07-09 1980-07-09 Electrostatic line printer

Country Status (1)

Country Link
JP (1) JPS5717963A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000824A (en) * 1987-05-19 1991-03-19 E. I. Du Pont De Nemours And Company Polyethylene pulp

Also Published As

Publication number Publication date
JPS5717963A (en) 1982-01-29

Similar Documents

Publication Publication Date Title
US5723204A (en) Two-sided electrical paper
US6291925B1 (en) Apparatus and methods for reversible imaging of nonemissive display systems
US4546364A (en) Head for electrostatic recording
EP0166494B1 (en) Dielectric-electrode laminate
US4161141A (en) Two side multi roller toner station for electrographic non-impact printer
JPS5939794B2 (en) Potential recording printing device
US4165686A (en) Two-sided non-impact printing system
JPH0117867B2 (en)
US6285382B1 (en) Recording medium and image forming apparatus for forming image thereon
US3811766A (en) Developing apparatus
JPS633968A (en) Image forming element for electrostatic type printer and printer using this kind of element
US3986189A (en) Dielectrographic recording apparatus and method
JPS6412432B2 (en)
US4393390A (en) Electrostatic printer
JPH0123310B2 (en)
US3217330A (en) Electrostatic printing utilizing printthrough recording
US3771184A (en) Printing apparatus
JPH0141508B2 (en)
US6215509B1 (en) Non-impact recording method and conductive recording medium
JPS6242848A (en) Ink jet recorder
JPH0631972A (en) Elastic counter electrode for electrostatic recorder
JP2003291395A (en) Imaging apparatus
JPH02217270A (en) Image forming head
JPS6232785B2 (en)
JPH0739188B2 (en) Stylus electrostatic recorder