JPH01178506A - Modification of polymer - Google Patents

Modification of polymer

Info

Publication number
JPH01178506A
JPH01178506A JP63000682A JP68288A JPH01178506A JP H01178506 A JPH01178506 A JP H01178506A JP 63000682 A JP63000682 A JP 63000682A JP 68288 A JP68288 A JP 68288A JP H01178506 A JPH01178506 A JP H01178506A
Authority
JP
Japan
Prior art keywords
polymer
ion implantation
implanted
ion
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63000682A
Other languages
Japanese (ja)
Inventor
Shuzo Fujimura
藤村 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63000682A priority Critical patent/JPH01178506A/en
Publication of JPH01178506A publication Critical patent/JPH01178506A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/087Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and being incorporated in an organic bonding material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To provide a controlled electroconductivity to a polymer, by carrying out ion implantation of a specified element into the polymer. CONSTITUTION:At least one element of group Vb (N, P, As, Sb, Bi) of the periodic table of elements are ion-implanted into a polymer. As the polymer, those which are conjugated, above all, those having benzene rings are pref. In case of phosphine, the amt. of ion implantation is pref. 1X10<17>/cm or less. Above this amt., the phosphine is implanted into other places than the conjugated positions, so that the electroconductivity can not be well controlled.

Description

【発明の詳細な説明】 〔1既  要〕 高分子へのイオン打込みによるその導電性制御を行なう
高分子改質に関し、 従来はイオン打込み元素と高分子との関係がはっきりせ
ず、本発明者が見い出したイオン打込み元素と高分子と
の関係に基づいて、導電性を制御して高分子に与える高
分子改質方法を提供することを目的とし、 共役系を有する高分子に元素周期律表でVb族元素(N
 、 As  、 P 、 Sb  、 Bi)の少な
くとも一種類をイオン打込みすることによって高分子の
導電性を制御性良(向上させるように構成する。
[Detailed Description of the Invention] [1 Required] Regarding polymer modification in which conductivity is controlled by ion implantation into a polymer, the relationship between the ion implantation element and the polymer has not been clear until now, and the present inventors Based on the relationship between ion implantation elements and polymers discovered by and Vb group element (N
, As, P, Sb, Bi) is ion-implanted to improve the controllability of the conductivity of the polymer.

〔産業上の利用分野〕[Industrial application field]

本発明は、高分子の改質方法に関し、より詳しく述べる
ならば、高分子へのイオン打込みによるその導電性制御
を行なう高分子改質に関する。
The present invention relates to a method for modifying a polymer, and more specifically, to a method for modifying a polymer in which conductivity is controlled by implanting ions into the polymer.

〔従来の技術〕[Conventional technology]

高分子の一部には、金属的または半導体的な導電性を示
す導電性高分子があり、その研究・開発がさかんになさ
れている。
Some polymers include conductive polymers that exhibit metallic or semiconductor-like conductivity, and research and development of these polymers is being actively conducted.

例えば、ポリフェニレンサルファイド(P P S)、
ポリビニルクロライド(PVC)あるいはノボラック樹
脂ベースのフォトレジスト(例えば、フジ・ハント社商
品: HPR204)の高分子にアルゴン(Ar)、酸
素(0□)等のイオンをイオン打込み(イオン注入)す
ると、導電性が増すことが知られている(例えば、渡邊
、村井、吉日、石谷、石田、台木;日本化学会予稿集、
1987年10月)およびT、Venkatesan、
S、R,Forrest、 M、L、Kaplan+C
,A。
For example, polyphenylene sulfide (PPS),
When ions such as argon (Ar) and oxygen (0□) are implanted into the polymer of polyvinyl chloride (PVC) or novolac resin-based photoresist (for example, Fuji Hunt product: HPR204), conductivity is achieved. (e.g., Watanabe, Murai, Yoshihichi, Ishitani, Ishida, Daiki; Proceedings of the Chemical Society of Japan,
(October 1987) and Venkatesan, T.
S, R, Forrest, M, L, Kaplan+C
,A.

Murray+ P、H,5clu++idt:J、A
ppl、Phys、54 (6) 、 June198
3、 pp、3150〜3153参照)。さらに、ナト
リウム(Na)、アルミニウム(Al)、ボロン(B)
、ヨウ素(■)、臭素(Br)などをポリアセチレンに
打込むと不純物ドーピング効果が得られることも知られ
ている(例えば、高分子学会高分子表面研究会編二「高
分子表面技術」、および)1.Mazurek。
Murray+ P, H, 5clu++idt: J, A
ppl, Phys, 54 (6), June 198
3, pp. 3150-3153). Furthermore, sodium (Na), aluminum (Al), boron (B)
It is also known that an impurity doping effect can be obtained by implanting , iodine (■), bromine (Br), etc. into polyacetylene (for example, ``Polymer Surface Technology'' edited by the Polymer Surface Study Group of the Japanese Society of Polymer Science and Technology), and )1. Mazurek.

D、R,Day、E、VbMaby、J、S、^bel
;S、D’:5enturia、M、S。
D, R, Day, E, VbMaby, J, S, ^bel
;S, D': 5 enturia, M, S.

Dresselhaus and G、Dressel
haus:J、Po1y、Sci、Po1y。
Dresselhaus and G, Dressel
haus: J, Poly, Sci, Poly.

Phys、Ed、Vol、21.537 55H158
3)参照)。
Phys, Ed, Vol, 21.537 55H158
3)).

しかしながら、どうしてイオン打込みで不純物ドーピン
グ効果が生じるのかは、今のところ、明確になっていな
い。ただ、導電性高分子の研究から、導電性はイオン注
入による炭化を含めて共役系を発達させることあるいは
長く続く共役系を有することにより与えられることは知
られている。
However, it is not yet clear why ion implantation produces an impurity doping effect. However, from research on conductive polymers, it is known that conductivity can be achieved by developing a conjugated system, including carbonization through ion implantation, or by having a long-lasting conjugated system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

Naなとの従来のイオン打込みではドーパントとしての
性質が不明確であってドーパント効果を予想することが
できないなどのように、イオン打込み(イオン注入)元
素と高分子との関係ははっきりしていない。
In conventional ion implantation with Na, the properties of the dopant are unclear and the dopant effect cannot be predicted, so the relationship between the ion implantation (ion implantation) element and the polymer is not clear. .

本発明の目的は、本発明者が見い出したイオン打込み元
素と高分子との関係に基づいて、導電性を制御して高分
子に与えることになる高分子改質方法を提供することで
ある。
An object of the present invention is to provide a method for modifying a polymer by controlling electrical conductivity based on the relationship between the ion implantation element and the polymer discovered by the inventor.

〔問題点を解決するための手段〕[Means for solving problems]

上述の目的が、高分子に元素周期律表でvb族元素(N
、P、As、SbおよびBi)の少なくとも一種類をイ
オン打込みすることによって該高分子の導電性を制御性
良く向上させることを特徴とする高分子の改質方法によ
って達成される。
The above purpose is to add group VB elements (N
, P, As, Sb, and Bi) by ion-implanting at least one of them to improve the conductivity of the polymer with good controllability.

vb族元素のP(リン)を高分子へイオン打込みすると
、高分子の共役系(その中でもアロマティク部(すなわ
ち、ベンゼン環)に次にアロマティク部)に優先的に作
用して、Pのドーズ量が小さいときには複数個のベンゼ
ン環を結ぶために2次元および3次元結合での導電性向
上する。Pの場合でそのイオン打込み量(ドーズ量)が
1×10”個/Jを越えると、Pは共役系以外のところ
へも多く入っていくので導電性制御がうまくできない。
When P (phosphorus), a VB group element, is ion-implanted into a polymer, it acts preferentially on the conjugated system of the polymer (among them, the aromatic part (i.e., benzene ring) and then the aromatic part), and the P When the dose is small, the conductivity in two-dimensional and three-dimensional bonds improves because a plurality of benzene rings are connected. In the case of P, if the ion implantation amount (dose) exceeds 1 x 10'' ions/J, a large amount of P will enter areas other than the conjugated system, making it difficult to control the conductivity well.

〔実施例〕〔Example〕

以下、添付図面を参照して、本発明の実施態様例および
比較例を含む実験でもって本発明をより詳しく説明する
Hereinafter, the present invention will be explained in more detail through experiments including embodiment examples and comparative examples of the present invention with reference to the accompanying drawings.

まず、半導体基板(シリコンウェハ)を用意して、この
表面にSiO□層(厚さ400nm)を形成し、その上
にノボラック樹脂ベースのポジ型フォトレジストである
HPR204を塗布し、110℃で20分のベークを経
て、レジスト膜(高分子膜)を厚さ400nIllで形
成した。このようにして高分子膜を有するサンプルを作
った。
First, a semiconductor substrate (silicon wafer) is prepared, a SiO□ layer (thickness 400 nm) is formed on its surface, and HPR204, which is a novolac resin-based positive photoresist, is applied on top of it. After baking for several minutes, a resist film (polymer film) was formed to a thickness of 400 nm. In this way, a sample with a polymer membrane was produced.

イオン打込みを行なう前に、サンプルのレジスト膜を試
料として核磁気共鳴分析(NMR分析)を行なって、第
3図に示すレジスト膜のCP/MAS” C−NMRス
ペクトルが得られた。
Before performing ion implantation, nuclear magnetic resonance analysis (NMR analysis) was performed using the sample resist film as a sample, and the CP/MAS'' C-NMR spectrum of the resist film shown in FIG. 3 was obtained.

次に、作成したサンプルをイオン注入装置内に入れて、
レジスト膜にP”  (リンイオン)を1×1016個
/ calおよびlXl0”個/ cdのドーズ縫で7
0KeVの加速エネルギーにて打込んだ。イオン打込み
によってレジスト膜は、いわゆる、炭化されて変質膜と
なっており、その表面抵抗を4端針法で測定した。そし
て、この変質膜を試料としてNMR分析を行ない、第1
図および第2図に示すレジスト膜(変質膜)のCP/M
AS 13C−NMRスペクトルが得られた。
Next, put the prepared sample into the ion implanter,
P" (phosphorus ions) are sewn onto the resist film at a dose of 1 x 1016/cal and lXl0"/cd.
It was implanted with an acceleration energy of 0 KeV. As a result of the ion implantation, the resist film was so-called carbonized into a deteriorated film, and its surface resistance was measured by the four-point needle method. Then, NMR analysis was performed using this altered film as a sample, and the first
CP/M of the resist film (altered film) shown in the figure and Fig. 2
An AS 13C-NMR spectrum was obtained.

比較例として、作成したサンプルのレジスト膜にAr”
(アルゴンイオン)をlXl016個/cXII、70
KeVの加速エネルギーにて打込んだ。同様に炭化され
たレジスト膜(変質膜)の表面抵抗を4端針法で測定し
、NMR分析を行なって第4図に示すレジスト膜(変質
膜)のCP/MAS ”C−NMRスペクトルが得られ
た。
As a comparative example, Ar” was applied to the resist film of the prepared sample.
(argon ions) lXl016/cXII, 70
It was implanted with KeV acceleration energy. Similarly, the surface resistance of the carbonized resist film (altered film) was measured using the four-point needle method, and NMR analysis was performed to obtain the CP/MAS ``C-NMR spectrum of the resist film (altered film) shown in Figure 4. It was done.

これらの実験から、イオン打込みされたレジスト膜(変
質膜)の表面抵抗は、抵抗の絶対値はバラツキが大きい
ために特定できないが(サンプルロットにより10Ω−
cffi〜lO3Ω−cmの範囲)、PとArとの比較
ではP打込みのほうがAr打込みに比べて10〜50%
低い抵抗値であった。さらに、As(ヒ素)のイオン打
込みの場合には、P ”p A rよりもかなり重い元
素であり炭化具合も違ってくるために簡単には比較でき
ないが、表面抵抗はP打込みの場合と同程度の抵抗値で
あった。
From these experiments, the surface resistance of the ion-implanted resist film (altered film) cannot be determined because the absolute value of the resistance varies widely (10 Ω- depending on the sample lot).
cffi~lO3Ω-cm), when comparing P and Ar, P implantation is 10 to 50% better than Ar implantation.
The resistance value was low. Furthermore, in the case of As (arsenic) ion implantation, the surface resistance is the same as that of P implantation, although it cannot be easily compared because it is a much heavier element than P''pAr and the degree of carbonization is different. The resistance value was about.

第1図〜第4図のNMRスペクトル図からみて、SP2
/SP’の値が下の表に示すごとくイオン打込み前のと
きから、PのlXl0I6個/ cat打込みのときへ
と減少し、さらに打込み量が増えると増大する。
From the NMR spectrum diagrams in Figures 1 to 4, SP2
As shown in the table below, the value of /SP' decreases from before ion implantation to when 6 lXl0I/cat of P is implanted, and then increases as the implantation amount increases.

このことから、SF3がまず変化を受けてから次にSF
3が変化を受けるわけであって、P(リンイオン)はベ
ンゼン環へ先に入るものと考えられる。これは、イオン
打込み前(第3図)のベンゼン環のNMRシグナルがシ
フトしていることから判断できる。
From this, it follows that SF3 undergoes the change first, then SF3
3 undergoes a change, and it is thought that P (phosphorus ion) enters the benzene ring first. This can be determined from the fact that the NMR signal of the benzene ring before ion implantation (FIG. 3) is shifted.

上述の実験ではP(リン)で行なったが、P以外のVb
族の元素は化学的性質がPと類似しているので、N、A
s  、Sb  、Biについても同様な振舞となり同
様な結果が得られることになる。
In the above experiment, P (phosphorus) was used, but Vb other than P
Group elements have chemical properties similar to P, so N, A
Similar behavior will occur for s, Sb, and Bi, and similar results will be obtained.

〔発明の効果〕〔Effect of the invention〕

従来のNaなどの高分子へのイオン打込みではそのドー
パントとしての性質・作用が不明瞭であって高分子のど
こへ入るのかが不明のためドーパント効果を制御するこ
とはできなかった。本発明によれば、■、族元素のPを
イオン打込みするときにはアロマチック部へ比較的優先
的に作用するのでドーズ量に応じたドーパント効果が期
待できる。したがって、■5族のイオン打込み元素は制
j’fl性の良いドーパントとみなすことができて、高
分子に電気的特性を制御しつつ与えることができる。
In conventional ion implantation into polymers such as Na, the properties and effects of the dopant as a dopant are unclear, and it is unclear where in the polymer the ions enter into the polymer, making it impossible to control the dopant effect. According to the present invention, when ion-implanting P, which is a group element, it acts relatively preferentially on the aromatic portion, so a dopant effect depending on the dose can be expected. Therefore, the ion-implanted elements of Group 5 can be regarded as dopants with good j'fl control properties, and can be imparted to polymers while controlling their electrical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、リンをlXlolb個/−打込んだレジスト
膜のNMRスペクトルであり、 第2図は、リンを1×10′7個/ crA打込んだレ
ジスト膜のNMRスペクトルであり、 第3図は、イオン打込み前のレジスト膜のNMRスペク
トルであり、および、 第4図は、アルゴンをlXl016個/ Cl11打込
んだレジスト膜のNMRスペクトルである。
Fig. 1 is an NMR spectrum of a resist film implanted with lXlolb/- phosphorus, Fig. 2 is an NMR spectrum of a resist film implanted with 1 x 10'7/crA of phosphorus, The figure shows the NMR spectrum of the resist film before ion implantation, and FIG. 4 shows the NMR spectrum of the resist film implanted with 1X1016/Cl11 argon.

Claims (1)

【特許請求の範囲】 1、高分子に元素周期律表でVb族元素の少なくとも一
種類をイオン打込みすることによって該高分子の導電性
を制御性良く向上させることを特徴とする高分子の改質
方法。 2、前記高分子は共役系を有していることを特徴とする
特許請求の範囲第1項記載の方法。 3、前記共役系はベンゼン環であることを特徴とする特
許請求の範囲第2項記載の方法。 4、前記高分子はノボラック樹脂であることを特徴とす
る特許請求の範囲第3項記載の方法。 5、リンのイオン打込み量が1×10^1^7個/cm
^2以下であることを特徴とする特許請求の範囲第1項
記載の方法。
[Scope of Claims] 1. Modification of a polymer characterized by improving the conductivity of the polymer with good controllability by ion-implanting at least one element of Group Vb in the Periodic Table of Elements into the polymer. quality method. 2. The method according to claim 1, wherein the polymer has a conjugated system. 3. The method according to claim 2, wherein the conjugated system is a benzene ring. 4. The method according to claim 3, wherein the polymer is a novolac resin. 5. Phosphorus ion implantation amount is 1 x 10^1^7 pieces/cm
2. The method according to claim 1, wherein: ^2 or less.
JP63000682A 1988-01-07 1988-01-07 Modification of polymer Pending JPH01178506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000682A JPH01178506A (en) 1988-01-07 1988-01-07 Modification of polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000682A JPH01178506A (en) 1988-01-07 1988-01-07 Modification of polymer

Publications (1)

Publication Number Publication Date
JPH01178506A true JPH01178506A (en) 1989-07-14

Family

ID=11480529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000682A Pending JPH01178506A (en) 1988-01-07 1988-01-07 Modification of polymer

Country Status (1)

Country Link
JP (1) JPH01178506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050473A1 (en) 2006-10-18 2008-05-02 Meiji Dairies Corporation Food with depression

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050473A1 (en) 2006-10-18 2008-05-02 Meiji Dairies Corporation Food with depression
EP3205214A1 (en) 2006-10-18 2017-08-16 Meiji Co., Ltd Food with depression

Similar Documents

Publication Publication Date Title
JPS58182259A (en) Method of forming polysilicon resistor
CA1332695C (en) Method of making an article comprising a heteroepitaxial structure, and article produced thereby
CA1204370A (en) Method of forming a shallow and high conductivity boron doped layer in silicon
JPH07101677B2 (en) Method for manufacturing semiconductor device
US5380595A (en) Carbon cluster film having electrical conductivity and method of preparing the same
JPH01178506A (en) Modification of polymer
JP2681283B2 (en) Method for growing oxide on ion-implanted polysilicon surface
KR20190017039A (en) Method of manufacturing epitaxial silicon wafer, epitaxial silicon wafer, and method of manufacturing solid-state imaging device
US5538763A (en) Method of preparing carbon cluster film having electrical conductivity
Isaev et al. Formation of nanosized films of chromium silicides on silicon surface
Denhoff et al. I n situ doping by As ion implantation of silicon grown by molecular‐beam epitaxy
Berchenko et al. Type conductivity conversion in As-, Sb-doped p-CdxHg1− xTe under ion beam milling
US7138688B2 (en) Doping method and semiconductor device fabricated using the method
SU527988A1 (en) Method of manufacturing ohmic contacts
CN110633488B (en) Method for calculating ionization energy of two-dimensional material
US6211028B1 (en) Twin current bipolar device with hi-lo base profile
JP2536472B2 (en) Solid phase growth method for polycrystalline semiconductor film
Aoki et al. Nickel and cobalt silicide formation by broad and focused ion beam implantation
Abd El-Salam et al. Temperature and thickness dependence of photoconductivity and density-of-states distribution for Bi doped Ge20S80
JPH03139827A (en) Forming method for low resistance layer on silicon by ion implanting of two or more elements having different atomic radii
JP3417036B2 (en) Hall element
Saparniyazova et al. THERMAL AND RADIATION RESISTANCE OF CLUSTERS OF IMPURITY ATOMS IN SILICON
JPH01214139A (en) Formation of conductive polycrystalline silicon film
Barnett et al. Ion-beam doping during molecular beam epitaxy
JPH09232324A (en) Semiconductor substrate and its manufacture